29 results
(View BibTeX file of all listed publications)

**Robot Learning for Muscular Systems**
Technical University Darmstadt, Germany, December 2019 (phdthesis)

**Real Time Probabilistic Models for Robot Trajectories**
Technical University Darmstadt, Germany, December 2019 (phdthesis)

**Reinforcement Learning for a Two-Robot Table Tennis Simulation**
RWTH Aachen University, Germany, July 2019 (mastersthesis)

**Learning Transferable Representations**
University of Cambridge, UK, 2019 (phdthesis)

**Sample-efficient deep reinforcement learning for continuous control**
University of Cambridge, UK, 2019 (phdthesis)

**Spatial Filtering based on Riemannian Manifold for Brain-Computer Interfacing**
Technical University of Munich, Germany, 2019 (mastersthesis)

**Pragmatism and Variable Transformations in Causal Modelling**
ETH Zurich, 2019 (phdthesis)

**Formally justified and modular Bayesian inference for probabilistic programs**
University of Cambridge, UK, 2019 (phdthesis)

**Quantification of tumor heterogeneity using PET/MRI and machine learning**
Eberhard Karls Universität Tübingen, Germany, 2019 (phdthesis)

**Advances in Probabilistic Modelling: Sparse Gaussian Processes, Autoencoders, and Few-shot Learning**
University of Cambridge, UK, 2019 (phdthesis)

**Projected Newton-type methods in machine learning**
In *Optimization for Machine Learning*, pages: 305-330, (Editors: Sra, S., Nowozin, S. and Wright, S. J.), MIT Press, Cambridge, MA, USA, December 2011 (inbook)

**Statistical Learning Theory: Models, Concepts, and Results**
In *Handbook of the History of Logic, Vol. 10: Inductive Logic*, 10, pages: 651-706, (Editors: Gabbay, D. M., Hartmann, S. and Woods, J. H.), Elsevier North Holland, Amsterdam, Netherlands, May 2011 (inbook)

**Crowdsourcing for optimisation of deconvolution methods via an iPhone application**
Hochschule Reutlingen, Germany, April 2011 (mastersthesis)

**Robot Learning**
In *Encyclopedia of Machine Learning*, pages: 865-869, Encyclopedia of machine learning, (Editors: Sammut, C. and Webb, G. I.), Springer, New York, NY, USA, January 2011 (inbook)

**What You Expect Is What You Get? Potential Use of Contingent Negative Variation for Passive BCI Systems in Gaze-Based HCI**
In *Affective Computing and Intelligent Interaction*, 6975, pages: 447-456, Lecture Notes in Computer Science, (Editors: D’Mello, S., Graesser, A., Schuller, B. and Martin, J.-C.), Springer, Berlin, Germany, 2011 (inbook)

**Kernel Methods in Bioinformatics **
In *Handbook of Statistical Bioinformatics*, pages: 317-334, Springer Handbooks of Computational Statistics ; 3, (Editors: Lu, H.H.-S., Schölkopf, B. and Zhao, H.), Springer, Berlin, Germany, 2011 (inbook)

**Cue Combination: Beyond Optimality**
In *Sensory Cue Integration*, pages: 144-152, (Editors: Trommershäuser, J., Körding, K. and Landy, M. S.), Oxford University Press, 2011 (inbook)

**Model Learning in Robot Control**
Albert-Ludwigs-Universität Freiburg, Germany, 2011 (phdthesis)

**Kernel Learning Approaches for Image Classification**
Biologische Kybernetik, Universität des Saarlandes, Saarbrücken, Germany, October 2009 (phdthesis)

**Text Clustering with Mixture of von Mises-Fisher Distributions**
In *Text mining: classification, clustering, and applications*, pages: 121-161, Chapman & Hall/CRC data mining and knowledge discovery series, (Editors: Srivastava, A. N. and Sahami, M.), CRC Press, Boca Raton, FL, USA, June 2009 (inbook)

**Data Mining for Biologists**
In *Biological Data Mining in Protein Interaction Networks*, pages: 14-27, (Editors: Li, X. and Ng, S.-K.), Medical Information Science Reference, Hershey, PA, USA, May 2009 (inbook)

**Kernel Methods in Computer Vision:Object Localization, Clustering,and Taxonomy Discovery**
Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, March 2009 (phdthesis)

**Large Margin Methods for Part of Speech Tagging**
In *Automatic Speech and Speaker Recognition: Large Margin and Kernel Methods*, pages: 141-160, (Editors: Keshet, J. and Bengio, S.), Wiley, Hoboken, NJ, USA, January 2009 (inbook)

**Motor Control and Learning in Table Tennis**
Eberhard Karls Universität Tübingen, Gerrmany, 2009 (diplomathesis)

**Hierarchical Clustering and Density Estimation Based on k-nearest-neighbor graphs**
Eberhard Karls Universität Tübingen, Germany, 2009 (diplomathesis)

**Covariate shift and local learning by distribution matching**
In *Dataset Shift in Machine Learning*, pages: 131-160, (Editors: Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A. and Lawrence, N. D.), MIT Press, Cambridge, MA, USA, 2009 (inbook)

**Learning with Structured Data: Applications to Computer Vision**
Technische Universität Berlin, Germany, 2009 (phdthesis)

**From Differential Equations to Differential Geometry: Aspects of Regularisation in Machine Learning**
Universität des Saarlandes, Saarbrücken, Germany, 2009 (phdthesis)

**Variationsverfahren zur Untersuchung von
Grundzustandseigenschaften des Ein-Band Hubbard-Modells**
Biologische Kybernetik, Technische Universität Dresden, Dresden/Germany, May 2001 (diplomathesis)