Header logo is ei

A bootstrap method for testing hypotheses concerning psychometric functions

1998

Poster

ei


Whenever psychometric functions are used to evaluate human performance on some task, it is valuable to examine not only the threshold and slope values estimated from the original data, but also the expected variability in those measures. This allows psychometric functions obtained in two experimental conditions to be compared statistically. We present a method for estimating the variability of thresholds and slopes of psychometric functions. This involves a maximum-likelihood fit to the data using a three-parameter mathematical function, followed by Monte Carlo simulation using the first fit as a generating function for the simulations. The variability of the function's parameters can then be estimated (as shown by Maloney, 1990), as can the variability of the threshold value (Foster & Bischof, 1997). We will show how a simple development of this procedure can be used to test the significance of differences between (a) the thresholds, and (b) the slopes of two psychometric functions. Further, our method can be used to assess the assumptions underlying the original fit, by examining how goodness-of-fit differs in simulation from its original value. In this way data sets can be identified as being either too noisy to be generated by a binomial observer, or significantly "too good to be true." All software is written in MATLAB and is therefore compatible across platforms, with the option of accelerating performance using MATLAB's plug-in binaries, or "MEX" files.

Author(s): Hill, NJ. and Wichmann, FA.
Year: 1998
Day: 0

Department(s): Empirical Inference
Bibtex Type: Poster (poster)

Digital: 0
Organization: Max-Planck-Gesellschaft
School: Biologische Kybernetik

BibTex

@poster{1158,
  title = {A bootstrap method for testing hypotheses concerning psychometric functions},
  author = {Hill, NJ. and Wichmann, FA.},
  organization = {Max-Planck-Gesellschaft},
  school = {Biologische Kybernetik},
  year = {1998}
}