23 results
(View BibTeX file of all listed publications)

**Projected Newton-type methods in machine learning**
In *Optimization for Machine Learning*, pages: 305-330, (Editors: Sra, S., Nowozin, S. and Wright, S. J.), MIT Press, Cambridge, MA, USA, December 2011 (inbook)

**Optimization for Machine Learning**
pages: 494, Neural information processing series, MIT Press, Cambridge, MA, USA, December 2011 (book)

**Bayesian Time Series Models**
pages: 432, Cambridge University Press, Cambridge, UK, August 2011 (book)

**Statistical Learning Theory: Models, Concepts, and Results**
In *Handbook of the History of Logic, Vol. 10: Inductive Logic*, 10, pages: 651-706, (Editors: Gabbay, D. M., Hartmann, S. and Woods, J. H.), Elsevier North Holland, Amsterdam, Netherlands, May 2011 (inbook)

**PAC-Bayesian Analysis of Martingales and Multiarmed Bandits **
Max Planck Institute for Biological Cybernetics, Tübingen, Germany, May 2011 (techreport)

**Non-stationary Correction of Optical Aberrations**
(1), Max Planck Institute for Intelligent Systems, Tübingen, Germany, May 2011 (techreport)

**Crowdsourcing for optimisation of deconvolution methods via an iPhone application**
Hochschule Reutlingen, Germany, April 2011 (mastersthesis)

**Multiple Kernel Learning: A Unifying Probabilistic Viewpoint**
Max Planck Institute for Biological Cybernetics, March 2011 (techreport)

**Multiple testing, uncertainty and realistic pictures**
(2011-004), EURANDOM, Technische Universiteit Eindhoven, January 2011 (techreport)

**Robot Learning**
In *Encyclopedia of Machine Learning*, pages: 865-869, Encyclopedia of machine learning, (Editors: Sammut, C. and Webb, G. I.), Springer, New York, NY, USA, January 2011 (inbook)

**What You Expect Is What You Get? Potential Use of Contingent Negative Variation for Passive BCI Systems in Gaze-Based HCI**
In *Affective Computing and Intelligent Interaction*, 6975, pages: 447-456, Lecture Notes in Computer Science, (Editors: D’Mello, S., Graesser, A., Schuller, B. and Martin, J.-C.), Springer, Berlin, Germany, 2011 (inbook)

**Kernel Methods in Bioinformatics **
In *Handbook of Statistical Bioinformatics*, pages: 317-334, Springer Handbooks of Computational Statistics ; 3, (Editors: Lu, H.H.-S., Schölkopf, B. and Zhao, H.), Springer, Berlin, Germany, 2011 (inbook)

**Handbook of Statistical Bioinformatics**
pages: 627, Springer Handbooks of Computational Statistics, Springer, Berlin, Germany, 2011 (book)

**Cue Combination: Beyond Optimality**
In *Sensory Cue Integration*, pages: 144-152, (Editors: Trommershäuser, J., Körding, K. and Landy, M. S.), Oxford University Press, 2011 (inbook)

**Nonconvex proximal splitting: batch and incremental algorithms**
(2), Max Planck Institute for Intelligent Systems, Tübingen, Germany, 2011 (techreport)

**Model Learning in Robot Control**
Albert-Ludwigs-Universität Freiburg, Germany, 2011 (phdthesis)

**Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond**
pages: 644, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, December 2002, Parts of this book, including an introduction to kernel methods, can be downloaded here. (book)

**Kernel Dependency Estimation**
(98), Max Planck Institute for Biological Cybernetics, August 2002 (techreport)

**A compression approach to support vector model selection**
(101), Max Planck Institute for Biological Cybernetics, 2002, see more detailed JMLR version (techreport)

**Variationsverfahren zur Untersuchung von
Grundzustandseigenschaften des Ein-Band Hubbard-Modells**
Biologische Kybernetik, Technische Universität Dresden, Dresden/Germany, May 2001 (diplomathesis)

**Inference Principles and Model Selection**
(01301), Dagstuhl Seminar, 2001 (techreport)

**Advances in Large Margin Classifiers**
pages: 422, Neural Information Processing, MIT Press, Cambridge, MA, USA, October 2000 (book)

**An Introduction to Kernel-Based Learning Algorithms**
In *Handbook of Neural Network Signal Processing*, 4, (Editors: Yu Hen Hu and Jang-Neng Hwang), CRC Press, 2000 (inbook)