2312 results (BibTeX)

2013


Replacing Causal Faithfulness with Algorithmic Independence of Conditionals

Lemeire, J., Janzing, D.

Minds and Machines, 23(2):227-249, May 2013 (article)

Abstract
Independence of Conditionals (IC) has recently been proposed as a basic rule for causal structure learning. If a Bayesian network represents the causal structure, its Conditional Probability Distributions (CPDs) should be algorithmically independent. In this paper we compare IC with causal faithfulness (FF), stating that only those conditional independences that are implied by the causal Markov condition hold true. The latter is a basic postulate in common approaches to causal structure learning. The common spirit of FF and IC is to reject causal graphs for which the joint distribution looks ‘non-generic’. The difference lies in the notion of genericity: FF sometimes rejects models just because one of the CPDs is simple, for instance if the CPD describes a deterministic relation. IC does not behave in this undesirable way. It only rejects a model when there is a non-generic relation between different CPDs although each CPD looks generic when considered separately. Moreover, it detects relations between CPDs that cannot be captured by conditional independences. IC therefore helps in distinguishing causal graphs that induce the same conditional independences (i.e., they belong to the same Markov equivalence class). The usual justification for FF implicitly assumes a prior that is a probability density on the parameter space. IC can be justified by Solomonoff’s universal prior, assigning non-zero probability to those points in parameter space that have a finite description. In this way, it favours simple CPDs, and therefore respects Occam’s razor. Since Kolmogorov complexity is uncomputable, IC is not directly applicable in practice. We argue that it is nevertheless helpful, since it has already served as inspiration and justification for novel causal inference algorithms.

PDF Web DOI [BibTex]

2013

PDF Web DOI [BibTex]


Quantifying causal influences

Janzing, D., Balduzzi, D., Grosse-Wentrup, M., Schölkopf, B.

Annals of Statistics, 41(5):2324-2358, 2013 (article)

Web Project Page [BibTex]


Probabilistic movement modeling for intention inference in human-robot interaction

Wang, Z., Mülling, K., Deisenroth, M., Ben Amor, H., Vogt, D., Schölkopf, B., Peters, J.

International Journal of Robotics Research, 32(7):841-858, 2013 (article)

PDF DOI [BibTex]

PDF DOI [BibTex]


Blind Retrospective Motion Correction of MR Images

Loktyushin, A., Nickisch, H., Pohmann, R., Schölkopf, B.

Magnetic Resonance in Medicine (MRM), 70(6):1608–1618, 2013 (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Modeling fixation locations using spatial point processes

Barthelmé, S., Trukenbrod, H., Engbert, R., Wichmann, F.

Journal of Vision, 13(12):1-34, 2013 (article)

Abstract
Whenever eye movements are measured, a central part of the analysis has to do with where subjects fixate and why they fixated where they fixated. To a first approximation, a set of fixations can be viewed as a set of points in space; this implies that fixations are spatial data and that the analysis of fixation locations can be beneficially thought of as a spatial statistics problem. We argue that thinking of fixation locations as arising from point processes is a very fruitful framework for eye-movement data, helping turn qualitative questions into quantitative ones. We provide a tutorial introduction to some of the main ideas of the field of spatial statistics, focusing especially on spatial Poisson processes. We show how point processes help relate image properties to fixation locations. In particular we show how point processes naturally express the idea that image features' predictability for fixations may vary from one image to another. We review other methods of analysis used in the literature, show how they relate to point process theory, and argue that thinking in terms of point processes substantially extends the range of analyses that can be performed and clarify their interpretation.

Web DOI Project Page [BibTex]

Web DOI Project Page [BibTex]


Tractable large-scale optimization in machine learning

Sra, S.

In Tractability: Practical Approaches to Hard Problems, pages: 202-230, 7, (Editors: Bordeaux, L., Hamadi , Y., Kohli, P. and Mateescu, R. ), Cambridge University Press , 2013 (inbook)

[BibTex]

[BibTex]


A probabilistic model for secondary structure prediction from protein chemical shifts

Mechelke, M. Habeck, M.

Proteins: Structure, Function, and Bioinformatics, 81(6):984–993, 2013 (article)

DOI [BibTex]

DOI [BibTex]


Climate Extremes and the Carbon Cycle

Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M., Seneviratne, S., Zscheischler, J., Beer, C., Buchmann, N., Frank, D., Papale, D., Rammig, A., Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz, A., Wattenbach, M.

Nature, 500, pages: 287-295, 2013 (article)

DOI [BibTex]

DOI [BibTex]


Data-Efficient Generalization of Robot Skills with Contextual Policy Search

Kupcsik, A., Deisenroth, M., Peters, J., Neumann, G.

In Proceedings of the 27th National Conference on Artificial Intelligence (AAAI 2013), (Editors: desJardins, M. and Littman, M. L.), AAAI Press, 2013 (inproceedings)

PDF [BibTex]

PDF [BibTex]


One-class Support Measure Machines for Group Anomaly Detection

Muandet, K., Schölkopf, B.

In Proceedings 29th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 449-458, (Editors: Ann Nicholson and Padhraic Smyth), AUAI Press, Corvallis, Oregon, UAI, 2013 (inproceedings)

PDF Project Page [BibTex]

PDF Project Page [BibTex]


Modeling Information Propagation with Survival Theory

Gomez Rodriguez, M., Leskovec, J., Schölkopf, B.

In Proceedings of the 30th International Conference on Machine Learning, JMLR W&CP 28 (3), pages: 666-674, (Editors: S Dasgupta and D McAllester), JMLR, ICML, 2013 (inproceedings)

Web Project Page [BibTex]

Web Project Page [BibTex]


How to Test the Quality of Reconstructed Sources in Independent Component Analysis (ICA) of EEG/MEG Data

Grosse-Wentrup, M., Harmeling, S., Zander, T., Hill, J., Schölkopf, B.

In Proceedings of the 3rd International Workshop on Pattern Recognition in NeuroImaging (PRNI), pages: 102-105, IEEE Xplore Digital Library, PRNI, 2013 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


Identifying Finite Mixtures of Nonparametric Product Distributions and Causal Inference of Confounders

Sgouritsa, E., Janzing, D., Peters, J., Schölkopf, B.

In Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 556-565, (Editors: A Nicholson and P Smyth), AUAI Press Corvallis, Oregon, USA, UAI, 2013 (inproceedings)

PDF Project Page Project Page [BibTex]

PDF Project Page Project Page [BibTex]


Improving alpha matting and motion blurred foreground estimation

Köhler, R., Hirsch, M., Schölkopf, B., Harmeling, S.

In IEEE Conference on Image Processing (ICIP), pages: 3446-3450, IEEE, ICIP, 2013 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


One-class Support Measure Machines for Group Anomaly Detection

Muandet, K., Schölkopf, B.

29th Conference on Uncertainty in Artificial Intelligence (UAI), 2013 (poster)

PDF [BibTex]

PDF [BibTex]


Identification of stimulus cues in narrow-band tone-in-noise detection using sparse observer models

Schönfelder, V., Wichmann, F.

Journal of the Acoustical Society of America, 134(1):447-463, 2013 (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Probabilistic Model-based Imitation Learning

Englert, P., Paraschos, A., Peters, J., Deisenroth, M.

Adaptive Behavior Journal, 21(5):388-403, 2013 (article)

PDF DOI [BibTex]

PDF DOI [BibTex]


Towards Robot Skill Learning: From Simple Skills to Table Tennis

Peters, J., Kober, J., Mülling, K., Kroemer, O., Neumann, G.

In Machine Learning and Knowledge Discovery in Databases, Proceedings of the European Conference on Machine Learning, Part III (ECML 2013), LNCS 8190, pages: 627-631, (Editors: Blockeel, H.,Kersting, K., Nijssen, S., and Zelezný, F.), Springer, 2013 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


Thumb md error vs dt fine
Nonparametric dynamics estimation for time periodic systems

Klenske, E., Zeilinger, M., Schölkopf, B., Hennig, P.

In Proceedings of the 51st Annual Allerton Conference on Communication, Control, and Computing, pages: 486-493 , 2013 (inproceedings)

PDF DOI Project Page Project Page [BibTex]

PDF DOI Project Page Project Page [BibTex]


Scalable kernels for graphs with continuous attributes

Feragen, A. Kasenburg, N. Petersen, J. de Bruijne, M. Borgwardt, KM.

In Advances in Neural Information Processing Systems 26, pages: 216-224, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

PDF [BibTex]

PDF [BibTex]


The Randomized Dependence Coefficient

Lopez-Paz, D., Hennig, P., Schölkopf, B.

Neural Information Processing Systems (NIPS), 2013 (poster)

PDF [BibTex]

PDF [BibTex]


Characterization of different types of sharp-wave ripple signatures in the CA1 of the macaque hippocampus

Ramirez-Villegas, J., Logothetis, N., Besserve, M.

4th German Neurophysiology PhD Meeting Networks, 2013 (poster)

Web [BibTex]

Web [BibTex]


Auto-Calibrating Spherical Deconvolution Based on ODF Sparsity

Schultz, T., Gröschel, S.

In Proceedings of Medical Image Computing and Computer-Assisted Intervention, Part I, pages: 663-670, (Editors: K Mori and I Sakuma and Y Sato and C Barillot and N Navab), Springer, MICCAI, 2013, Lecture Notes in Computer Science, vol. 8149 (inproceedings)

DOI [BibTex]

DOI [BibTex]


On Flat versus Hierarchical Classification in Large-Scale Taxonomies

Babbar, R., Partalas, I., Gaussier, E., Amini, M.

In Advances in Neural Information Processing Systems 26, pages: 1824-1832, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

PDF [BibTex]

PDF [BibTex]


Maximum-Margin Framework for Training Data Synchronization in Large-Scale Hierarchical Classification

Babbar, R., Partalas, I., Gaussier, E., Amini, M.

In Neural Information Processing - 20th International Conference, Proceedings, Part I, Lecture Notes in Computer Science, Vol. 8226, pages: 336-343, (Editors: M Lee and A Hirose and Z-G Hou and R M Kil), Springer, ICONIP, 2013 (inproceedings)

Web [BibTex]

Web [BibTex]


Falsification and future performance

Balduzzi, D.

In Algorithmic Probability and Friends. Bayesian Prediction and Artificial Intelligence, 7070, pages: 65-78, Lecture Notes in Computer Science, Springer, Berlin, Germany, Solomonoff 85th Memorial Conference, January 2013 (inproceedings)

Abstract
We information-theoretically reformulate two measures of capacity from statistical learning theory: empirical VC-entropy and empirical Rademacher complexity. We show these capacity measures count the number of hypotheses about a dataset that a learning algorithm falsifies when it finds the classifier in its repertoire minimizing empirical risk. It then follows from that the future performance of predictors on unseen data is controlled in part by how many hypotheses the learner falsifies. As a corollary we show that empirical VC-entropy quantifies the message length of the true hypothesis in the optimal code of a particular probability distribution, the so-called actual repertoire.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


Metabolic cost as an organizing principle for cooperative learning

Balduzzi, D., Ortega, P., Besserve, M.

Advances in Complex Systems, 16(02n03):1350012, 2013 (article)

Web DOI Project Page [BibTex]

Web DOI Project Page [BibTex]


Domain Generalization via Invariant Feature Representation

Muandet, K., Balduzzi, D., Schölkopf, B.

In Proceedings of the 30th International Conference on Machine Learning, W&CP 28(1), pages: 10-18, (Editors: S Dasgupta and D McAllester), JMLR, ICML, 2013, Volume 28, number 1 (inproceedings)

Web Project Page [BibTex]

Web Project Page [BibTex]


The multivariate Watson distribution: Maximum-likelihood estimation and other aspects

Sra, S., Karp, D.

Journal of Multivariate Analysis, 114, pages: 256-269, February 2013 (article)

Abstract
This paper studies fundamental aspects of modelling data using multivariate Watson distributions. Although these distributions are natural for modelling axially symmetric data (i.e., unit vectors where View the MathML source are equivalent), for high-dimensions using them can be difficult—largely because for Watson distributions even basic tasks such as maximum-likelihood are numerically challenging. To tackle the numerical difficulties some approximations have been derived. But these are either grossly inaccurate in high-dimensions [K.V. Mardia, P. Jupp, Directional Statistics, second ed., John Wiley & Sons, 2000] or when reasonably accurate [A. Bijral, M. Breitenbach, G.Z. Grudic, Mixture of Watson distributions: a generative model for hyperspherical embeddings, in: Artificial Intelligence and Statistics, AISTATS 2007, 2007, pp. 35–42], they lack theoretical justification. We derive new approximations to the maximum-likelihood estimates; our approximations are theoretically well-defined, numerically accurate, and easy to compute. We build on our parameter estimation and discuss mixture-modelling with Watson distributions; here we uncover a hitherto unknown connection to the “diametrical clustering” algorithm of Dhillon et al. [I.S. Dhillon, E.M. Marcotte, U. Roshan, Diametrical clustering for identifying anticorrelated gene clusters, Bioinformatics 19 (13) (2003) 1612–1619].

Web DOI [BibTex]

Web DOI [BibTex]


MR-based PET Attenuation Correction for PET/MR Imaging

Bezrukov, I., Mantlik, F., Schmidt, H., Schölkopf, B., Pichler, B.

Seminars in Nuclear Medicine, 43(1):45-59, 2013 (article)

DOI [BibTex]

DOI [BibTex]


MR-based Attenuation Correction Methods for Improved PET Quantification in Lesions within Bone and Susceptibility Artifact Regions

Bezrukov, I., Schmidt, H., Mantlik, F., Schwenzer, N., Brendle, C., Schölkopf, B., Pichler, B.

Journal of Nuclear Medicine, 54(10):1768-1774, 2013 (article)

Abstract
Hybrid PET/MR systems have recently entered clinical practice. Thus, the accuracy of MR-based attenuation correction in simultaneously acquired data can now be investigated. We assessed the accuracy of 4 methods of MR-based attenuation correction in lesions within soft tissue, bone, and MR susceptibility artifacts: 2 segmentation-based methods (SEG1, provided by the manufacturer, and SEG2, a method with atlas-based susceptibility artifact correction); an atlas- and pattern recognition–based method (AT&PR), which also used artifact correction; and a new method combining AT&PR and SEG2 (SEG2wBONE). Methods: Attenuation maps were calculated for the PET/MR datasets of 10 patients acquired on a whole-body PET/MR system, allowing for simultaneous acquisition of PET and MR data. Eighty percent iso-contour volumes of interest were placed on lesions in soft tissue (n = 21), in bone (n = 20), near bone (n = 19), and within or near MR susceptibility artifacts (n = 9). Relative mean volume-of-interest differences were calculated with CT-based attenuation correction as a reference. Results: For soft-tissue lesions, none of the methods revealed a significant difference in PET standardized uptake value relative to CT-based attenuation correction (SEG1, −2.6% ± 5.8%; SEG2, −1.6% ± 4.9%; AT&PR, −4.7% ± 6.5%; SEG2wBONE, 0.2% ± 5.3%). For bone lesions, underestimation of PET standardized uptake values was found for all methods, with minimized error for the atlas-based approaches (SEG1, −16.1% ± 9.7%; SEG2, −11.0% ± 6.7%; AT&PR, −6.6% ± 5.0%; SEG2wBONE, −4.7% ± 4.4%). For lesions near bone, underestimations of lower magnitude were observed (SEG1, −12.0% ± 7.4%; SEG2, −9.2% ± 6.5%; AT&PR, −4.6% ± 7.8%; SEG2wBONE, −4.2% ± 6.2%). For lesions affected by MR susceptibility artifacts, quantification errors could be reduced using the atlas-based artifact correction (SEG1, −54.0% ± 38.4%; SEG2, −15.0% ± 12.2%; AT&PR, −4.1% ± 11.2%; SEG2wBONE, 0.6% ± 11.1%). Conclusion: For soft-tissue lesions, none of the evaluated methods showed statistically significant errors. For bone lesions, significant underestimations of −16% and −11% occurred for methods in which bone tissue was ignored (SEG1 and SEG2). In the present attenuation correction schemes, uncorrected MR susceptibility artifacts typically result in reduced attenuation values, potentially leading to highly reduced PET standardized uptake values, rendering lesions indistinguishable from background. While AT&PR and SEG2wBONE show accurate results in both soft tissue and bone, SEG2wBONE uses a two-step approach for tissue classification, which increases the robustness of prediction and can be applied retrospectively if more precision in bone areas is needed.

Web DOI Project Page Project Page [BibTex]


Learning Sequential Motor Tasks

Daniel, C., Neumann, G., Peters, J.

In Proceedings of 2013 IEEE International Conference on Robotics and Automation (ICRA 2013), 2013 (inproceedings)

PDF [BibTex]

PDF [BibTex]


Learning output kernels for multi-task problems

Dinuzzo, F.

Neurocomputing, 118, pages: 119-126, 2013 (article)

DOI [BibTex]

DOI [BibTex]


Modelling and Learning Approaches to Image Denoising

Burger, HC.

Eberhard Karls Universität Tübingen, Germany, 2013 (phdthesis)

[BibTex]

[BibTex]


Analytical probabilistic modeling for radiation therapy treatment planning

Bangert, M., Hennig, P., Oelfke, U.

Physics in Medicine and Biology, 58(16):5401-5419, 2013 (article)

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


Imaging Findings and Therapy Response Monitoring in Chronic Sclerodermatous Graft-Versus-Host Disease: Preliminary Data of a Simultaneous PET/MRI Approach

Sauter, A., Schmidt, H., Mantlik, F., Kolb, A., Federmann, B., Pfannenberg, C., Reimold, M., Pichler, B., Bethge, W., Horger, M.

Clinical Nuclear Medicine, 38(8):e309-e317, 2013 (article)

Abstract
PURPOSE: Our objective was a multifunctional imaging approach of chronic sclerodermatous graft-versus-host disease (ScGVHD) and its course during therapy using PET/MRI. METHODS: We performed partial-body PET/CT and PET/MRI of the calf in 6 consecutively recruited patients presenting with severe ScGVHD. The patients were treated with different immunosuppressive regimens and supportive therapies. PET/CT scanning started 60.5 +/- 3.3 minutes, PET/MRI imaging 139.5 +/- 16.7 minutes after F-FDG application. MRI acquisition included T1- (precontrast and postcontrast) and T2-weighted sequences. SUVmean, T1 contrast enhancement, and T2 signal intensity from region-of-interest analysis were calculated for different fascial and muscular compartments. In addition, musculoskeletal MRI findings and the modified Rodnan skin score were assessed. All patients underwent imaging follow-up. RESULTS: At baseline PET/MRI, ScGVHD-related musculoskeletal abnormalities consisted of increased signal and/or thickening of involved anatomical structures on T2-weighted and T1 postcontrast images as well as an increased FDG uptake. At follow-up, ScGVHD-related imaging findings decreased (SUVmean n = 4, mean T1 contrast enhancement n = 5, mean T2 signal intensity n = 3) or progressed (SUVmean n = 3, mean T1 contrast enhancement n = 2, mean T2 signal intensity n = 4). Clinically modified Rodnan skin score improved for 5 follow-ups and progressed for 2. SUVmean values correlated between PET/CT and PET/MRI acquisition (r = 0.660, P = 0.014), T1 contrast enhancement, and T2 signal (r = 0.668, P = 0.012), but not between the SUVmean values and the MRI parameters. CONCLUSIONS: PET/MRI as a combined morphological and functional technique seems to assess the inflammatory processes from different points of view and provides therefore in part complementary information

Web [BibTex]

Web [BibTex]


Correlation of Simultaneously Acquired Diffusion-Weighted Imaging and 2-Deoxy-[18F] fluoro-2-D-glucose Positron Emission Tomography of Pulmonary Lesions in a Dedicated Whole-Body Magnetic Resonance/Positron Emission Tomography System

Schmidt, H., Brendle, C., Schraml, C., Martirosian, P., Bezrukov, I., Hetzel, J., Müller, M., Sauter, A., Claussen, C., Pfannenberg, C., Schwenzer, N.

Investigative Radiology, 48(5):247-255, May 2013 (article)

Web [BibTex]

Web [BibTex]


A Survey on Policy Search for Robotics, Foundations and Trends in Robotics

Deisenroth, M., Neumann, G., Peters, J.

Foundations and Trends in Robotics, 2(1-2):1-142, 2013 (article)

DOI [BibTex]

DOI [BibTex]


Reinforcement Learning in Robotics: A Review

Kober, J., Bagnell, D., Peters, J.

International Journal of Robotics Research, 32(11):1238–1274, 2013 (article)

PDF DOI [BibTex]

PDF DOI [BibTex]


Information-Theoretic Motor Skill Learning

Neumann, G., Kupcsik, A., Deisenroth, M., Peters, J.

In Proceedings of the 27th AAAI 2013, Workshop on Intelligent Robotic Systems (AAAI 2013), 2013 (inproceedings)

[BibTex]

[BibTex]


Measuring Statistical Dependence via the Mutual Information Dimension

Sugiyama, M. Borgwardt, KM.

In Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013), pages: 1692-1698, (Editors: Francesca Rossi), AAAI Press, Menlo Park, California, IJCAI, 2013 (inproceedings)

[BibTex]

[BibTex]


Analytical probabilistic proton dose calculation and range uncertainties

Bangert, M., Hennig, P., Oelfke, U.

In 17th International Conference on the Use of Computers in Radiation Therapy, pages: 6-11, (Editors: A. Haworth and T. Kron), ICCR, 2013 (inproceedings)

Project Page [BibTex]

Project Page [BibTex]


Adaptivity to Local Smoothness and Dimension in Kernel Regression

Kpotufe, S., Garg, V.

In Advances in Neural Information Processing Systems 26, pages: 3075-3083, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

PDF [BibTex]

PDF [BibTex]


Statistical analysis of coupled time series with Kernel Cross-Spectral Density operators

Besserve, M., Logothetis, N., Schölkopf, B.

In Advances in Neural Information Processing Systems 26, pages: 2535-2543, (Editors: C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

PDF Project Page Project Page [BibTex]

PDF Project Page Project Page [BibTex]


It is all in the noise: Efficient multi-task Gaussian process inference with structured residuals

Rakitsch, B. Lippert, C. Borgwardt, KM. Stegle, O.

In Advances in Neural Information Processing Systems 26, pages: 1466-1474, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

PDF [BibTex]

PDF [BibTex]


Multimodal information improves the rapid detection of mental fatigue

Laurent, F., Valderrama, M., Besserve, M., Guillard, M., Lachaux, J., Martinerie, J., Florence, G.

Biomedical Signal Processing and Control, 8(4):400 - 408, 2013 (article)

Web DOI [BibTex]

Web DOI [BibTex]


Animating Samples from Gaussian Distributions

Hennig, P.

(8), Max Planck Institute for Intelligent Systems, Tübingen, Germany, 2013 (techreport)

PDF Project Page [BibTex]

PDF Project Page [BibTex]


Interactive Domain Adaptation for the Classification of Remote Sensing Images using Active Learning

Persello, C.

IEEE Geoscience and Remote Sensing Letters, 10(4):736-740, 2013 (article)

DOI [BibTex]


Learning to Select and Generalize Striking Movements in Robot Table Tennis

Mülling, K., Kober, J., Kroemer, O., Peters, J.

International Journal of Robotics Research, 32(3):263-279, 2013 (article)

PDF DOI [BibTex]

PDF DOI [BibTex]