Header logo is ei


2018


no image
A virtual reality environment for experiments in assistive robotics and neural interfaces

Bustamante, S.

Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)

PDF [BibTex]

2018

PDF [BibTex]


no image
Optimal Trajectory Generation and Learning Control for Robot Table Tennis

Koc, O.

Technical University Darmstadt, Germany, 2018 (phdthesis)

[BibTex]

[BibTex]


no image
Distribution-Dissimilarities in Machine Learning

Simon-Gabriel, C. J.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

[BibTex]

[BibTex]


no image
Domain Adaptation Under Causal Assumptions

Lechner, T.

Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)

[BibTex]

[BibTex]


no image
Maschinelles Lernen: Entwicklung ohne Grenzen?

Schökopf, B.

In Mit Optimismus in die Zukunft schauen. Künstliche Intelligenz - Chancen und Rahmenbedingungen, pages: 26-34, (Editors: Bender, G. and Herbrich, R. and Siebenhaar, K.), B&S Siebenhaar Verlag, 2018 (incollection)

[BibTex]

[BibTex]


no image
Probabilistic Approaches to Stochastic Optimization

Mahsereci, M.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Reinforcement Learning for High-Speed Robotics with Muscular Actuation

Guist, S.

Ruprecht-Karls-Universität Heidelberg , 2018 (mastersthesis)

[BibTex]

[BibTex]


no image
Methods in Psychophysics

Wichmann, F. A., Jäkel, F.

In Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, 5 (Methodology), 7, 4th, John Wiley & Sons, Inc., 2018 (inbook)

[BibTex]

[BibTex]


no image
Transfer Learning for BCIs

Jayaram, V., Fiebig, K., Peters, J., Grosse-Wentrup, M.

In Brain–Computer Interfaces Handbook, pages: 425-442, 22, (Editors: Chang S. Nam, Anton Nijholt and Fabien Lotte), CRC Press, 2018 (incollection)

Project Page [BibTex]

Project Page [BibTex]


no image
Probabilistic Ordinary Differential Equation Solvers — Theory and Applications

Schober, M.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

[BibTex]

[BibTex]


no image
A machine learning approach to taking EEG-based computer interfaces out of the lab

Jayaram, V.

Graduate Training Centre of Neuroscience, IMPRS, Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

[BibTex]

[BibTex]

2012


no image
Support Vector Machines, Support Measure Machines, and Quasar Target Selection

Muandet, K.

Center for Cosmology and Particle Physics (CCPP), New York University, December 2012 (talk)

[BibTex]

2012

[BibTex]


no image
Hilbert Space Embedding for Dirichlet Process Mixtures

Muandet, K.

NIPS Workshop on Confluence between Kernel Methods and Graphical Models, December 2012 (talk)

[BibTex]

[BibTex]


no image
Scalable graph kernels

Shervashidze, N.

Eberhard Karls Universität Tübingen, Germany, October 2012 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
Simultaneous small animal PET/MR in activated and resting state reveals multiple brain networks

Wehrl, H., Lankes, K., Hossain, M., Bezrukov, I., Liu, C., Martirosian, P., Schick, F., Pichler, B.

20th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), May 2012 (talk)

Web [BibTex]

Web [BibTex]


no image
A new PET insert for simultaneous PET/MR small animal imaging

Wehrl, H., Lankes, K., Hossain, M., Bezrukov, I., Liu, C., Martirosian, P., Reischl, G., Schick, F., Pichler, B.

20th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), May 2012 (talk)

Web [BibTex]

Web [BibTex]


no image
Evaluation of a new, large field of view, small animal PET/MR system

Hossain, M., Wehrl, H., Lankes, K., Liu, C., Bezrukov, I., Reischl, G., Pichler, B.

50. Jahrestagung der Deutschen Gesellschaft fuer Nuklearmedizin (NuklearMedizin), April 2012 (talk)

Web [BibTex]

Web [BibTex]


no image
Learning Motor Skills: From Algorithms to Robot Experiments

Kober, J.

Technische Universität Darmstadt, Germany, March 2012 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
High Gamma-Power Predicts Performance in Brain-Computer Interfacing

Grosse-Wentrup, M., Schölkopf, B.

(3), Max-Planck-Institut für Intelligente Systeme, Tübingen, February 2012 (techreport)

Abstract
Subjects operating a brain-computer interface (BCI) based on sensorimotor rhythms exhibit large variations in performance over the course of an experimental session. Here, we show that high-frequency gamma-oscillations, originating in fronto-parietal networks, predict such variations on a trial-to-trial basis. We interpret this nding as empirical support for an in uence of attentional networks on BCI-performance via modulation of the sensorimotor rhythm.

PDF [BibTex]

PDF [BibTex]


no image
Expectation-Maximization methods for solving (PO)MDPs and optimal control problems

Toussaint, M., Storkey, A., Harmeling, S.

In Inference and Learning in Dynamic Models, (Editors: Barber, D., Cemgil, A.T. and Chiappa, S.), Cambridge University Press, Cambridge, UK, January 2012 (inbook) In press

PDF [BibTex]

PDF [BibTex]


no image
Simultaneous small animal PET/MR reveals different brain networks during stimulation and rest

Wehrl, H., Hossain, M., Lankes, K., Liu, C., Bezrukov, I., Martirosian, P., Reischl, G., Schick, F., Pichler, B.

World Molecular Imaging Congress (WMIC), 2012 (talk)

[BibTex]

[BibTex]


no image
Support Measure Machines for Quasar Target Selection

Muandet, K.

Astro Imaging Workshop, 2012 (talk)

Abstract
In this talk I will discuss the problem of quasar target selection. The objects attributes in astronomy such as fluxes are often subjected to substantial and heterogeneous measurement uncertainties, especially for the medium-redshift between 2.2 and 3.5 quasars which is relatively rare and must be targeted down to g ~ 22 mag. Most of the previous works for quasar target selection includes UV-excess, kernel density estimation, a likelihood approach, and artificial neural network cannot directly deal with the heterogeneous input uncertainties. Recently, extreme deconvolution (XD) has been used to tackle this problem in a well-posed manner. In this work, we present a discriminative approach for quasar target selection that can deal with input uncertainties directly. To do so, we represent each object as a Gaussian distribution whose mean is the object's attribute vector and covariance is the given flux measurement uncertainty. Given a training set of Gaussian distributions, the support measure machines (SMMs) algorithm are trained and used to build the quasar targeting catalog. Preliminary results will also be presented. Joint work with Jo Bovy and Bernhard Sch{\"o}lkopf

Web [BibTex]


no image
PAC-Bayesian Analysis: A Link Between Inference and Statistical Physics

Seldin, Y.

Workshop on Statistical Physics of Inference and Control Theory, 2012 (talk)

Web [BibTex]

Web [BibTex]


no image
PET Performance Measurements of a Next Generation Dedicated Small Animal PET/MR Scanner

Liu, C., Hossain, M., Lankes, K., Bezrukov, I., Wehrl, H., Kolb, A., Judenhofer, M., Pichler, B.

Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC), 2012 (talk)

[BibTex]

[BibTex]


no image
Inferential structure determination from NMR data

Habeck, M.

In Bayesian methods in structural bioinformatics, pages: 287-312, (Editors: Hamelryck, T., Mardia, K. V. and Ferkinghoff-Borg, J.), Springer, New York, 2012 (inbook)

[BibTex]

[BibTex]


no image
Structure and Dynamics of Diffusion Networks

Gomez Rodriguez, M.

Department of Electrical Engineering, Stanford University, 2012 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
Robot Learning

Sigaud, O., Peters, J.

In Encyclopedia of the sciences of learning, (Editors: Seel, N.M.), Springer, Berlin, Germany, 2012 (inbook)

Web [BibTex]

Web [BibTex]


no image
Reinforcement Learning in Robotics: A Survey

Kober, J., Peters, J.

In Reinforcement Learning, 12, pages: 579-610, (Editors: Wiering, M. and Otterlo, M.), Springer, Berlin, Germany, 2012 (inbook)

Abstract
As most action generation problems of autonomous robots can be phrased in terms of sequential decision problems, robotics offers a tremendously important and interesting application platform for reinforcement learning. Similarly, the real-world challenges of this domain pose a major real-world check for reinforcement learning. Hence, the interplay between both disciplines can be seen as promising as the one between physics and mathematics. Nevertheless, only a fraction of the scientists working on reinforcement learning are sufficiently tied to robotics to oversee most problems encountered in this context. Thus, we will bring the most important challenges faced by robot reinforcement learning to their attention. To achieve this goal, we will attempt to survey most work that has successfully applied reinforcement learning to behavior generation for real robots. We discuss how the presented successful approaches have been made tractable despite the complexity of the domain and will study how representations or the inclusion of prior knowledge can make a significant difference. As a result, a particular focus of our chapter lies on the choice between model-based and model-free as well as between value function-based and policy search methods. As a result, we obtain a fairly complete survey of robot reinforcement learning which should allow a general reinforcement learning researcher to understand this domain.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Blind Deconvolution in Scientific Imaging & Computational Photography

Hirsch, M.

Eberhard Karls Universität Tübingen, Germany, 2012 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
PAC-Bayesian Analysis of Supervised, Unsupervised, and Reinforcement Learning

Seldin, Y., Laviolette, F., Shawe-Taylor, J.

Tutorial at the 29th International Conference on Machine Learning (ICML), 2012 (talk)

Web Web [BibTex]

Web Web [BibTex]


no image
Influence of MR-based attenuation correction on lesions within bone and susceptibility artifact regions

Bezrukov, I., Schmidt, H., Mantlik, F., Schwenzer, N., Brendle, C., Pichler, B.

Molekulare Bildgebung (MoBi), 2012 (talk)

[BibTex]

[BibTex]


no image
Structured Apprenticeship Learning

Boularias, A., Kroemer, O., Peters, J.

European Workshop on Reinforcement Learning (EWRL), 2012 (talk)

[BibTex]

[BibTex]


no image
PAC-Bayesian Analysis and Its Applications

Seldin, Y., Laviolette, F., Shawe-Taylor, J.

Tutorial at The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2012 (talk)

Web [BibTex]

Web [BibTex]


no image
Machine Learning and Interpretation in Neuroimaging - Revised Selected and Invited Contributions

Langs, G., Rish, I., Grosse-Wentrup, M., Murphy, B.

pages: 266, Springer, Heidelberg, Germany, International Workshop, MLINI, Held at NIPS, 2012, Lecture Notes in Computer Science, Vol. 7263 (proceedings)

DOI [BibTex]

DOI [BibTex]


no image
Kernel Bellman Equations in POMDPs

Nishiyama, Y., Boularias, A., Gretton, A., Fukumizu, K.

Technical Committee on Infomation-Based Induction Sciences and Machine Learning (IBISML'12), 2012 (talk)

[BibTex]

[BibTex]


no image
Higher-Order Tensors in Diffusion MRI

Schultz, T., Fuster, A., Ghosh, A., Deriche, R., Florack, L., Lim, L.

In Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data, (Editors: Westin, C. F., Vilanova, A. and Burgeth, B.), Springer, 2012 (inbook) Accepted

[BibTex]

[BibTex]


no image
MICCAI, Workshop on Computational Diffusion MRI, 2012 (electronic publication)

Panagiotaki, E., O’Donnell, L., Schultz, T., Zhang, G.

15th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Workshop on Computational Diffusion MRI , 2012 (proceedings)

PDF [BibTex]

PDF [BibTex]


no image
Beta oscillations propagate as traveling waves in the macaque prefrontal cortex

Panagiotaropoulos, T., Besserve, M., Logothetis, N.

42nd Annual Meeting of the Society for Neuroscience (Neuroscience), 2012 (talk)

[BibTex]

[BibTex]

2003


no image
Support Vector Channel Selection in BCI

Lal, T., Schröder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N., Schölkopf, B.

(120), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, December 2003 (techreport)

Abstract
Designing a Brain Computer Interface (BCI) system one can choose from a variety of features that may be useful for classifying brain activity during a mental task. For the special case of classifying EEG signals we propose the usage of the state of the art feature selection algorithms Recursive Feature Elimination [3] and Zero-Norm Optimization [13] which are based on the training of Support Vector Machines (SVM) [11]. These algorithms can provide more accurate solutions than standard filter methods for feature selection [14]. We adapt the methods for the purpose of selecting EEG channels. For a motor imagery paradigm we show that the number of used channels can be reduced significantly without increasing the classification error. The resulting best channels agree well with the expected underlying cortical activity patterns during the mental tasks. Furthermore we show how time dependent task specific information can be visualized.

PDF Web [BibTex]

2003

PDF Web [BibTex]


no image
Learning Theory and Kernel Machines: 16th Annual Conference on Learning Theory and 7th Kernel Workshop (COLT/Kernel 2003), LNCS Vol. 2777

Schölkopf, B., Warmuth, M.

Proceedings of the 16th Annual Conference on Learning Theory and 7th Kernel Workshop (COLT/Kernel 2003), COLT/Kernel 2003, pages: 746, Springer, Berlin, Germany, 16th Annual Conference on Learning Theory and 7th Kernel Workshop, November 2003, Lecture Notes in Computer Science ; 2777 (proceedings)

DOI [BibTex]

DOI [BibTex]


no image
Image Reconstruction by Linear Programming

Tsuda, K., Rätsch, G.

(118), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, October 2003 (techreport)

PDF [BibTex]

PDF [BibTex]


no image
Real-Time Face Detection

Kienzle, W.

Biologische Kybernetik, Eberhard-Karls-Universitaet Tuebingen, Tuebingen, Germany, October 2003 (diplomathesis)

[BibTex]

[BibTex]