Header logo is ei


2006


no image
A tutorial on spectral clustering

von Luxburg, U.

(149), Max Planck Institute for Biological Cybernetics, Tübingen, August 2006 (techreport)

Abstract
In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. Nevertheless, on the first glance spectral clustering looks a bit mysterious, and it is not obvious to see why it works at all and what it really does. This article is a tutorial introduction to spectral clustering. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.

PDF [BibTex]

2006

PDF [BibTex]


no image
Machine Learning Algorithms for Polymorphism Detection

Schweikert, G., Zeller, G., Clark, R., Ossowski, S., Warthmann, N., Shinn, P., Frazer, K., Ecker, J., Huson, D., Weigel, D., Schölkopf, B., Rätsch, G.

2nd ISCB Student Council Symposium, August 2006 (talk)

Abstract
Analyzing resequencing array data using machine learning, we obtain a genome-wide inventory of polymorphisms in 20 wild strains of Arabidopsis thaliana, including 750,000 single nucleotide poly- morphisms (SNPs) and thousands of highly polymorphic regions and deletions. We thus provide an unprecedented resource for the study of natural variation in plants.

Web [BibTex]

Web [BibTex]


no image
Integrating Structured Biological data by Kernel Maximum Mean Discrepancy

Borgwardt, K., Gretton, A., Rasch, M., Kriegel, H., Schölkopf, B., Smola, A.

Bioinformatics, 22(4: ISMB 2006 Conference Proceedings):e49-e57, August 2006 (article)

Abstract
Motivation: Many problems in data integration in bioinformatics can be posed as one common question: Are two sets of observations generated by the same distribution? We propose a kernel-based statistical test for this problem, based on the fact that two distributions are different if and only if there exists at least one function having different expectation on the two distributions. Consequently we use the maximum discrepancy between function means as the basis of a test statistic. The Maximum Mean Discrepancy (MMD) can take advantage of the kernel trick, which allows us to apply it not only to vectors, but strings, sequences, graphs, and other common structured data types arising in molecular biology. Results: We study the practical feasibility of an MMD-based test on three central data integration tasks: Testing cross-platform comparability of microarray data, cancer diagnosis, and data-content based schema matching for two different protein function classification schemas. In all of these experiments, including high-dimensional ones, MMD is very accurate in finding samples that were generated from the same distribution, and outperforms its best competitors. Conclusions: We have defined a novel statistical test of whether two samples are from the same distribution, compatible with both multivariate and structured data, that is fast, easy to implement, and works well, as confirmed by our experiments.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Towards the Inference of Graphs on Ordered Vertexes

Zien, A., Raetsch, G., Ong, C.

(150), Max Planck Institute for Biological Cybernetics, Tübingen, August 2006 (techreport)

Abstract
We propose novel methods for machine learning of structured output spaces. Specifically, we consider outputs which are graphs with vertices that have a natural order. We consider the usual adjacency matrix representation of graphs, as well as two other representations for such a graph: (a) decomposing the graph into a set of paths, (b) converting the graph into a single sequence of nodes with labeled edges. For each of the three representations, we propose an encoding and decoding scheme. We also propose an evaluation measure for comparing two graphs.

PDF [BibTex]

PDF [BibTex]


no image
Semi-supervised Hyperspectral Image Classification with Graphs

Bandos, T., Zhou, D., Camps-Valls, G.

In IGARSS 2006, pages: 3883-3886, IEEE Computer Society, Los Alamitos, CA, USA, IEEE International Conference on Geoscience and Remote Sensing, August 2006 (inproceedings)

Abstract
This paper presents a semi-supervised graph-based method for the classification of hyperspectral images. The method is designed to exploit the spatial/contextual information in the images through composite kernels. The proposed method produces smoother classifications with respect to the intrinsic structure collectively revealed by known labeled and unlabeled points. Good accuracy in high dimensional spaces and low number of labeled samples (ill-posed situations) are produced as compared to standard inductive support vector machines.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Large Scale Transductive SVMs

Collobert, R., Sinz, F., Weston, J., Bottou, L.

Journal of Machine Learning Research, 7, pages: 1687-1712, August 2006 (article)

Abstract
We show how the Concave-Convex Procedure can be applied to the optimization of Transductive SVMs, which traditionally requires solving a combinatorial search problem. This provides for the first time a highly scalable algorithm in the nonlinear case. Detailed experiments verify the utility of our approach.

PostScript PDF PDF [BibTex]

PostScript PDF PDF [BibTex]


no image
Supervised Probabilistic Principal Component Analysis

Yu, S., Yu, K., Tresp, V., Kriegel, H., Wu, M.

In KDD 2006, pages: 464-473, (Editors: Ungar, L. ), ACM Press, New York, NY, USA, 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2006 (inproceedings)

Abstract
Principal component analysis (PCA) has been extensively applied in data mining, pattern recognition and information retrieval for unsupervised dimensionality reduction. When labels of data are available, e.g.,~in a classification or regression task, PCA is however not able to use this information. The problem is more interesting if only part of the input data are labeled, i.e.,~in a semi-supervised setting. In this paper we propose a supervised PCA model called SPPCA and a semi-supervised PCA model called S$^2$PPCA, both of which are extensions of a probabilistic PCA model. The proposed models are able to incorporate the label information into the projection phase, and can naturally handle multiple outputs (i.e.,~in multi-task learning problems). We derive an efficient EM learning algorithm for both models, and also provide theoretical justifications of the model behaviors. SPPCA and S$^2$PPCA are compared with other supervised projection methods on various learning tasks, and show not only promising performance but also good scalability.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Pattern detection methods and systems and face detection methods and systems

Blake, A., Romdhani, S., Schölkopf, B., Torr, P. H. S.

United States Patent, No 7099504, August 2006 (patent)

[BibTex]

[BibTex]


no image
Building Support Vector Machines with Reduced Classifier Complexity

Keerthi, S., Chapelle, O., DeCoste, D.

Journal of Machine Learning Research, 7, pages: 1493-1515, July 2006 (article)

Abstract
Support vector machines (SVMs), though accurate, are not preferred in applications requiring great classification speed, due to the number of support vectors being large. To overcome this problem we devise a primal method with the following properties: (1) it decouples the idea of basis functions from the concept of support vectors; (2) it greedily finds a set of kernel basis functions of a specified maximum size ($dmax$) to approximate the SVM primal cost function well; (3) it is efficient and roughly scales as $O(ndmax^2)$ where $n$ is the number of training examples; and, (4) the number of basis functions it requires to achieve an accuracy close to the SVM accuracy is usually far less than the number of SVM support vectors.

PDF [BibTex]

PDF [BibTex]


no image
Inferential structure determination: Overview and new developments

Habeck, M.

Sixth CCPN Annual Conference: Efficient and Rapid Structure Determination by NMR, July 2006 (talk)

Web [BibTex]

Web [BibTex]


no image
Broad-Coverage Sense Disambiguation and Information Extraction with a Supersense Sequence Tagger

Ciaramita, M., Altun, Y.

In pages: 594-602, (Editors: Jurafsky, D. , E. Gaussier), Association for Computational Linguistics, Stroudsburg, PA, USA, 2006 Conference on Empirical Methods in Natural Language Processing (EMNLP), July 2006 (inproceedings)

Abstract
In this paper we approach word sense disambiguation and information extraction as a unified tagging problem. The task consists of annotating text with the tagset defined by the 41 Wordnet supersense classes for nouns and verbs. Since the tagset is directly related to Wordnet synsets, the tagger returns partial word sense disambiguation. Furthermore, since the noun tags include the standard named entity detection classes – person, location, organization, time, etc. – the tagger, as a by-product, returns extended named entity information. We cast the problem of supersense tagging as a sequential labeling task and investigate it empirically with a discriminatively-trained Hidden Markov Model. Experimental evaluation on the main sense-annotated datasets available, i.e., Semcor and Senseval, shows considerable improvements over the best known “first-sense” baseline.

Web [BibTex]

Web [BibTex]


no image
ARTS: Accurate Recognition of Transcription Starts in Human

Sonnenburg, S., Zien, A., Rätsch, G.

Bioinformatics, 22(14):e472-e480, July 2006 (article)

Abstract
Motivation: One of the most important features of genomic DNA are the protein-coding genes. While it is of great value to identify those genes and the encoded proteins, it is also crucial to understand how their transcription is regulated. To this end one has to identify the corresponding promoters and the contained transcription factor binding sites. TSS finders can be used to locate potential promoters. They may also be used in combination with other signal and content detectors to resolve entire gene structures. Results: We have developed a novel kernel based method - called ARTS - that accurately recognizes transcription start sites in human. The application of otherwise too computationally expensive Support Vector Machines was made possible due to the use of efficient training and evaluation techniques using suffix tries. In a carefully designed experimental study, we compare our TSS finder to state-of-the-art methods from the literature: McPromoter, Eponine and FirstEF. For given false positive rates within a reasonable range, we consistently achieve considerably higher true positive rates. For instance, ARTS finds about 24% true positives at a false positive rate of 1/1000, where the other methods find less than half (10.5%). Availability: Datasets, model selection results, whole genome predictions, and additional experimental results are available at http://www.fml.tuebingen.mpg.de/raetsch/projects/arts

Web DOI [BibTex]

Web DOI [BibTex]


no image
MR/PET Attenuation Correction

Hofmann, M., Schölkopf, B., Steinke, F., Pichler, B.

Max-Planck-Gesellschaft, Biologische Kybernetik, July 2006 (patent)

[BibTex]

[BibTex]


no image
Large Scale Multiple Kernel Learning

Sonnenburg, S., Rätsch, G., Schäfer, C., Schölkopf, B.

Journal of Machine Learning Research, 7, pages: 1531-1565, July 2006 (article)

Abstract
While classical kernel-based learning algorithms are based on a single kernel, in practice it is often desirable to use multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for classification, leading to a convex quadratically constrained quadratic program. We show that it can be rewritten as a semi-infinite linear program that can be efficiently solved by recycling the standard SVM implementations. Moreover, we generalize the formulation and our method to a larger class of problems, including regression and one-class classification. Experimental results show that the proposed algorithm works for hundred thousands of examples or hundreds of kernels to be combined, and helps for automatic model selection, improving the interpretability of the learning result. In a second part we discuss general speed up mechanism for SVMs, especially when used with sparse feature maps as appear for string kernels, allowing us to train a string kernel SVM on a 10 million real-world splice data set from computational biology. We integrated multiple kernel learning in our machine learning toolbox SHOGUN for which the source code is publicly available at http://www.fml.tuebingen.mpg.de/raetsch/projects/shogun.

PDF [BibTex]

PDF [BibTex]


no image
Factorial coding of natural images: how effective are linear models in removing higher-order dependencies?

Bethge, M.

Journal of the Optical Society of America A, 23(6):1253-1268, June 2006 (article)

Abstract
The performance of unsupervised learning models for natural images is evaluated quantitatively by means of information theory. We estimate the gain in statistical independence (the multi-information reduction) achieved with independent component analysis (ICA), principal component analysis (PCA), zero-phase whitening, and predictive coding. Predictive coding is translated into the transform coding framework, where it can be characterized by the constraint of a triangular filter matrix. A randomly sampled whitening basis and the Haar wavelet are included into the comparison as well. The comparison of all these methods is carried out for different patch sizes, ranging from 2x2 to 16x16 pixels. In spite of large differences in the shape of the basis functions, we find only small differences in the multi-information between all decorrelation transforms (5% or less) for all patch sizes. Among the second-order methods, PCA is optimal for small patch sizes and predictive coding performs best for large patch sizes. The extra gain achieved with ICA is always less than 2%. In conclusion, the `edge filters‘ found with ICA lead only to a surprisingly small improvement in terms of its actual objective.

PDF Web [BibTex]


no image
A Continuation Method for Semi-Supervised SVMs

Chapelle, O., Chi, M., Zien, A.

In ICML 2006, pages: 185-192, (Editors: Cohen, W. W., A. Moore), ACM Press, New York, NY, USA, 23rd International Conference on Machine Learning, June 2006 (inproceedings)

Abstract
Semi-Supervised Support Vector Machines (S3VMs) are an appealing method for using unlabeled data in classification: their objective function favors decision boundaries which do not cut clusters. However their main problem is that the optimization problem is non-convex and has many local minima, which often results in suboptimal performances. In this paper we propose to use a global optimization technique known as continuation to alleviate this problem. Compared to other algorithms minimizing the same objective function, our continuation method often leads to lower test errors.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Classification of natural scenes: Critical features revisited

Drewes, J., Wichmann, F., Gegenfurtner, K.

Journal of Vision, 6(6):561, 6th Annual Meeting of the Vision Sciences Society (VSS), June 2006 (poster)

Abstract
Human observers are capable of detecting animals within novel natural scenes with remarkable speed and accuracy. Despite the seeming complexity of such decisions it has been hypothesized that a simple global image feature, the relative abundance of high spatial frequencies at certain orientations, could underly such fast image classification (A. Torralba & A. Oliva, Network: Comput. Neural Syst., 2003). We successfully used linear discriminant analysis to classify a set of 11.000 images into “animal” and “non-animal” images based on their individual amplitude spectra only (Drewes, Wichmann, Gegenfurtner VSS 2005). We proceeded to sort the images based on the performance of our classifier, retaining only the best and worst classified 400 images (“best animals”, “best distractors” and “worst animals”, “worst distractors”). We used a Go/No-go paradigm to evaluate human performance on this subset of our images. Both reaction time and proportion of correctly classified images showed a significant effect of classification difficulty. Images more easily classified by our algorithm were also classified faster and better by humans, as predicted by the Torralba & Oliva hypothesis. We then equated the amplitude spectra of the 400 images, which, by design, reduced algorithmic performance to chance whereas human performance was only slightly reduced (cf. Wichmann, Rosas, Gegenfurtner, VSS 2005). Most importantly, the same images as before were still classified better and faster, suggesting that even in the original condition features other than specifics of the amplitude spectrum made particular images easy to classify, clearly at odds with the Torralba & Oliva hypothesis.

Web DOI [BibTex]

Web DOI [BibTex]


no image
MCMC inference in (Conditionally) Conjugate Dirichlet Process Gaussian Mixture Models

Rasmussen, C., Görür, D.

ICML Workshop on Learning with Nonparametric Bayesian Methods, June 2006 (talk)

Abstract
We compare the predictive accuracy of the Dirichlet Process Gaussian mixture models using conjugate and conditionally conjugate priors and show that better density models result from using the wider class of priors. We explore several MCMC schemes exploiting conditional conjugacy and show their computational merits on several multidimensional density estimation problems.

Web [BibTex]

Web [BibTex]


no image
Unifying Divergence Minimization and Statistical Inference Via Convex Duality

Altun, Y., Smola, A.

In Learning Theory, pages: 139-153, (Editors: Lugosi, G. , H.-U. Simon), Springer, Berlin, Germany, 19th Annual Conference on Learning Theory (COLT), June 2006 (inproceedings)

Abstract
In this paper we unify divergence minimization and statistical inference by means of convex duality. In the process of doing so, we prove that the dual of approximate maximum entropy estimation is maximum a posteriori estimation as a special case. Moreover, our treatment leads to stability and convergence bounds for many statistical learning problems. Finally, we show how an algorithm by Zhang can be used to solve this class of optimization problems efficiently.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Trading Convexity for Scalability

Collobert, R., Sinz, F., Weston, J., Bottou, L.

In ICML 2006, pages: 201-208, (Editors: Cohen, W. W., A. Moore), ACM Press, New York, NY, USA, 23rd International Conference on Machine Learning, June 2006 (inproceedings)

Abstract
Convex learning algorithms, such as Support Vector Machines (SVMs), are often seen as highly desirable because they offer strong practical properties and are amenable to theoretical analysis. However, in this work we show how non-convexity can provide scalability advantages over convexity. We show how concave-convex programming can be applied to produce (i) faster SVMs where training errors are no longer support vectors, and (ii) much faster Transductive SVMs.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Personalized handwriting recognition via biased regularization

Kienzle, W., Chellapilla, K.

In ICML 2006, pages: 457-464, (Editors: Cohen, W. W., A. Moore), ACM Press, New York, NY, USA, 23rd International Conference on Machine Learning, June 2006 (inproceedings)

Abstract
We present a new approach to personalized handwriting recognition. The problem, also known as writer adaptation, consists of converting a generic (user-independent) recognizer into a personalized (user-dependent) one, which has an improved recognition rate for a particular user. The adaptation step usually involves user-specific samples, which leads to the fundamental question of how to fuse this new information with that captured by the generic recognizer. We propose adapting the recognizer by minimizing a regularized risk functional (a modified SVM) where the prior knowledge from the generic recognizer enters through a modified regularization term. The result is a simple personalization framework with very good practical properties. Experiments on a 100 class real-world data set show that the number of errors can be reduced by over 40% with as few as five user samples per character.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Sampling for non-conjugate infinite latent feature models

Görür, D., Rasmussen, C.

(Editors: Bernardo, J. M.), 8th Valencia International Meeting on Bayesian Statistics (ISBA), June 2006 (talk)

Abstract
Latent variable models are powerful tools to model the underlying structure in data. Infinite latent variable models can be defined using Bayesian nonparametrics. Dirichlet process (DP) models constitute an example of infinite latent class models in which each object is assumed to belong to one of the, mutually exclusive, infinitely many classes. Recently, the Indian buffet process (IBP) has been defined as an extension of the DP. IBP is a distribution over sparse binary matrices with infinitely many columns which can be used as a distribution for non-exclusive features. Inference using Markov chain Monte Carlo (MCMC) in conjugate IBP models has been previously described, however requiring conjugacy restricts the use of IBP. We describe an MCMC algorithm for non-conjugate IBP models. Modelling the choice behaviour is an important topic in psychology, economics and related fields. Elimination by Aspects (EBA) is a choice model that assumes each alternative has latent features with associated weights that lead to the observed choice outcomes. We formulate a non-parametric version of EBA by using IBP as the prior over the latent binary features. We infer the features of objects that lead to the choice data by using our sampling scheme for inference.

PDF [BibTex]

PDF [BibTex]


no image
Deterministic annealing for semi-supervised kernel machines

Sindhwani, V., Keerthi, S., Chapelle, O.

In ICML 2006, pages: 841-848, (Editors: Cohen, W. W., A. Moore), ACM Press, New York, NY, USA, 23rd International Conference on Machine Learning, June 2006 (inproceedings)

Abstract
An intuitive approach to utilizing unlabeled data in kernel-based classification algorithms is to simply treat the unknown labels as additional optimization variables. For margin-based loss functions, one can view this approach as attempting to learn low-density separators. However, this is a hard optimization problem to solve in typical semi-supervised settings where unlabeled data is abundant. The popular Transductive SVM algorithm is a label-switching-retraining procedure that is known to be susceptible to local minima. In this paper, we present a global optimization framework for semi-supervised Kernel machines where an easier problem is parametrically deformed to the original hard problem and minimizers are smoothly tracked. Our approach is motivated from deterministic annealing techniques and involves a sequence of convex optimization problems that are exactly and efficiently solved. We present empirical results on several synthetic and real world datasets that demonstrate the effectiveness of our approach.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Clustering Graphs by Weighted Substructure Mining

Tsuda, K., Kudo, T.

In ICML 2006, pages: 953-960, (Editors: Cohen, W. W., A. Moore), ACM Press, New York, NY, USA, 23rd International Conference on Machine Learning, June 2006 (inproceedings)

Abstract
Graph data is getting increasingly popular in, e.g., bioinformatics and text processing. A main difficulty of graph data processing lies in the intrinsic high dimensionality of graphs, namely, when a graph is represented as a binary feature vector of indicators of all possible subgraphs, the dimensionality gets too large for usual statistical methods. We propose an efficient method for learning a binomial mixture model in this feature space. Combining the $ell_1$ regularizer and the data structure called DFS code tree, the MAP estimate of non-zero parameters are computed efficiently by means of the EM algorithm. Our method is applied to the clustering of RNA graphs, and is compared favorably with graph kernels and the spectral graph distance.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A Choice Model with Infinitely Many Latent Features

Görür, D., Jäkel, F., Rasmussen, C.

In ICML 2006, pages: 361-368, (Editors: Cohen, W. W., A. Moore), ACM Press, New York, NY, USA, 23rd International Conference on Machine Learning, June 2006 (inproceedings)

Abstract
Elimination by aspects (EBA) is a probabilistic choice model describing how humans decide between several options. The options from which the choice is made are characterized by binary features and associated weights. For instance, when choosing which mobile phone to buy the features to consider may be: long lasting battery, color screen, etc. Existing methods for inferring the parameters of the model assume pre-specified features. However, the features that lead to the observed choices are not always known. Here, we present a non-parametric Bayesian model to infer the features of the options and the corresponding weights from choice data. We use the Indian buffet process (IBP) as a prior over the features. Inference using Markov chain Monte Carlo (MCMC) in conjugate IBP models has been previously described. The main contribution of this paper is an MCMC algorithm for the EBA model that can also be used in inference for other non-conjugate IBP models---this may broaden the use of IBP priors considerably.

PostScript PDF Web DOI [BibTex]

PostScript PDF Web DOI [BibTex]


no image
Learning High-Order MRF Priors of Color Images

McAuley, J., Caetano, T., Smola, A., Franz, MO.

In ICML 2006, pages: 617-624, (Editors: Cohen, W. W., A. Moore), ACM Press, New York, NY, USA, 23rd International Conference on Machine Learning, June 2006 (inproceedings)

Abstract
In this paper, we use large neighborhood Markov random fields to learn rich prior models of color images. Our approach extends the monochromatic Fields of Experts model (Roth and Blackwell, 2005) to color images. In the Fields of Experts model, the curse of dimensionality due to very large clique sizes is circumvented by parameterizing the potential functions according to a product of experts. We introduce several simplifications of the original approach by Roth and Black which allow us to cope with the increased clique size (typically 3x3x3 or 5x5x3 pixels) of color images. Experimental results are presented for image denoising which evidence improvements over state-of-the-art monochromatic image priors.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Inference with the Universum

Weston, J., Collobert, R., Sinz, F., Bottou, L., Vapnik, V.

In ICML 2006, pages: 1009-1016, (Editors: Cohen, W. W., A. Moore), ACM Press, New York, NY, USA, 23rd International Conference on Machine Learning, June 2006 (inproceedings)

Abstract
WIn this paper we study a new framework introduced by Vapnik (1998) and Vapnik (2006) that is an alternative capacity concept to the large margin approach. In the particular case of binary classification, we are given a set of labeled examples, and a collection of "non-examples" that do not belong to either class of interest. This collection, called the Universum, allows one to encode prior knowledge by representing meaningful concepts in the same domain as the problem at hand. We describe an algorithm to leverage the Universum by maximizing the number of observed contradictions, and show experimentally that this approach delivers accuracy improvements over using labeled data alone.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
The pedestal effect is caused by off-frequency looking, not nonlinear transduction or contrast gain-control

Wichmann, F., Henning, B.

Journal of Vision, 6(6):194, 6th Annual Meeting of the Vision Sciences Society (VSS), June 2006 (poster)

Abstract
The pedestal or dipper effect is the large improvement in the detectabilty of a sinusoidal grating observed when the signal is added to a pedestal or masking grating having the signal‘s spatial frequency, orientation, and phase. The effect is largest with pedestal contrasts just above the ‘threshold‘ in the absence of a pedestal. We measured the pedestal effect in both broadband and notched masking noise---noise from which a 1.5- octave band centered on the signal and pedestal frequency had been removed. The pedestal effect persists in broadband noise, but almost disappears with notched noise. The spatial-frequency components of the notched noise that lie above and below the spatial frequency of the signal and pedestal prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and pedestal. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies that are different from that of the signal and pedestal. Thus the pedestal or dipper effect is not a characteristic of individual spatial-frequency tuned channels.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Classifying EEG and ECoG Signals without Subject Training for Fast BCI Implementation: Comparison of Non-Paralysed and Completely Paralysed Subjects

Hill, N., Lal, T., Schröder, M., Hinterberger, T., Wilhelm, B., Nijboer, F., Mochty, U., Widman, G., Elger, C., Schölkopf, B., Kübler, A., Birbaumer, N.

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2):183-186, June 2006 (article)

Abstract
We summarize results from a series of related studies that aim to develop a motor-imagery-based brain-computer interface using a single recording session of EEG or ECoG signals for each subject. We apply the same experimental and analytical methods to 11 non-paralysed subjects (8 EEG, 3 ECoG), and to 5 paralysed subjects (4 EEG, 1 ECoG) who had been unable to communicate for some time. While it was relatively easy to obtain classifiable signals quickly from most of the non-paralysed subjects, it proved impossible to classify the signals obtained from the paralysed patients by the same methods. This highlights the fact that though certain BCI paradigms may work well with healthy subjects, this does not necessarily indicate success with the target user group. We outline possible reasons for this failure to transfer.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Object Classification using Local Image Features

Nowozin, S.

Biologische Kybernetik, Technical University of Berlin, Berlin, Germany, May 2006 (diplomathesis)

Abstract
Object classification in digital images remains one of the most challenging tasks in computer vision. Advances in the last decade have produced methods to repeatably extract and describe characteristic local features in natural images. In order to apply machine learning techniques in computer vision systems, a representation based on these features is needed. A set of local features is the most popular representation and often used in conjunction with Support Vector Machines for classification problems. In this work, we examine current approaches based on set representations and identify their shortcomings. To overcome these shortcomings, we argue for extending the set representation into a graph representation, encoding more relevant information. Attributes associated with the edges of the graph encode the geometric relationships between individual features by making use of the meta data of each feature, such as the position, scale, orientation and shape of the feature region. At the same time all invariances provided by the original feature extraction method are retained. To validate the novel approach, we use a standard subset of the ETH-80 classification benchmark.

PDF [BibTex]

PDF [BibTex]


no image
SCARNA: Fast and Accurate Structural Alignment of RNA Sequences by Matching Fixed-Length Stem Fragments

Tabei, Y., Tsuda, K., Kin, T., Asai, K.

Bioinformatics, 22(14):1723-1729, May 2006 (article)

Abstract
The functions of non-coding RNAs are strongly related to their secondary structures, but it is known that a secondary structure prediction of a single sequence is not reliable. Therefore, we have to collect similar RNA sequences with a common secondary structure for the analyses of a new non-coding RNA without knowing the exact secondary structure itself. Therefore, the sequence comparison in searching similar RNAs should consider not only their sequence similarities but their potential secondary structures. Sankoff‘s algorithm predicts the common secondary structures of the sequences, but it is computationally too expensive to apply to large-scale analyses. Because we often want to compare a large number of cDNA sequences or to search similar RNAs in the whole genome sequences, much faster algorithms are required. We propose a new method of comparing RNA sequences based on the structural alignments of the fixed-length fragments of the stem candidates. The implemented software, SCARNA (Stem Candidate Aligner for RNAs), is fast enough to apply to the long sequences in the large-scale analyses. The accuracy of the alignments is better or comparable to the much slower existing algorithms.

PDF Web DOI [BibTex]


no image
Statistical Convergence of Kernel CCA

Fukumizu, K., Bach, F., Gretton, A.

In Advances in neural information processing systems 18, pages: 387-394, (Editors: Weiss, Y. , B. Schölkopf, J. Platt), MIT Press, Cambridge, MA, USA, Nineteenth Annual Conference on Neural Information Processing Systems (NIPS), May 2006 (inproceedings)

Abstract
While kernel canonical correlation analysis (kernel CCA) has been applied in many problems, the asymptotic convergence of the functions estimated from a finite sample to the true functions has not yet been established. This paper gives a rigorous proof of the statistical convergence of kernel CCA and a related method (NOCCO), which provides a theoretical justification for these methods. The result also gives a sufficient condition on the decay of the regularization coefficient in the methods to ensure convergence.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Response Modeling with Support Vector Machines

Shin, H., Cho, S.

Expert Systems with Applications, 30(4):746-760, May 2006 (article)

Abstract
Support Vector Machine (SVM) employs Structural Risk minimization (SRM) principle to generalize better than conventional machine learning methods employing the traditional Empirical Risk Minimization (ERM) principle. When applying SVM to response modeling in direct marketing,h owever,one has to deal with the practical difficulties: large training data,class imbalance and binary SVM output. This paper proposes ways to alleviate or solve the addressed difficulties through informative sampling,u se of different costs for different classes, and use of distance to decision boundary. This paper also provides various evaluation measures for response models in terms of accuracies,lift chart analysis and computational efficiency.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Maximum Margin Semi-Supervised Learning for Structured Variables

Altun, Y., McAllester, D., Belkin, M.

In Advances in neural information processing systems 18, pages: 33-40, (Editors: Weiss, Y. , B. Schölkopf, J. Platt), MIT Press, Cambridge, MA, USA, Nineteenth Annual Conference on Neural Information Processing Systems (NIPS), May 2006 (inproceedings)

Abstract
Many real-world classification problems involve the prediction of multiple inter-dependent variables forming some structural dependency. Recent progress in machine learning has mainly focused on supervised classification of such structured variables. In this paper, we investigate structured classification in a semi-supervised setting. We present a discriminative approach that utilizes the intrinsic geometry of input patterns revealed by unlabeled data points and we derive a maximum-margin formulation of semi-supervised learning for structured variables. Unlike transductive algorithms, our formulation naturally extends to new test points.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Generalized Nonnegative Matrix Approximations with Bregman Divergences

Dhillon, I., Sra, S.

In Advances in neural information processing systems 18, pages: 283-290, (Editors: Weiss, Y. , B. Schölkopf, J. Platt), MIT Press, Cambridge, MA, USA, Nineteenth Annual Conference on Neural Information Processing Systems (NIPS), May 2006 (inproceedings)

Abstract
Nonnegative matrix approximation (NNMA) is a recent technique for dimensionality reduction and data analysis that yields a parts based, sparse nonnegative representation for nonnegative input data. NNMA has found a wide variety of applications, including text analysis, document clustering, face/image recognition, language modeling, speech processing and many others. Despite these numerous applications, the algorithmic development for computing the NNMA factors has been relatively efficient. This paper makes algorithmic progress by modeling and solving (using multiplicative updates) new generalized NNMA problems that minimize Bregman divergences between the input matrix and its lowrank approximation. The multiplicative update formulae in the pioneering work by Lee and Seung [11] arise as a special case of our algorithms. In addition, the paper shows how to use penalty functions for incorporating constraints other than nonnegativity into the problem. Further, some interesting extensions to the use of "link" functions for modeling nonlinear relationships are also discussed.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Fast Gaussian Process Regression using KD-Trees

Shen, Y., Ng, A., Seeger, M.

In Advances in neural information processing systems 18, pages: 1225-1232, (Editors: Weiss, Y. , B. Schölkopf, J. Platt), MIT Press, Cambridge, MA, USA, Nineteenth Annual Conference on Neural Information Processing Systems (NIPS), May 2006 (inproceedings)

Abstract
The computation required for Gaussian process regression with n training examples is about O(n3) during training and O(n) for each prediction. This makes Gaussian process regression too slow for large datasets. In this paper, we present a fast approximation method, based on kd-trees, that significantly reduces both the prediction and the training times of Gaussian process regression.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Products of "Edge-perts"

Gehler, PV., Welling, M.

In Advances in neural information processing systems 18, pages: 419-426, (Editors: Weiss, Y. , B. Schölkopf, J. Platt), MIT Press, Cambridge, MA, USA, Nineteenth Annual Conference on Neural Information Processing Systems (NIPS), May 2006 (inproceedings)

Abstract
Images represent an important and abundant source of data. Understanding their statistical structure has important applications such as image compression and restoration. In this paper we propose a particular kind of probabilistic model, dubbed the “products of edge-perts model” to describe the structure of wavelet transformed images. We develop a practical denoising algorithm based on a single edge-pert and show state-ofthe-art denoising performance on benchmark images.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Assessing Approximations for Gaussian Process Classification

Kuss, M., Rasmussen, C.

In Advances in neural information processing systems 18, pages: 699-706, (Editors: Weiss, Y. , B. Schölkopf, J. Platt), MIT Press, Cambridge, MA, USA, Nineteenth Annual Conference on Neural Information Processing Systems (NIPS), May 2006 (inproceedings)

Abstract
Gaussian processes are attractive models for probabilistic classification but unfortunately exact inference is analytically intractable. We compare Laplace‘s method and Expectation Propagation (EP) focusing on marginal likelihood estimates and predictive performance. We explain theoretically and corroborate empirically that EP is superior to Laplace. We also compare to a sophisticated MCMC scheme and show that EP is surprisingly accurate.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Optimizing amino acid substitution matrices with a local alignment kernel

Saigo, H., Vert, J., Akutsu, T.

BMC Bioinformatics, 7(246):1-12, May 2006 (article)

Abstract
Background Detecting remote homologies by direct comparison of protein sequences remains a challenging task. We had previously developed a similarity score between sequences, called a local alignment kernel, that exhibits good performance for this task in combination with a support vector machine. The local alignment kernel depends on an amino acid substitution matrix. Since commonly used BLOSUM or PAM matrices for scoring amino acid matches have been optimized to be used in combination with the Smith-Waterman algorithm, the matrices optimal for the local alignment kernel can be different. Results Contrary to the local alignment score computed by the Smith-Waterman algorithm, the local alignment kernel is differentiable with respect to the amino acid substitution and its derivative can be computed efficiently by dynamic programming. We optimized the substitution matrix by classical gradient descent by setting an objective function that measures how well the local alignment kernel discriminates homologs from non-homologs in the COG database. The local alignment kernel exhibits better performance when it uses the matrices and gap parameters optimized by this procedure than when it uses the matrices optimized for the Smith-Waterman algorithm. Furthermore, the matrices and gap parameters optimized for the local alignment kernel can also be used successfully by the Smith-Waterman algorithm. Conclusion This optimization procedure leads to useful substitution matrices, both for the local alignment kernel and the Smith-Waterman algorithm. The best performance for homology detection is obtained by the local alignment kernel.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Worst-Case Bounds for Gaussian Process Models

Kakade, S., Seeger, M., Foster, D.

In Advances in neural information processing systems 18, pages: 619-626, (Editors: Weiss, Y. , B. Schölkopf, J. Platt), MIT Press, Cambridge, MA, USA, Nineteenth Annual Conference on Neural Information Processing Systems (NIPS), May 2006 (inproceedings)

Abstract
We present a competitive analysis of some non-parametric Bayesian algorithms in a worst-case online learning setting, where no probabilistic assumptions about the generation of the data are made. We consider models which use a Gaussian process prior (over the space of all functions) and provide bounds on the regret (under the log loss) for commonly used non-parametric Bayesian algorithms - including Gaussian regression and logistic regression - which show how these algorithms can perform favorably under rather general conditions. These bounds explicitly handle the infinite dimensionality of these non-parametric classes in a natural way. We also make formal connections to the minimax and emph{minimum description length} (MDL) framework. Here, we show precisely how Bayesian Gaussian regression is a minimax strategy.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Nonnegative Matrix Approximation: Algorithms and Applications

Sra, S., Dhillon, I.

Univ. of Texas, Austin, May 2006 (techreport)

[BibTex]

[BibTex]


no image
Advances in Neural Information Processing Systems 18: Proceedings of the 2005 Conference

Weiss, Y., Schölkopf, B., Platt, J.

Proceedings of the 19th Annual Conference on Neural Information Processing Systems (NIPS 2005), pages: 1676, MIT Press, Cambridge, MA, USA, 19th Annual Conference on Neural Information Processing Systems (NIPS), May 2006 (proceedings)

Abstract
The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees--physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only twenty-five percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains the papers presented at the December 2005 meeting, held in Vancouver.

Web [BibTex]

Web [BibTex]


no image
Row-Action Methods for Compressed Sensing

Sra, S., Tropp, J.

In ICASSP 2006, pages: 868-871, IEEE Operations Center, Piscataway, NJ, USA, IEEE International Conference on Acoustics, Speech and Signal Processing, May 2006 (inproceedings)

Abstract
Compressed Sensing uses a small number of random, linear measurements to acquire a sparse signal. Nonlinear algorithms, such as l1 minimization, are used to reconstruct the signal from the measured data. This paper proposes rowaction methods as a computational approach to solving the l1 optimization problem. This paper presents a specific rowaction method and provides extensive empirical evidence that it is an effective technique for signal reconstruction. This approach offers several advantages over interior-point methods, including minimal storage and computational requirements, scalability, and robustness.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Learning an Interest Operator from Human Eye Movements

Kienzle, W., Wichmann, F., Schölkopf, B., Franz, M.

In CVPWR 2006, pages: page 24, (Editors: C Schmid and S Soatto and C Tomasi), IEEE Computer Society, Los Alamitos, CA, USA, 2006 Conference on Computer Vision and Pattern Recognition Workshop, April 2006 (inproceedings)

Abstract
We present an approach for designing interest operators that are based on human eye movement statistics. In contrast to existing methods which use hand-crafted saliency measures, we use machine learning methods to infer an interest operator directly from eye movement data. That way, the operator provides a measure of biologically plausible interestingness. We describe the data collection, training, and evaluation process, and show that our learned saliency measure significantly accounts for human eye movements. Furthermore, we illustrate connections to existing interest operators, and present a multi-scale interest point detector based on the learned function.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Evaluating Predictive Uncertainty Challenge

Quinonero Candela, J., Rasmussen, C., Sinz, F., Bousquet, O., Schölkopf, B.

In Machine Learning Challenges: Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment, pages: 1-27, (Editors: J Quiñonero Candela and I Dagan and B Magnini and F d’Alché-Buc), Springer, Berlin, Germany, First PASCAL Machine Learning Challenges Workshop (MLCW), April 2006 (inproceedings)

Abstract
This Chapter presents the PASCAL Evaluating Predictive Uncertainty Challenge, introduces the contributed Chapters by the participants who obtained outstanding results, and provides a discussion with some lessons to be learnt. The Challenge was set up to evaluate the ability of Machine Learning algorithms to provide good “probabilistic predictions”, rather than just the usual “point predictions” with no measure of uncertainty, in regression and classification problems. Parti-cipants had to compete on a number of regression and classification tasks, and were evaluated by both traditional losses that only take into account point predictions and losses we proposed that evaluate the quality of the probabilistic predictions.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
The Effect of Artifacts on Dependence Measurement in fMRI

Gretton, A., Belitski, A., Murayama, Y., Schölkopf, B., Logothetis, N.

Magnetic Resonance Imaging, 24(4):401-409, April 2006 (article)

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
An Automated Combination of Sequence Motif Kernels for Predicting Protein Subcellular Localization

Zien, A., Ong, C.

(146), Max Planck Institute for Biological Cybernetics, Tübingen, April 2006 (techreport)

Abstract
Protein subcellular localization is a crucial ingredient to many important inferences about cellular processes, including prediction of protein function and protein interactions. While many predictive computational tools have been proposed, they tend to have complicated architectures and require many design decisions from the developer. We propose an elegant and fully automated approach to building a prediction system for protein subcellular localization. We propose a new class of protein sequence kernels which considers all motifs including motifs with gaps. This class of kernels allows the inclusion of pairwise amino acid distances into their computation. We further propose a multiclass support vector machine method which directly solves protein subcellular localization without resorting to the common approach of splitting the problem into several binary classification problems. To automatically search over families of possible amino acid motifs, we generalize our method to optimize over multiple kernels at the same time. We compare our automated approach to four other predictors on three different datasets.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Einer für viele: Ein Linux-PC bedient mehrere Arbeitsplätze

Renner, M., Stark, S.

c‘t, 2006(10):228-235, April 2006 (article)

Abstract
Ein moderner PC ist rechenstark genug, um mehrere Anwender gleichzeitig zu bedienen; und Linux als Multi-User-System ist von Hause aus darauf vorbereitet, mehrere gleichzeitig angemeldete Benutzer mit einem eigenen grafischen Desktop zu versorgen. Mit einem Kernelpatch und ein wenig Bastelei lassen sich an einen Linux-PC sogar mehrere unabh{\"a}ngige Monitore, Tastaturen und M{\"a}use anschließen.

Web [BibTex]

Web [BibTex]


no image
Phase noise and the classification of natural images

Wichmann, F., Braun, D., Gegenfurtner, K.

Vision Research, 46(8-9):1520-1529, April 2006 (article)

Abstract
We measured the effect of global phase manipulations on a rapid animal categorization task. The Fourier spectra of our images of natural scenes were manipulated by adding zero-mean random phase noise at all spatial frequencies. The phase noise was the independent variable, uniformly and symmetrically distributed between 0 degree and ±180 degrees. Subjects were remarkably resistant to phase noise. Even with ±120 degree phase noise subjects were still performing at 75% correct. The high resistance of the subjects’ animal categorization rate to phase noise suggests that the visual system is highly robust to such random image changes. The proportion of correct answers closely followed the correlation between original and the phase noise-distorted images. Animal detection rate was higher when the same task was performed with contrast reduced versions of the same natural images, at contrasts where the contrast reduction mimicked that resulting from our phase randomization. Since the subjects’ categorization rate was better in the contrast experiment, reduction of local contrast alone cannot explain the performance in the phase noise experiment. This result obtained with natural images differs from those obtained for simple sinusoidal stimuli were performance changes due to phase changes are attributed to local contrast changes only. Thus the global phasechange accompanying disruption of image structure such as edges and object boundaries at different spatial scales reduces object classification over and above the performance deficit resulting from reducing contrast. Additional colour information improves the categorization performance by 2 %.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]