Header logo is ei


2014


no image
Modeling the polygenic architecture of complex traits

Rakitsch, Barbara

Eberhard Karls Universität Tübingen, November 2014 (phdthesis)

[BibTex]

2014

[BibTex]


no image
Learning Motor Skills: From Algorithms to Robot Experiments

Kober, J., Peters, J.

97, pages: 191, Springer Tracts in Advanced Robotics, Springer, 2014 (book)

DOI [BibTex]

DOI [BibTex]


no image
A Novel Causal Inference Method for Time Series

Shajarisales, N.

Eberhard Karls Universität Tübingen, Germany, Eberhard Karls Universität Tübingen, Germany, 2014 (mastersthesis)

PDF [BibTex]

PDF [BibTex]


no image
Single-Source Domain Adaptation with Target and Conditional Shift

Zhang, K., Schölkopf, B., Muandet, K., Wang, Z., Zhou, Z., Persello, C.

In Regularization, Optimization, Kernels, and Support Vector Machines, pages: 427-456, 19, Chapman & Hall/CRC Machine Learning & Pattern Recognition, (Editors: Suykens, J. A. K., Signoretto, M. and Argyriou, A.), Chapman and Hall/CRC, Boca Raton, USA, 2014 (inbook)

[BibTex]

[BibTex]


no image
Higher-Order Tensors in Diffusion Imaging

Schultz, T., Fuster, A., Ghosh, A., Deriche, R., Florack, L., Lim, L.

In Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data, pages: 129-161, Mathematics + Visualization, (Editors: Westin, C.-F., Vilanova, A. and Burgeth, B.), Springer, 2014 (inbook)

[BibTex]

[BibTex]


no image
Fuzzy Fibers: Uncertainty in dMRI Tractography

Schultz, T., Vilanova, A., Brecheisen, R., Kindlmann, G.

In Scientific Visualization: Uncertainty, Multifield, Biomedical, and Scalable Visualization, pages: 79-92, 8, Mathematics + Visualization, (Editors: Hansen, C. D., Chen, M., Johnson, C. R., Kaufman, A. E. and Hagen, H.), Springer, 2014 (inbook)

[BibTex]

[BibTex]


no image
A global analysis of extreme events and consequences for the terrestrial carbon cycle

Zscheischler, J.

Diss. No. 22043, ETH Zurich, Switzerland, ETH Zurich, Switzerland, 2014 (phdthesis)

[BibTex]

[BibTex]


no image
Nonconvex Proximal Splitting with Computational Errors

Sra, S.

In Regularization, Optimization, Kernels, and Support Vector Machines, pages: 83-102, 4, (Editors: Suykens, J. A. K., Signoretto, M. and Argyriou, A.), CRC Press, 2014 (inbook)

[BibTex]

[BibTex]


no image
Development of advanced methods for improving astronomical images

Schmeißer, N.

Eberhard Karls Universität Tübingen, Germany, Eberhard Karls Universität Tübingen, Germany, 2014 (diplomathesis)

[BibTex]

[BibTex]


no image
The Feasibility of Causal Discovery in Complex Systems: An Examination of Climate Change Attribution and Detection

Lacosse, E.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2014 (mastersthesis)

[BibTex]

[BibTex]


no image
Causal Discovery in the Presence of Time-Dependent Relations or Small Sample Size

Huang, B.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2014 (mastersthesis)

[BibTex]

[BibTex]


no image
Analysis of Distance Functions in Graphs

Alamgir, M.

University of Hamburg, Germany, University of Hamburg, Germany, 2014 (phdthesis)

[BibTex]

[BibTex]

2002


no image
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond

Schölkopf, B., Smola, A.

pages: 644, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, December 2002, Parts of this book, including an introduction to kernel methods, can be downloaded here. (book)

Abstract
In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs-kernels—for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics. Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years.

Web [BibTex]

2002

Web [BibTex]