Header logo is ei


2002


no image
A kernel approach for learning from almost orthogonal patterns

Schölkopf, B., Weston, J., Eskin, E., Leslie, C., Noble, W.

In Principles of Data Mining and Knowledge Discovery, Lecture Notes in Computer Science, 2430/2431, pages: 511-528, Lecture Notes in Computer Science, (Editors: T Elomaa and H Mannila and H Toivonen), Springer, Berlin, Germany, 13th European Conference on Machine Learning (ECML) and 6th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD'2002), 2002 (inproceedings)

PostScript DOI [BibTex]

2002

PostScript DOI [BibTex]


no image
Optimal linear estimation of self-motion - a real-world test of a model of fly tangential neurons

Franz, MO.

SAB 02 Workshop, Robotics as theoretical biology, 7th meeting of the International Society for Simulation of Adaptive Behaviour (SAB), (Editors: Prescott, T.; Webb, B.), 2002 (poster)

Abstract
The tangential neurons in the fly brain are sensitive to the typical optic flow patterns generated during self-motion (see example in Fig.1). We examine whether a simplified linear model of these neurons can be used to estimate self-motion from the optic flow. We present a theory for the construction of an optimal linear estimator incorporating prior knowledge both about the distance distribution of the environment, and about the noise and self-motion statistics of the sensor. The optimal estimator is tested on a gantry carrying an omnidirectional vision sensor that can be moved along three translational and one rotational degree of freedom. The experiments indicate that the proposed approach yields accurate results for rotation estimates, independently of the current translation and scene layout. Translation estimates, however, turned out to be sensitive to simultaneous rotation and to the particular distance distribution of the scene. The gantry experiments confirm that the receptive field organization of the tangential neurons allows them, as an ensemble, to extract self-motion from the optic flow.

PDF [BibTex]

PDF [BibTex]


no image
Choosing Multiple Parameters for Support Vector Machines

Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.

Machine Learning, 46(1):131-159, 2002 (article)

Abstract
The problem of automatically tuning multiple parameters for pattern recognition Support Vector Machines (SVM) is considered. This is done by minimizing some estimates of the generalization error of SVMs using a gradient descent algorithm over the set of parameters. Usual methods for choosing parameters, based on exhaustive search become intractable as soon as the number of parameters exceeds two. Some experimental results assess the feasibility of our approach for a large number of parameters (more than 100) and demonstrate an improvement of generalization performance.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Infinite Mixtures of Gaussian Process Experts

Rasmussen, CE., Ghahramani, Z.

In (Editors: Dietterich, Thomas G.; Becker, Suzanna; Ghahramani, Zoubin), 2002 (inproceedings)

Abstract
We present an extension to the Mixture of Experts (ME) model, where the individual experts are Gaussian Process (GP) regression models. Using a input-dependent adaptation of the Dirichlet Process, we implement a gating network for an infinite number of Experts. Inference in this model may be done efficiently using a Markov Chain relying on Gibbs sampling. The model allows the effective covariance function to vary with the inputs, and may handle large datasets -- thus potentially overcoming two of the biggest hurdles with GP models. Simulations show the viability of this approach.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Marginalized kernels for RNA sequence data analysis

Kin, T., Tsuda, K., Asai, K.

In Genome Informatics 2002, pages: 112-122, (Editors: Lathtop, R. H.; Nakai, K.; Miyano, S.; Takagi, T.; Kanehisa, M.), Genome Informatics, 2002, (Best Paper Award) (inproceedings)

Web [BibTex]

Web [BibTex]


no image
Luminance Artifacts on CRT Displays

Wichmann, F.

In IEEE Visualization, pages: 571-574, (Editors: Moorhead, R.; Gross, M.; Joy, K. I.), IEEE Visualization, 2002 (inproceedings)

Abstract
Most visualization panels today are still built around cathode-ray tubes (CRTs), certainly on personal desktops at work and at home. Whilst capable of producing pleasing images for common applications ranging from email writing to TV and DVD presentation, it is as well to note that there are a number of nonlinear transformations between input (voltage) and output (luminance) which distort the digital and/or analogue images send to a CRT. Some of them are input-independent and hence easy to fix, e.g. gamma correction, but others, such as pixel interactions, depend on the content of the input stimulus and are thus harder to compensate for. CRT-induced image distortions cause problems not only in basic vision research but also for applications where image fidelity is critical, most notably in medicine (digitization of X-ray images for diagnostic purposes) and in forms of online commerce, such as the online sale of images, where the image must be reproduced on some output device which will not have the same transfer function as the customer's CRT. I will present measurements from a number of CRTs and illustrate how some of their shortcomings may be problematic for the aforementioned applications.

[BibTex]

[BibTex]

1995


no image
View-based cognitive map learning by an autonomous robot

Mallot, H., Bülthoff, H., Georg, P., Schölkopf, B., Yasuhara, K.

In Proceedings International Conference on Artificial Neural Networks, vol. 2, pages: 381-386, (Editors: Fogelman-Soulié, F.), EC2, Paris, France, Conférence Internationale sur les Réseaux de Neurones Artificiels (ICANN '95), October 1995 (inproceedings)

Abstract
This paper presents a view-based approach to map learning and navigation in mazes. By means of graph theory we have shown that the view-graph is a sufficient representation for map behaviour such as path planning. A neural network for unsupervised learning of the view-graph from sequences of views is constructed. We use a modified Kohonen (1988) learning rule that transforms temporal sequence (rather than featural similarity) into connectedness. In the main part of the paper, we present a robot implementation of the scheme. The results show that the proposed network is able to support map behaviour in simple environments.

PDF [BibTex]

1995

PDF [BibTex]


no image
Extracting support data for a given task

Schölkopf, B., Burges, C., Vapnik, V.

In First International Conference on Knowledge Discovery & Data Mining (KDD-95), pages: 252-257, (Editors: UM Fayyad and R Uthurusamy), AAAI Press, Menlo Park, CA, USA, August 1995 (inproceedings)

Abstract
We report a novel possibility for extracting a small subset of a data base which contains all the information necessary to solve a given classification task: using the Support Vector Algorithm to train three different types of handwritten digit classifiers, we observed that these types of classifiers construct their decision surface from strongly overlapping small (k: 4%) subsets of the data base. This finding opens up the possibiiity of compressing data bases significantly by disposing of the data which is not important for the solution of a given task. In addition, we show that the theory allows us to predict the classifier that will have the best generalization ability, based solely on performance on the training set and characteristics of the learning machines. This finding is important for cases where the amount of available data is limited.

PDF [BibTex]

PDF [BibTex]


no image
View-Based Cognitive Mapping and Path Planning

Schölkopf, B., Mallot, H.

Adaptive Behavior, 3(3):311-348, January 1995 (article)

Abstract
This article presents a scheme for learning a cognitive map of a maze from a sequence of views and movement decisions. The scheme is based on an intermediate representation called the view graph, whose nodes correspond to the views whereas the labeled edges represent the movements leading from one view to another. By means of a graph theoretical reconstruction method, the view graph is shown to carry complete information on the topological and directional structure of the maze. Path planning can be carried out directly in the view graph without actually performing this reconstruction. A neural network is presented that learns the view graph during a random exploration of the maze. It is based on an unsupervised competitive learning rule translating temporal sequence (rather than similarity) of views into connectedness in the network. The network uses its knowledge of the topological and directional structure of the maze to generate expectations about which views are likely to be encountered next, improving the view-recognition performance. Numerical simulations illustrate the network's ability for path planning and the recognition of views degraded by random noise. The results are compared to findings of behavioral neuroscience.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Suppression and creation of chaos in a periodically forced Lorenz system.

Franz, MO., Zhang, MH.

Physical Review, E 52, pages: 3558-3565, 1995 (article)

Abstract
Periodic forcing is introduced into the Lorenz model to study the effects of time-dependent forcing on the behavior of the system. Such a nonautonomous system stays dissipative and has a bounded attracting set which all trajectories finally enter. The possible kinds of attracting sets are restricted to periodic orbits and strange attractors. A large-scale survey of parameter space shows that periodic forcing has mainly three effects in the Lorenz system depending on the forcing frequency: (i) Fixed points are replaced by oscillations around them; (ii) resonant periodic orbits are created both in the stable and the chaotic region; (iii) chaos is created in the stable region near the resonance frequency and in periodic windows. A comparison to other studies shows that part of this behavior has been observed in simulations of higher truncations and real world experiments. Since very small modulations can already have a considerable effect, this suggests that periodic processes such as annual or diurnal cycles should not be omitted even in simple climate models.

[BibTex]

[BibTex]


no image
A New Method for Constructing Artificial Neural Networks

Vapnik, V., Burges, C., Schölkopf, B.

AT & T Bell Laboratories, 1995 (techreport)

[BibTex]

[BibTex]


no image
Image segmentation from motion: just the loss of high-spatial-frequency content ?

Wichmann, F., Henning, G.

Perception, 24, pages: S19, 1995 (poster)

Abstract
The human contrast sensitivity function (CSF) is bandpass for stimuli of low temporal frequency but, for moving stimuli, results in a low-pass CSF with large high spatial-frequency losses. Thus the high spatial-frequency content of images moving on the retina cannot be seen; motion perception could be facilitated by, or even be based on, the selective loss of high spatial-frequency content. 2-AFC image segmentation experiments were conducted with segmentation based on motion or on form. In the latter condition, the form difference mirrored that produced by moving stimuli. This was accomplished by generating stimulus elements which were spectrally either broadband or low-pass. For the motion used, the spectral difference between static broadband and static low-pass elements matched the spectral difference between moving and static broadband elements. On the hypothesis that segmentation from motion is based on the detection of regions devoid of high spatial-frequencies, both tasks should be similarly difficult for human observers. However, neither image segmentation (nor, incidentally, motion detection) was sensitive to the high spatial-frequency content of the stimuli. Thus changes in perceptual form produced by moving stimuli appear not to be used as a cue for image segmentation.

[BibTex]