Header logo is ei

Constraints measures and reproduction of style in robot imitation learning

2003

Poster

ei


Imitation learning is frequently discussed as a method for generating complex behaviors in robots by imitating human actors. The kinematic and the dynamic properties of humans and robots are typically quite di erent, however. For this reason observed human trajectories cannot be directly transferred to robots, even if their geometry is humanoid. Instead the human trajectory must be approximated by trajectories that can be realized by the robot. During this approximation deviations from the human trajectory may arise that change the style of the executed movement. Alternatively, the style of the movement might be well reproduced, but the imitated trajectory might be suboptimal with respect to di erent constraint measures from robotics control, leading to non-robust behavior. Goal of the presented work is to quantify this trade-o between \imitation quality" and constraint compatibility for the imitation of complex writing movements. In our experiment, we used trajectory data from human writing movements (see the abstract of Ilg et al. in this volume). The human trajectories were mapped onto robot trajectories by minimizing an error measure that integrates constraints that are important for the imitation of movement style and a regularizing constraint that ensures smooth joint trajectories with low velocities. In a rst experiment, both the end-e ector position and the shoulder angle of the robot were optimized in order to achieve good imitation together with accurate control of the end-e ector position. In a second experiment only the end-e ector trajectory was imitated whereas the motion of the elbow joint was determined using the optimal inverse kinematic solution for the robot. For both conditions di erent constraint measures (dexterity and relative jointlimit distances) and a measure for imitation quality were assessed. By controling the weight of the regularization term we can vary continuously between robot behavior optimizing imitation quality, and behavior minimizing joint velocities.

Author(s): Bakir, GH. and Ilg, W. and Franz, MO. and Giese, M.
Volume: 6
Pages: 70
Year: 2003
Month: February
Day: 0
Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann

Department(s): Empirical Inference
Bibtex Type: Poster (poster)

Digital: 0
Event Name: 6. T{\"u}binger Wahrnehmungskonferenz (TWK 2003)
Event Place: T{\"u}bingen, Germany
Organization: Max-Planck-Gesellschaft
School: Biologische Kybernetik

Links: PDF
Web

BibTex

@poster{2019,
  title = {Constraints measures and reproduction of style in robot imitation learning},
  author = {Bakir, GH. and Ilg, W. and Franz, MO. and Giese, M.},
  volume = {6},
  pages = {70},
  editors = {H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann},
  organization = {Max-Planck-Gesellschaft},
  school = {Biologische Kybernetik},
  month = feb,
  year = {2003},
  month_numeric = {2}
}