45 results
(View BibTeX file of all listed publications)

**Maschinelles Lernen: Entwicklung ohne Grenzen?**
In *Mit Optimismus in die Zukunft schauen. Künstliche Intelligenz - Chancen und Rahmenbedingungen*, pages: 26-34, (Editors: Bender, G. and Herbrich, R. and Siebenhaar, K.), B&S Siebenhaar Verlag, 2018 (incollection)

**Methods in Psychophysics**
In *Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience*, 5 (Methodology), 7, 4th, John Wiley & Sons, Inc., 2018 (inbook)

**Transfer Learning for BCIs**
In *Brain–Computer Interfaces Handbook*, pages: 425-442, 22, (Editors: Chang S. Nam, Anton Nijholt and Fabien Lotte), CRC Press, 2018 (incollection)

**Robot Learning**
In *Springer Handbook of Robotics*, pages: 357-394, 15, 2nd, (Editors: Siciliano, Bruno and Khatib, Oussama), Springer International Publishing, 2017 (inbook)

**Policy Gradient Methods**
In *Encyclopedia of Machine Learning and Data Mining*, pages: 982-985, 2nd, (Editors: Sammut, Claude and Webb, Geoffrey I.), Springer US, 2017 (inbook)

**Unsupervised clustering of EOG as a viable substitute for optical eye-tracking**
In *First Workshop on Eye Tracking and Visualization (ETVIS 2015)*, pages: 151-167, Mathematics and Visualization, (Editors: Burch, M., Chuang, L., Fisher, B., Schmidt, A., and Weiskopf, D.), Springer, 2017 (inbook)

**Statistical Asymmetries Between Cause and Effect**
In *Time in Physics*, pages: 129-139, Tutorials, Schools, and Workshops in the Mathematical Sciences, (Editors: Renner, Renato and Stupar, Sandra), Springer International Publishing, Cham, 2017 (inbook)

**Robot Learning**
In *Encyclopedia of Machine Learning and Data Mining*, pages: 1106-1109, 2nd, (Editors: Sammut, Claude and Webb, Geoffrey I.), Springer US, 2017 (inbook)

**Nonlinear functional causal models for distinguishing cause from effect**
In *Statistics and Causality: Methods for Applied Empirical Research*, pages: 185-201, 8, 1st, (Editors: Wolfgang Wiedermann and Alexander von Eye), John Wiley & Sons, Inc., 2016 (inbook)

**A cognitive brain–computer interface for patients with amyotrophic lateral sclerosis**
In *Brain-Computer Interfaces: Lab Experiments to Real-World Applications*, 228(Supplement C):221-239, 8, Progress in Brain Research, (Editors: Damien Coyle), Elsevier, 2016 (incollection)

**Screening Rules for Convex Problems**
2016 (unpublished) Submitted

**A Kernel Method for the Two-Sample-Problem**
20th Annual Conference on Neural Information Processing Systems (NIPS), December 2006 (talk)

**Ab-initio gene finding using machine learning**
NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

**Graph boosting for molecular QSAR analysis**
NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

**Inferring Causal Directions by Evaluating the Complexity of Conditional Distributions**
NIPS Workshop on Causality and Feature Selection, December 2006 (talk)

**Learning Optimal EEG Features Across Time, Frequency and Space**
NIPS Workshop on Current Trends in Brain-Computer Interfacing, December 2006 (talk)

**Semi-Supervised Learning**
Advanced Methods in Sequence Analysis Lectures, November 2006 (talk)

**Prediction of Protein Function from Networks**
In *Semi-Supervised Learning*, pages: 361-376, Adaptive Computation and Machine Learning, (Editors: Chapelle, O. , B. Schölkopf, A. Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)

**Discrete Regularization**
In *Semi-supervised Learning*, pages: 237-250, Adaptive computation and machine learning, (Editors: O Chapelle and B Schölkopf and A Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)

**A Machine Learning Approach for Determining the PET Attenuation Map from Magnetic Resonance Images**
IEEE Medical Imaging Conference, November 2006 (talk)

**Semi-Supervised Support Vector Machines and Application to Spam Filtering**
ECML Discovery Challenge Workshop, September 2006 (talk)

**Inferential Structure Determination: Probabilistic determination and validation of NMR structures**
Gordon Research Conference on Computational Aspects of Biomolecular
NMR, September 2006 (talk)

**Machine Learning Algorithms for Polymorphism Detection**
2nd ISCB Student Council Symposium, August 2006 (talk)

**Inferential structure determination: Overview and new developments**
Sixth CCPN Annual Conference: Efficient and Rapid Structure Determination by NMR, July 2006 (talk)

**MCMC inference in (Conditionally) Conjugate Dirichlet Process Gaussian Mixture Models**
ICML Workshop on Learning with Nonparametric Bayesian Methods, June 2006 (talk)

**Sampling for non-conjugate infinite latent feature models**
(Editors: Bernardo, J. M.), 8th Valencia International Meeting on Bayesian Statistics (ISBA), June 2006 (talk)

**An Inventory of Sequence Polymorphisms For Arabidopsis**
17th International Conference on Arabidopsis Research, April 2006 (talk)

**Combining a Filter Method with SVMs**
In *Feature Extraction: Foundations and Applications, Studies in Fuzziness and Soft Computing, Vol. 207*, pages: 439-446, Studies in Fuzziness and Soft Computing ; 207, (Editors: I Guyon and M Nikravesh and S Gunn and LA Zadeh), Springer, Berlin, Germany, 2006 (inbook)

**Embedded methods**
In *Feature Extraction: Foundations and Applications*, pages: 137-165, Studies in Fuzziness and Soft Computing ; 207, (Editors: Guyon, I. , S. Gunn, M. Nikravesh, L. A. Zadeh), Springer, Berlin, Germany, 2006 (inbook)

Zhou, D.
**How to learn from very few examples?**
October 2004 (talk)

Zhou, D.
**Discrete vs. Continuous: Two Sides of Machine Learning**
October 2004 (talk)

Zhou, D.
**Discrete vs. Continuous: Two Sides of Machine Learning**
October 2004 (talk)

**Grundlagen von Support Vector Maschinen und Anwendungen in der Bildverarbeitung**
September 2004 (talk)

**Distributed Command Execution**
In *BSD Hacks: 100 industrial-strength tips & tools*, pages: 152-152, (Editors: Lavigne, Dru), O’Reilly, Beijing, May 2004 (inbook)

Bousquet, O.
**Introduction to Category Theory**
Internal Seminar, January 2004 (talk)

**Gaussian Processes in Machine Learning**
In 3176, pages: 63-71, Lecture Notes in Computer Science, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, 2004, Copyright by Springer (inbook)

**Protein Classification via Kernel Matrix Completion**
In pages: 261-274, (Editors: Schoelkopf, B., K. Tsuda and J.P. Vert), MIT Press, Cambridge, MA; USA, 2004 (inbook)

**Introduction to Statistical Learning Theory**
In Lecture Notes in Artificial Intelligence 3176, pages: 169-207, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, Germany, 2004 (inbook)

**A Primer on Kernel Methods**
In *Kernel Methods in Computational Biology*, pages: 35-70, (Editors: B Schölkopf and K Tsuda and JP Vert), MIT Press, Cambridge, MA, USA, 2004 (inbook)

**Concentration Inequalities**
In Lecture Notes in Artificial Intelligence 3176, pages: 208-240, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, Germany, 2004 (inbook)

**Kernels for graphs**
In pages: 155-170, (Editors: Schoelkopf, B., K. Tsuda and J.P. Vert), MIT Press, Cambridge, MA; USA, 2004 (inbook)

**A primer on molecular biology**
In pages: 3-34, (Editors: Schoelkopf, B., K. Tsuda and J. P. Vert), MIT Press, Cambridge, MA, USA, 2004 (inbook)

Bousquet, O.
**Advanced Statistical Learning Theory**
Machine Learning Summer School, 2004 (talk)