Header logo is ei


2013


no image
Towards neurofeedback for improving visual attention

Zander, T., Battes, B., Schölkopf, B., Grosse-Wentrup, M.

In Proceedings of the Fifth International Brain-Computer Interface Meeting: Defining the Future, pages: Article ID: 086, (Editors: J.d.R. Millán, S. Gao, R. Müller-Putz, J.R. Wolpaw, and J.E. Huggins), Verlag der Technischen Universität Graz, 5th International Brain-Computer Interface Meeting, 2013, Article ID: 086 (inproceedings)

PDF DOI [BibTex]

2013

PDF DOI [BibTex]


no image
Detection and attribution of large spatiotemporal extreme events in Earth observation data

Zscheischler, J., Mahecha, M., Harmeling, S., Reichstein, M.

Ecological Informatics, 15, pages: 66-73, 2013 (article)

Abstract
Latest climate projections suggest that both frequency and intensity of climate extremes will be substantially modified over the course of the coming decades. As a consequence, we need to understand to what extent and via which pathways climate extremes affect the state and functionality of terrestrial ecosystems and the associated biogeochemical cycles on a global scale. So far the impacts of climate extremes on the terrestrial biosphere were mainly investigated on the basis of case studies, while global assessments are widely lacking. In order to facilitate global analysis of this kind, we present a methodological framework that firstly detects spatiotemporally contiguous extremes in Earth observations, and secondly infers the likely pathway of the preceding climate anomaly. The approach does not require long time series, is computationally fast, and easily applicable to a variety of data sets with different spatial and temporal resolutions. The key element of our analysis strategy is to directly search in the relevant observations for spatiotemporally connected components exceeding a certain percentile threshold. We also put an emphasis on characterization of extreme event distribution, and scrutinize the attribution issue. We exemplify the analysis strategy by exploring the fraction of absorbed photosynthetically active radiation (fAPAR) from 1982 to 2011. Our results suggest that the hot spots of extremes in fAPAR lie in Northeastern Brazil, Southeastern Australia, Kenya and Tanzania. Moreover, we demonstrate that the size distribution of extremes follow a distinct power law. The attribution framework reveals that extremes in fAPAR are primarily driven by phases of water scarcity.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Simultaneous PET/MR reveals Brain Function in Activated and Resting State on Metabolic, Hemodynamic and Multiple Temporal Scales

Wehrl, H., Hossain, M., Lankes, K., Liu, C., Bezrukov, I., Martirosian, P., Schick, F., Reischl, G., Pichler, B.

Nature Medicine, 19, pages: 1184–1189, 2013 (article)

Abstract
Combined positron emission tomography (PET) and magnetic resonance imaging (MRI) is a new tool to study functional processes in the brain. Here we study brain function in response to a barrel-field stimulus simultaneously using PET, which traces changes in glucose metabolism on a slow time scale, and functional MRI (fMRI), which assesses fast vascular and oxygenation changes during activation. We found spatial and quantitative discrepancies between the PET and the fMRI activation data. The functional connectivity of the rat brain was assessed by both modalities: the fMRI approach determined a total of nine known neural networks, whereas the PET method identified seven glucose metabolism–related networks. These results demonstrate the feasibility of combined PET-MRI for the simultaneous study of the brain at activation and rest, revealing comprehensive and complementary information to further decode brain function and brain networks.

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Guided Hybrid Genetic Algorithm for Feature Selection with Expensive Cost Functions

Jung, M., Zscheischler, J.

In Proceedings of the International Conference on Computational Science, 18, pages: 2337 - 2346, Procedia Computer Science, (Editors: Alexandrov, V and Lees, M and Krzhizhanovskaya, V and Dongarra, J and Sloot, PMA), Elsevier, Amsterdam, Netherlands, ICCS, 2013 (inproceedings)

Web DOI [BibTex]

Web DOI [BibTex]


no image
Domain Generalization via Invariant Feature Representation

Muandet, K.

30th International Conference on Machine Learning (ICML2013), 2013 (talk)

PDF [BibTex]

PDF [BibTex]


no image
Finding Potential Support Vectors in Separable Classification Problems

Varagnolo, D., Del Favero, S., Dinuzzo, F., Schenato, L., Pillonetto, G.

IEEE Transactions on Neural Networks and Learning Systems, 24(11):1799-1813, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
Learning responsive robot behavior by imitation

Ben Amor, H., Vogt, D., Ewerton, M., Berger, E., Jung, B., Peters, J.

In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2013), pages: 3257-3264, IEEE, 2013 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Learning Skills with Motor Primitives

Peters, J., Kober, J., Mülling, K., Kroemer, O., Neumann, G.

In Proceedings of the 16th Yale Workshop on Adaptive and Learning Systems, 2013 (inproceedings)

[BibTex]

[BibTex]


no image
Scalable Influence Estimation in Continuous-Time Diffusion Networks

Du, N., Song, L., Gomez Rodriguez, M., Zha, H.

In Advances in Neural Information Processing Systems 26, pages: 3147-3155, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Rapid Distance-Based Outlier Detection via Sampling

Sugiyama, M., Borgwardt, KM.

In Advances in Neural Information Processing Systems 26, pages: 467-475, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Probabilistic Movement Primitives

Paraschos, A., Daniel, C., Peters, J., Neumann, G.

In Advances in Neural Information Processing Systems 26, pages: 2616-2624, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Causal Inference on Time Series using Restricted Structural Equation Models

Peters, J., Janzing, D., Schölkopf, B.

In Advances in Neural Information Processing Systems 26, pages: 154-162, (Editors: C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Regression-tree Tuning in a Streaming Setting

Kpotufe, S., Orabona, F.

In Advances in Neural Information Processing Systems 26, pages: 1788-1796, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Density estimation from unweighted k-nearest neighbor graphs: a roadmap

von Luxburg, U., Alamgir, M.

In Advances in Neural Information Processing Systems 26, pages: 225-233, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Open-Box Spectral Clustering: Applications to Medical Image Analysis

Schultz, T., Kindlmann, G.

IEEE Transactions on Visualization and Computer Graphics, 19(12):2100-2108, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
PAC-Bayes-Empirical-Bernstein Inequality

Tolstikhin, I. O., Seldin, Y.

In Advances in Neural Information Processing Systems 26, pages: 109-117, (Editors: C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
im3shape: a maximum likelihood galaxy shear measurement code for cosmic gravitational lensing

Zuntz, J., Kacprzak, T., Voigt, L., Hirsch, M., Rowe, B., Bridle, S.

Monthly Notices of the Royal Astronomical Society, 434(2):1604-1618, Oxford University Press, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
Linear mixed models for genome-wide association studies

Lippert, C.

University of Tübingen, Germany, 2013 (phdthesis)

[BibTex]

[BibTex]


no image
PLAL: Cluster-based active learning

Urner, R., Wulff, S., Ben-David, S.

In Proceedings of the 26th Annual Conference on Learning Theory, 30, pages: 376-397, (Editors: Shalev-Shwartz, S. and Steinwart, I.), JMLR, COLT, 2013 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Maximizing Kepler science return per telemetered pixel: Detailed models of the focal plane in the two-wheel era

Hogg, D. W., Angus, R., Barclay, T., Dawson, R., Fergus, R., Foreman-Mackey, D., Harmeling, S., Hirsch, M., Lang, D., Montet, B. T., Schiminovich, D., Schölkopf, B.

arXiv:1309.0653, 2013 (techreport)

link (url) [BibTex]

link (url) [BibTex]


no image
Accurate detection of differential RNA processing

Drewe, P., Stegle, O., Hartmann, L., Kahles, A., Bohnert, R., Wachter, A., Borgwardt, K. M., Rätsch, G.

Nucleic Acids Research, 41(10):5189-5198, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
Monochromatic Bi-Clustering

Wulff, S., Urner, R., Ben-David, S.

In Proceedings of the 30th International Conference on Machine Learning, 28, pages: 145-153, (Editors: Dasgupta, S. and McAllester, D.), JMLR, ICML, 2013 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Maximizing Kepler science return per telemetered pixel: Searching the habitable zones of the brightest stars

Montet, B. T., Angus, R., Barclay, T., Dawson, R., Fergus, R., Foreman-Mackey, D., Harmeling, S., Hirsch, M., Hogg, D. W., Lang, D., Schiminovich, D., Schölkopf, B.

arXiv:1309.0654, 2013 (techreport)

link (url) [BibTex]

link (url) [BibTex]


no image
Detecting regulatory gene–environment interactions with unmeasured environmental factors

Fusi, N., Lippert, C., Borgwardt, K. M., Lawrence, N. D., Stegle, O.

Bioinformatics, 29(11):1382-1389, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
Significance of variable height-bandwidth group delay filters in the spectral reconstruction of speech

Devanshu, A., Raj, A., Hegde, R. M.

INTERSPEECH 2013, 14th Annual Conference of the International Speech Communication Association, pages: 1682-1686, 2013 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Generative Multiple-Instance Learning Models For Quantitative Electromyography

Adel, T., Smith, B., Urner, R., Stashuk, D., Lizotte, D. J.

In Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence, AUAI Press, UAI, 2013 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
On the Relations and Differences between Popper Dimension, Exclusion Dimension and VC-Dimension

Seldin, Y., Schölkopf, B.

In Empirical Inference - Festschrift in Honor of Vladimir N. Vapnik, pages: 53-57, 6, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)

[BibTex]

[BibTex]


no image
Modeling and Learning Complex Motor Tasks: A case study on Robot Table Tennis

Mülling, K.

Technical University Darmstadt, Germany, 2013 (phdthesis)

[BibTex]


no image
Fragmentation of Slow Wave Sleep after Onset of Complete Locked-In State

Soekadar, S. R., Born, J., Birbaumer, N., Bensch, M., Halder, S., Murguialday, A. R., Gharabaghi, A., Nijboer, F., Schölkopf, B., Martens, S.

Journal of Clinical Sleep Medicine, 9(9):951-953, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
Automatic Malaria Diagnosis system

Mehrjou, A., Abbasian, T., Izadi, M.

In First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), pages: 205-211, 2013 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Structural learning

Braun, D

Scholarpedia, 8(10):12312, October 2013 (article)

Abstract
Structural learning in motor control refers to a metalearning process whereby an agent extracts (abstract) invariants from its sensorimotor stream when experiencing a range of environments that share similar structure. Such invariants can then be exploited for faster generalization and learning-to-learn when experiencing novel, but related task environments.

DOI [BibTex]

DOI [BibTex]


no image
The effect of model uncertainty on cooperation in sensorimotor interactions

Grau-Moya, J, Hez, E, Pezzulo, G, Braun, DA

Journal of the Royal Society Interface, 10(87):1-11, October 2013 (article)

Abstract
Decision-makers have been shown to rely on probabilistic models for perception and action. However, these models can be incorrect or partially wrong in which case the decision-maker has to cope with model uncertainty. Model uncertainty has recently also been shown to be an important determinant of sensorimotor behaviour in humans that can lead to risk-sensitive deviations from Bayes optimal behaviour towards worst-case or best-case outcomes. Here, we investigate the effect of model uncertainty on cooperation in sensorimotor interactions similar to the stag-hunt game, where players develop models about the other player and decide between a pay-off-dominant cooperative solution and a risk-dominant, non-cooperative solution. In simulations, we show that players who allow for optimistic deviations from their opponent model are much more likely to converge to cooperative outcomes. We also implemented this agent model in a virtual reality environment, and let human subjects play against a virtual player. In this game, subjects' pay-offs were experienced as forces opposing their movements. During the experiment, we manipulated the risk sensitivity of the computer player and observed human responses. We found not only that humans adaptively changed their level of cooperation depending on the risk sensitivity of the computer player but also that their initial play exhibited characteristic risk-sensitive biases. Our results suggest that model uncertainty is an important determinant of cooperation in two-player sensorimotor interactions.

DOI [BibTex]

DOI [BibTex]


no image
Thermodynamics as a theory of decision-making with information-processing costs

Ortega, PA, Braun, DA

Proceedings of the Royal Society of London A, 469(2153):1-18, May 2013 (article)

Abstract
Perfectly rational decision-makers maximize expected utility, but crucially ignore the resource costs incurred when determining optimal actions. Here, we propose a thermodynamically inspired formalization of bounded rational decision-making where information processing is modelled as state changes in thermodynamic systems that can be quantified by differences in free energy. By optimizing a free energy, bounded rational decision-makers trade off expected utility gains and information-processing costs measured by the relative entropy. As a result, the bounded rational decision-making problem can be rephrased in terms of well-known variational principles from statistical physics. In the limit when computational costs are ignored, the maximum expected utility principle is recovered. We discuss links to existing decision-making frameworks and applications to human decision-making experiments that are at odds with expected utility theory. Since most of the mathematical machinery can be borrowed from statistical physics, the main contribution is to re-interpret the formalism of thermodynamic free-energy differences in terms of bounded rational decision-making and to discuss its relationship to human decision-making experiments.

DOI [BibTex]

DOI [BibTex]


no image
Abstraction in Decision-Makers with Limited Information Processing Capabilities

Genewein, T, Braun, DA

pages: 1-9, NIPS Workshop Planning with Information Constraints for Control, Reinforcement Learning, Computational Neuroscience, Robotics and Games, December 2013 (conference)

Abstract
A distinctive property of human and animal intelligence is the ability to form abstractions by neglecting irrelevant information which allows to separate structure from noise. From an information theoretic point of view abstractions are desirable because they allow for very efficient information processing. In artificial systems abstractions are often implemented through computationally costly formations of groups or clusters. In this work we establish the relation between the free-energy framework for decision-making and rate-distortion theory and demonstrate how the application of rate-distortion for decision-making leads to the emergence of abstractions. We argue that abstractions are induced due to a limit in information processing capacity.

link (url) [BibTex]

link (url) [BibTex]


no image
Bounded Rational Decision-Making in Changing Environments

Grau-Moya, J, Braun, DA

pages: 1-9, NIPS Workshop Planning with Information Constraints for Control, Reinforcement Learning, Computational Neuroscience, Robotics and Games, December 2013 (conference)

Abstract
A perfectly rational decision-maker chooses the best action with the highest utility gain from a set of possible actions. The optimality principles that describe such decision processes do not take into account the computational costs of finding the optimal action. Bounded rational decision-making addresses this problem by specifically trading off information-processing costs and expected utility. Interestingly, a similar trade-off between energy and entropy arises when describing changes in thermodynamic systems. This similarity has been recently used to describe bounded rational agents. Crucially, this framework assumes that the environment does not change while the decision-maker is computing the optimal policy. When this requirement is not fulfilled, the decision-maker will suffer inefficiencies in utility, that arise because the current policy is optimal for an environment in the past. Here we borrow concepts from non-equilibrium thermodynamics to quantify these inefficiencies and illustrate with simulations its relationship with computational resources.

link (url) [BibTex]

link (url) [BibTex]

2007


no image
HPLC analysis and pharmacokinetic study of quercitrin and isoquercitrin in rat plasma after administration of Hypericum japonicum thunb. extract.

Li, J., Wang, W., Zhang, L., Chen, H., Bi, S.

Biomedical Chromatography, 22(4):374-378, December 2007 (article)

Abstract
A simple HPLC method was developed for determination of quercitrin and isoquercitrin in rat plasma. Reversed-phase HPLC was employed for the quantitative analysis using kaempferol-3-O--d-glucopyranoside-7-O--l-rhamnoside as an internal standard. Following extraction from the plasma samples with ethyl acetate-isopropanol (95:5, v/v), these two compounds were successfully separated on a Luna C18 column (250 × 4.6 mm, 5 µm) with isocratic elution of acetonitrile-0.5% aqueous acetic acid (17:83, v/v) as the mobile phase. The flow-rate was set at 1 mL/min and the eluent was detected at 350 nm for both quercitrin and isoquercitrin. The method was linear over the studied ranges of 50-6000 and 50-5000 ng/mL for quercitrin and isoquercitrin, respectively. The intra- and inter-day precisions of the analysis were better than 13.1 and 13.2%, respectively. The lower limits of quantitation for quercitrin and isoquercitrin in plasma were both of 50 ng/mL. The mean extraction recoveries were 73 and 61% for quercitrin and i soquercitrin, respectively. The validated method was successfully applied to pharmacokinetic studies of the two analytes in rat plasma after the oral administration of Hypericum japonicum thunb. ethanol extract.

Web DOI [BibTex]


no image
Reaction graph kernels for discovering missing enzymes in the plant secondary metabolism

Saigo, H., Hattori, M., Tsuda, K.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
Secondary metabolic pathway in plant is important for finding druggable candidate enzymes. However, there are many enzymes whose functions are still undiscovered especially in organism-specific metabolic pathways. We propose reaction graph kernels for automatically assigning the EC numbers to unknown enzymatic reactions in a metabolic network. Experiments are carried out on KEGG/REACTION database and our method successfully predicted the first three digits of the EC number with 83% accuracy.We also exhaustively predicted missing enzymatic functions in the plant secondary metabolism pathways, and evaluated our results in biochemical validity.

Web [BibTex]

Web [BibTex]


no image
Positional Oligomer Importance Matrices

Sonnenburg, S., Zien, A., Philips, P., Rätsch, G.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
At the heart of many important bioinformatics problems, such as gene finding and function prediction, is the classification of biological sequences, above all of DNA and proteins. In many cases, the most accurate classifiers are obtained by training SVMs with complex sequence kernels, for instance for transcription starts or splice sites. However, an often criticized downside of SVMs with complex kernels is that it is very hard for humans to understand the learned decision rules and to derive biological insights from them. To close this gap, we introduce the concept of positional oligomer importance matrices (POIMs) and develop an efficient algorithm for their computation. We demonstrate how they overcome the limitations of sequence logos, and how they can be used to find relevant motifs for different biological phenomena in a straight-forward way. Note that the concept of POIMs is not limited to interpreting SVMs, but is applicable to general k−mer based scoring systems.

Web [BibTex]

Web [BibTex]


no image
Machine Learning Algorithms for Polymorphism Detection

Schweikert, G., Zeller, G., Weigel, D., Schölkopf, B., Rätsch, G.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Web [BibTex]

Web [BibTex]


no image
Graph sharpening plus graph integration: a synergy that improves protein functional classification

Shin, HH., Lisewski, AM., Lichtarge, O.

Bioinformatics, 23(23):3217-3224, December 2007 (article)

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Tutorial on Spectral Clustering

von Luxburg, U.

Statistics and Computing, 17(4):395-416, December 2007 (article)

Abstract
In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition on those questions. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
An Automated Combination of Kernels for Predicting Protein Subcellular Localization

Zien, A., Ong, C.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
Protein subcellular localization is a crucial ingredient to many important inferences about cellular processes, including prediction of protein function and protein interactions.We propose a new class of protein sequence kernels which considers all motifs including motifs with gaps. This class of kernels allows the inclusion of pairwise amino acid distances into their computation. We utilize an extension of the multiclass support vector machine (SVM)method which directly solves protein subcellular localization without resorting to the common approach of splitting the problem into several binary classification problems. To automatically search over families of possible amino acid motifs, we optimize over multiple kernels at the same time. We compare our automated approach to four other predictors on three different datasets, and show that we perform better than the current state of the art. Furthermore, our method provides some insights as to which features are most useful for determining subcellular localization, which are in agreement with biological reasoning.

Web [BibTex]

Web [BibTex]


no image
A Tutorial on Kernel Methods for Categorization

Jäkel, F., Schölkopf, B., Wichmann, F.

Journal of Mathematical Psychology, 51(6):343-358, December 2007 (article)

Abstract
The abilities to learn and to categorize are fundamental for cognitive systems, be it animals or machines, and therefore have attracted attention from engineers and psychologists alike. Modern machine learning methods and psychological models of categorization are remarkably similar, partly because these two fields share a common history in artificial neural networks and reinforcement learning. However, machine learning is now an independent and mature field that has moved beyond psychologically or neurally inspired algorithms towards providing foundations for a theory of learning that is rooted in statistics and functional analysis. Much of this research is potentially interesting for psychological theories of learning and categorization but also hardly accessible for psychologists. Here, we provide a tutorial introduction to a popular class of machine learning tools, called kernel methods. These methods are closely related to perceptrons, radial-basis-function neural networks and exemplar theories of catego rization. Recent theoretical advances in machine learning are closely tied to the idea that the similarity of patterns can be encapsulated in a positive definite kernel. Such a positive definite kernel can define a reproducing kernel Hilbert space which allows one to use powerful tools from functional analysis for the analysis of learning algorithms. We give basic explanations of some key concepts—the so-called kernel trick, the representer theorem and regularization—which may open up the possibility that insights from machine learning can feed back into psychology.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A semigroup approach to queueing systems

Haji, A., Radl, A.

Semigroup Forum, 75(3):610-624, December 2007 (article)

Abstract
We prove asymptotic stability of the solutions of equations describing a simple queueing system consisting of two machines separated by a finite storage buffer. Following an approach by G. Gupur, we apply the theory of C0-semigroups and spectral theory of positive operators.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Point-spread functions for backscattered imaging in the scanning electron microscope

Hennig, P., Denk, W.

Journal of Applied Physics , 102(12):1-8, December 2007 (article)

Abstract
One knows the imaging system's properties are central to the correct interpretation of any image. In a scanning electron microscope regions of different composition generally interact in a highly nonlinear way during signal generation. Using Monte Carlo simulations we found that in resin-embedded, heavy metal-stained biological specimens staining is sufficiently dilute to allow an approximately linear treatment. We then mapped point-spread functions for backscattered-electron contrast, for primary energies of 3 and 7 keV and for different detector specifications. The point-spread functions are surprisingly well confined (both laterally and in depth) compared even to the distribution of only those scattered electrons that leave the sample again.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Accurate Splice site Prediction Using Support Vector Machines

Sonnenburg, S., Schweikert, G., Philips, P., Behr, J., Rätsch, G.

BMC Bioinformatics, 8(Supplement 10):1-16, December 2007 (article)

Abstract
Background: For splice site recognition, one has to solve two classification problems: discriminating true from decoy splice sites for both acceptor and donor sites. Gene finding systems typically rely on Markov Chains to solve these tasks. Results: In this work we consider Support Vector Machines for splice site recognition. We employ the so-called weighted degree kernel which turns out well suited for this task, as we will illustrate in several experiments where we compare its prediction accuracy with that of recently proposed systems. We apply our method to the genome-wide recognition of splice sites in Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, Danio rerio, and Homo sapiens. Our performance estimates indicate that splice sites can be recognized very accurately in these genomes and that our method outperforms many other methods including Markov Chains, GeneSplicer and SpliceMachine. We provide genome-wide predictions of splice sites and a stand-alone prediction tool ready to be used for incorporation in a gene finder. Availability: Data, splits, additional information on the model selection, the whole genome predictions, as well as the stand-alone prediction tool are available for download at http:// www.fml.mpg.de/raetsch/projects/splice.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Challenges in Brain-Computer Interface Development: Induction, Measurement, Decoding, Integration

Hill, NJ.

Invited keynote talk at the launch of BrainGain, the Dutch BCI research consortium, November 2007 (talk)

Abstract
I‘ll present a perspective on Brain-Computer Interface development from T{\"u}bingen. Some of the benefits promised by BCI technology lie in the near foreseeable future, and some further away. Our motivation is to make BCI technology feasible for the people who could benefit from what it has to offer soon: namely, people in the "completely locked-in" state. I‘ll mention some of the challenges of working with this user group, and explain the specific directions they have motivated us to take in developing experimental methods, algorithms, and software.

[BibTex]

[BibTex]