Grosse-Wentrup, M., Schölkopf, B.
High Gamma-Power Predicts Performance in Brain-Computer Interfacing
(3), Max-Planck-Institut für Intelligente Systeme, Tübingen, February 2012 (techreport)
Nickisch, H., Kohli, P., Rother, C.
Learning an Interactive Segmentation System
Max Planck Institute for Biological Cybernetics, December 2009 (techreport)
Harmeling, S., Sra, S., Hirsch, M., Schölkopf, B.
An Incremental GEM Framework for Multiframe Blind Deconvolution, Super-Resolution, and Saturation Correction
(187), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2009 (techreport)
Hirsch, M., Sra, S., Schölkopf, B., Harmeling, S.
Efficient Filter Flow for Space-Variant Multiframe Blind Deconvolution
(188), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2009 (techreport)
Gretton, A., Györfi, L.
Consistent Nonparametric Tests of Independence
(172), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, July 2009 (techreport)
Shelton, J., Blaschko, M., Bartels, A.
Semi-supervised subspace analysis of human functional magnetic resonance imaging data
(185), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, May 2009 (techreport)
Schölkopf, B., Smola, A.
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
pages: 644, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, December 2002, Parts of this book, including an introduction to kernel methods, can be downloaded here. (book)
Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B., Vapnik, V.
Kernel Dependency Estimation
(98), Max Planck Institute for Biological Cybernetics, August 2002 (techreport)
von Luxburg, U., Bousquet, O., Schölkopf, B.
A compression approach to support vector model selection
(101), Max Planck Institute for Biological Cybernetics, 2002, see more detailed JMLR version (techreport)