35 results
(View BibTeX file of all listed publications)

**Maschinelles Lernen: Entwicklung ohne Grenzen?**
In *Mit Optimismus in die Zukunft schauen. Künstliche Intelligenz - Chancen und Rahmenbedingungen*, pages: 26-34, (Editors: Bender, G. and Herbrich, R. and Siebenhaar, K.), B&S Siebenhaar Verlag, 2018 (incollection)

**Methods in Psychophysics**
In *Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience*, 5 (Methodology), 7, 4th, John Wiley & Sons, Inc., 2018 (inbook)

**Transfer Learning for BCIs**
In *Brain–Computer Interfaces Handbook*, pages: 425-442, 22, (Editors: Chang S. Nam, Anton Nijholt and Fabien Lotte), CRC Press, 2018 (incollection)

**Robot Learning**
In *Springer Handbook of Robotics*, pages: 357-394, 15, 2nd, (Editors: Siciliano, Bruno and Khatib, Oussama), Springer International Publishing, 2017 (inbook)

**Policy Gradient Methods**
In *Encyclopedia of Machine Learning and Data Mining*, pages: 982-985, 2nd, (Editors: Sammut, Claude and Webb, Geoffrey I.), Springer US, 2017 (inbook)

**Unsupervised clustering of EOG as a viable substitute for optical eye-tracking**
In *First Workshop on Eye Tracking and Visualization (ETVIS 2015)*, pages: 151-167, Mathematics and Visualization, (Editors: Burch, M., Chuang, L., Fisher, B., Schmidt, A., and Weiskopf, D.), Springer, 2017 (inbook)

**Statistical Asymmetries Between Cause and Effect**
In *Time in Physics*, pages: 129-139, Tutorials, Schools, and Workshops in the Mathematical Sciences, (Editors: Renner, Renato and Stupar, Sandra), Springer International Publishing, Cham, 2017 (inbook)

**Robot Learning**
In *Encyclopedia of Machine Learning and Data Mining*, pages: 1106-1109, 2nd, (Editors: Sammut, Claude and Webb, Geoffrey I.), Springer US, 2017 (inbook)

**Nonlinear functional causal models for distinguishing cause from effect**
In *Statistics and Causality: Methods for Applied Empirical Research*, pages: 185-201, 8, 1st, (Editors: Wolfgang Wiedermann and Alexander von Eye), John Wiley & Sons, Inc., 2016 (inbook)

**A cognitive brain–computer interface for patients with amyotrophic lateral sclerosis**
In *Brain-Computer Interfaces: Lab Experiments to Real-World Applications*, 228(Supplement C):221-239, 8, Progress in Brain Research, (Editors: Damien Coyle), Elsevier, 2016 (incollection)

**Screening Rules for Convex Problems**
2016 (unpublished) Submitted

**Single-Source Domain Adaptation with Target and Conditional Shift**
In *Regularization, Optimization, Kernels, and Support Vector Machines*, pages: 427-456, 19, Chapman & Hall/CRC Machine Learning & Pattern Recognition, (Editors: Suykens, J. A. K., Signoretto, M. and Argyriou, A.), Chapman and Hall/CRC, Boca Raton, USA, 2014 (inbook)

**Higher-Order Tensors in Diffusion Imaging**
In *Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data*, pages: 129-161, Mathematics + Visualization, (Editors: Westin, C.-F., Vilanova, A. and Burgeth, B.), Springer, 2014 (inbook)

**Fuzzy Fibers: Uncertainty in dMRI Tractography**
In *Scientific Visualization: Uncertainty, Multifield, Biomedical, and Scalable Visualization*, pages: 79-92, 8, Mathematics + Visualization, (Editors: Hansen, C. D., Chen, M., Johnson, C. R., Kaufman, A. E. and Hagen, H.), Springer, 2014 (inbook)

**Nonconvex Proximal Splitting with Computational Errors**
In *Regularization, Optimization, Kernels, and Support Vector Machines*, pages: 83-102, 4, (Editors: Suykens, J. A. K., Signoretto, M. and Argyriou, A.), CRC Press, 2014 (inbook)

**Projected Newton-type methods in machine learning**
In *Optimization for Machine Learning*, pages: 305-330, (Editors: Sra, S., Nowozin, S. and Wright, S. J.), MIT Press, Cambridge, MA, USA, December 2011 (inbook)

**Statistical Learning Theory: Models, Concepts, and Results**
In *Handbook of the History of Logic, Vol. 10: Inductive Logic*, 10, pages: 651-706, (Editors: Gabbay, D. M., Hartmann, S. and Woods, J. H.), Elsevier North Holland, Amsterdam, Netherlands, May 2011 (inbook)

**Robot Learning**
In *Encyclopedia of Machine Learning*, pages: 865-869, Encyclopedia of machine learning, (Editors: Sammut, C. and Webb, G. I.), Springer, New York, NY, USA, January 2011 (inbook)

**What You Expect Is What You Get? Potential Use of Contingent Negative Variation for Passive BCI Systems in Gaze-Based HCI**
In *Affective Computing and Intelligent Interaction*, 6975, pages: 447-456, Lecture Notes in Computer Science, (Editors: D’Mello, S., Graesser, A., Schuller, B. and Martin, J.-C.), Springer, Berlin, Germany, 2011 (inbook)

**Kernel Methods in Bioinformatics **
In *Handbook of Statistical Bioinformatics*, pages: 317-334, Springer Handbooks of Computational Statistics ; 3, (Editors: Lu, H.H.-S., Schölkopf, B. and Zhao, H.), Springer, Berlin, Germany, 2011 (inbook)

**Cue Combination: Beyond Optimality**
In *Sensory Cue Integration*, pages: 144-152, (Editors: Trommershäuser, J., Körding, K. and Landy, M. S.), Oxford University Press, 2011 (inbook)

**Distributed Command Execution**
In *BSD Hacks: 100 industrial-strength tips & tools*, pages: 152-152, (Editors: Lavigne, Dru), O’Reilly, Beijing, May 2004 (inbook)

**Gaussian Processes in Machine Learning**
In 3176, pages: 63-71, Lecture Notes in Computer Science, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, 2004, Copyright by Springer (inbook)

**Protein Classification via Kernel Matrix Completion**
In pages: 261-274, (Editors: Schoelkopf, B., K. Tsuda and J.P. Vert), MIT Press, Cambridge, MA; USA, 2004 (inbook)

**Introduction to Statistical Learning Theory**
In Lecture Notes in Artificial Intelligence 3176, pages: 169-207, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, Germany, 2004 (inbook)

**A Primer on Kernel Methods**
In *Kernel Methods in Computational Biology*, pages: 35-70, (Editors: B Schölkopf and K Tsuda and JP Vert), MIT Press, Cambridge, MA, USA, 2004 (inbook)

**Concentration Inequalities**
In Lecture Notes in Artificial Intelligence 3176, pages: 208-240, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, Germany, 2004 (inbook)

**Kernels for graphs**
In pages: 155-170, (Editors: Schoelkopf, B., K. Tsuda and J.P. Vert), MIT Press, Cambridge, MA; USA, 2004 (inbook)

**A primer on molecular biology**
In pages: 3-34, (Editors: Schoelkopf, B., K. Tsuda and J. P. Vert), MIT Press, Cambridge, MA, USA, 2004 (inbook)

**Extension of the nu-SVM range for classification**
In *Advances in Learning Theory: Methods, Models and Applications, NATO Science Series III: Computer and Systems Sciences, Vol. 190*, 190, pages: 179-196, NATO Science Series III: Computer and Systems Sciences, (Editors: J Suykens and G Horvath and S Basu and C Micchelli and J Vandewalle), IOS Press, Amsterdam, 2003 (inbook)

**An Introduction to Support Vector Machines**
In *Recent Advances and Trends in Nonparametric Statistics
*, pages: 3-17, (Editors: MG Akritas and DN Politis), Elsevier, Amsterdam, The Netherlands, 2003 (inbook)

**Statistical Learning and Kernel Methods in Bioinformatics**
In *Artificial Intelligence and Heuristic Methods in Bioinformatics*, 183, pages: 1-21, 3, (Editors: P Frasconi und R Shamir), IOS Press, Amsterdam, The Netherlands, 2003 (inbook)

**A Short Introduction to Learning with Kernels**
In *Proceedings of the Machine Learning Summer School, Lecture Notes in Artificial Intelligence, Vol. 2600*, pages: 41-64, LNAI 2600, (Editors: S Mendelson and AJ Smola), Springer, Berlin, Heidelberg, Germany, 2003 (inbook)

**Bayesian Kernel Methods**
In *Advanced Lectures on Machine Learning, Machine Learning Summer School 2002, Lecture Notes in Computer Science, Vol. 2600*, LNAI 2600, pages: 65-117, 0, (Editors: S Mendelson and AJ Smola), Springer, Berlin, Germany, 2003 (inbook)

**Stability of ensembles of kernel machines**
In 190, pages: 111-124, NATO Science Series III: Computer and Systems Science, (Editors: Suykens, J., G. Horvath, S. Basu, C. Micchelli and J. Vandewalle), IOS press, Netherlands, 2003 (inbook)