Header logo is ei


2012


no image
A Nonparametric Conjugate Prior Distribution for the Maximizing Argument of a Noisy Function

Ortega, P., Grau-Moya, J., Genewein, T., Balduzzi, D., Braun, D.

In Advances in Neural Information Processing Systems 25, pages: 3014-3022, (Editors: P Bartlett and FCN Pereira and CJC. Burges and L Bottou and KQ Weinberger), Curran Associates Inc., 26th Annual Conference on Neural Information Processing Systems (NIPS), 2012 (inproceedings)

PDF [BibTex]

2012

PDF [BibTex]


no image
Significant global reduction of carbon uptake by water-cycle driven extreme vegetation anomalies

Zscheischler, J., Mahecha, M., von Buttlar, J., Harmeling, S., Jung, M., Randerson, J., Reichstein, M.

Nature Geoscience, 2012 (article) In revision

[BibTex]

[BibTex]


no image
Algorithms for Learning Markov Field Policies

Boularias, A., Kroemer, O., Peters, J.

In Advances in Neural Information Processing Systems 25, pages: 2186-2194, (Editors: P Bartlett and FCN Pereira and CJC. Burges and L Bottou and KQ Weinberger), Curran Associates Inc., 26th Annual Conference on Neural Information Processing Systems (NIPS), 2012 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Semi-Supervised Domain Adaptation with Copulas

Lopez-Paz, D., Hernandez-Lobato, J., Schölkopf, B.

In Advances in Neural Information Processing Systems 25, pages: 674-682, (Editors: P Bartlett, FCN Pereira, CJC. Burges, L Bottou, and KQ Weinberger), Curran Associates Inc., 26th Annual Conference on Neural Information Processing Systems (NIPS), 2012 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Gradient Weights help Nonparametric Regressors

Kpotufe, S., Boularias, A.

In Advances in Neural Information Processing Systems 25, pages: 2870-2878, (Editors: P Bartlett and FCN Pereira and CJC. Burges and L Bottou and KQ Weinberger), 26th Annual Conference on Neural Information Processing Systems (NIPS), 2012 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
A Blind Deconvolution Approach for Pseudo CT Prediction from MR Image Pairs

Hirsch, M., Hofmann, M., Mantlik, F., Pichler, B., Schölkopf, B., Habeck, M.

In 19th IEEE International Conference on Image Processing (ICIP) , pages: 2953 -2956, IEEE, ICIP, 2012 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
A mixed model approach for joint genetic analysis of alternatively spliced transcript isoforms using RNA-Seq data

Rakitsch, B., Lippert, C., Topa, H., Borgwardt, KM., Honkela, A., Stegle, O.

In 2012 (inproceedings) Submitted

Web [BibTex]

Web [BibTex]


no image
Evaluation of marginal likelihoods via the density of states

Habeck, M.

In Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2012) , 22, pages: 486-494, (Editors: N Lawrence and M Girolami), JMLR: W&CP 22, AISTATS, 2012 (inproceedings)

Abstract
Bayesian model comparison involves the evaluation of the marginal likelihood, the expectation of the likelihood under the prior distribution. Typically, this high-dimensional integral over all model parameters is approximated using Markov chain Monte Carlo methods. Thermodynamic integration is a popular method to estimate the marginal likelihood by using samples from annealed posteriors. Here we show that there exists a robust and flexible alternative. The new method estimates the density of states, which counts the number of states associated with a particular value of the likelihood. If the density of states is known, computation of the marginal likelihood reduces to a one- dimensional integral. We outline a maximum likelihood procedure to estimate the density of states from annealed posterior samples. We apply our method to various likelihoods and show that it is superior to thermodynamic integration in that it is more flexible with regard to the annealing schedule and the family of bridging distributions. Finally, we discuss the relation of our method with Skilling's nested sampling.

PDF [BibTex]

PDF [BibTex]


no image
Distributed multisensory signals acquisition and analysis in dyadic interactions

Tawari, A., Tran, C., Doshi, A., Zander, TO.

In Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems Extended Abstracts, pages: 2261-2266, (Editors: JA Konstan and EH Chi and K Höök), ACM, New York, NY, USA, CHI, 2012 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Measuring Cognitive Load by means of EEG-data - how detailed is the picture we can get?

Scharinger, C., Cierniak, G., Walter, C., Zander, TO., Gerjets, P.

In Meeting of the EARLI SIG 22 Neuroscience and Education, 2012 (inproceedings)

[BibTex]

[BibTex]


no image
Optimal kernel choice for large-scale two-sample tests

Gretton, A., Sriperumbudur, B., Sejdinovic, D., Strathmann, H., Balakrishnan, S., Pontil, M., Fukumizu, K.

In Advances in Neural Information Processing Systems 25, pages: 1214-1222, (Editors: P Bartlett and FCN Pereira and CJC. Burges and L Bottou and KQ Weinberger), Curran Associates Inc., 26th Annual Conference on Neural Information Processing Systems (NIPS), 2012 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Measurement and calibration of noise bias in weak lensing galaxy shape estimation

Kacprzak, T., Zuntz, J., Rowe, B., Bridle, S., Refregier, A., Amara, A., Voigt, L., Hirsch, M.

Monthly Notices of the Royal Astronomical Society, 427(4):2711-2722, Oxford University Press, 2012 (article)

DOI [BibTex]

DOI [BibTex]


no image
Image analysis for cosmology: results from the GREAT10 Galaxy Challenge

Kitching, T. D., Balan, S. T., Bridle, S., Cantale, N., Courbin, F., Eifler, T., Gentile, M., Gill, M. S. S., Harmeling, S., Heymans, C., others,

Monthly Notices of the Royal Astronomical Society, 423(4):3163-3208, Oxford University Press, 2012 (article)

DOI [BibTex]

DOI [BibTex]


no image
On the Hardness of Domain Adaptation and the Utility of Unlabeled Target Samples

Ben-David, S., Urner, R.

In Algorithmic Learning Theory - 23rd International Conference, 7568, pages: 139-153, Lecture Notes in Computer Science, (Editors: Bshouty, NH. and Stoltz, G and Vayatis, N and Zeugmann, T), Springer Berlin Heidelberg, ALT, 2012 (inproceedings)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Domain Adaptation–Can Quantity compensate for Quality?

Ben-David, S., Shalev-Shwartz, S., Urner, R.

In International Symposium on Artificial Intelligence and Mathematics, ISAIM, 2012 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Learning from Weak Teachers

Urner, R., Ben-David, S., Shamir, O.

In Proceedings of the 15th International Conference on Artificial Intelligence and Statistics, 22, pages: 1252-1260, (Editors: Lawrence, N. and Girolami, M.), JMLR, AISTATS, 2012 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
First SN Discoveries from the Dark Energy Survey

Abbott, T., Abdalla, F., Achitouv, I., Ahn, E., Aldering, G., Allam, S., Alonso, D., Amara, A., Annis, J., Antonik, M., others,

The Astronomer's Telegram, 4668, pages: 1, 2012 (article)

[BibTex]

[BibTex]


no image
A sensorimotor paradigm for Bayesian model selection

Genewein, T, Braun, DA

Frontiers in Human Neuroscience, 6(291):1-16, October 2012 (article)

Abstract
Sensorimotor control is thought to rely on predictive internal models in order to cope efficiently with uncertain environments. Recently, it has been shown that humans not only learn different internal models for different tasks, but that they also extract common structure between tasks. This raises the question of how the motor system selects between different structures or models, when each model can be associated with a range of different task-specific parameters. Here we design a sensorimotor task that requires subjects to compensate visuomotor shifts in a three-dimensional virtual reality setup, where one of the dimensions can be mapped to a model variable and the other dimension to the parameter variable. By introducing probe trials that are neutral in the parameter dimension, we can directly test for model selection. We found that model selection procedures based on Bayesian statistics provided a better explanation for subjects’ choice behavior than simple non-probabilistic heuristics. Our experimental design lends itself to the general study of model selection in a sensorimotor context as it allows to separately query model and parameter variables from subjects.

DOI [BibTex]

DOI [BibTex]


no image
Adaptive Coding of Actions and Observations

Ortega, PA, Braun, DA

pages: 1-4, NIPS Workshop on Information in Perception and Action, December 2012 (conference)

Abstract
The application of expected utility theory to construct adaptive agents is both computationally intractable and statistically questionable. To overcome these difficulties, agents need the ability to delay the choice of the optimal policy to a later stage when they have learned more about the environment. How should agents do this optimally? An information-theoretic answer to this question is given by the Bayesian control rule—the solution to the adaptive coding problem when there are not only observations but also actions. This paper reviews the central ideas behind the Bayesian control rule.

link (url) [BibTex]

link (url) [BibTex]


no image
Risk-Sensitivity in Bayesian Sensorimotor Integration

Grau-Moya, J, Ortega, PA, Braun, DA

PLoS Computational Biology, 8(9):1-7, sep 2012 (article)

Abstract
Information processing in the nervous system during sensorimotor tasks with inherent uncertainty has been shown to be consistent with Bayesian integration. Bayes optimal decision-makers are, however, risk-neutral in the sense that they weigh all possibilities based on prior expectation and sensory evidence when they choose the action with highest expected value. In contrast, risk-sensitive decision-makers are sensitive to model uncertainty and bias their decision-making processes when they do inference over unobserved variables. In particular, they allow deviations from their probabilistic model in cases where this model makes imprecise predictions. Here we test for risk-sensitivity in a sensorimotor integration task where subjects exhibit Bayesian information integration when they infer the position of a target from noisy sensory feedback. When introducing a cost associated with subjects' response, we found that subjects exhibited a characteristic bias towards low cost responses when their uncertainty was high. This result is in accordance with risk-sensitive decision-making processes that allow for deviations from Bayes optimal decision-making in the face of uncertainty. Our results suggest that both Bayesian integration and risk-sensitivity are important factors to understand sensorimotor integration in a quantitative fashion.

DOI [BibTex]

DOI [BibTex]


no image
Free Energy and the Generalized Optimality Equations for Sequential Decision Making

Ortega, PA, Braun, DA

pages: 1-10, 10th European Workshop on Reinforcement Learning (EWRL), July 2012 (conference)

Abstract
The free energy functional has recently been proposed as a variational principle for bounded rational decision-making, since it instantiates a natural trade-off between utility gains and information processing costs that can be axiomatically derived. Here we apply the free energy principle to general decision trees that include both adversarial and stochastic environments. We derive generalized sequential optimality equations that not only include the Bellman optimality equations as a limit case, but also lead to well-known decision-rules such as Expectimax, Minimax and Expectiminimax. We show how these decision-rules can be derived from a single free energy principle that assigns a resource parameter to each node in the decision tree. These resource parameters express a concrete computational cost that can be measured as the amount of samples that are needed from the distribution that belongs to each node. The free energy principle therefore provides the normative basis for generalized optimality equations that account for both adversarial and stochastic environments.

link (url) [BibTex]

link (url) [BibTex]

2007


no image
HPLC analysis and pharmacokinetic study of quercitrin and isoquercitrin in rat plasma after administration of Hypericum japonicum thunb. extract.

Li, J., Wang, W., Zhang, L., Chen, H., Bi, S.

Biomedical Chromatography, 22(4):374-378, December 2007 (article)

Abstract
A simple HPLC method was developed for determination of quercitrin and isoquercitrin in rat plasma. Reversed-phase HPLC was employed for the quantitative analysis using kaempferol-3-O--d-glucopyranoside-7-O--l-rhamnoside as an internal standard. Following extraction from the plasma samples with ethyl acetate-isopropanol (95:5, v/v), these two compounds were successfully separated on a Luna C18 column (250 × 4.6 mm, 5 µm) with isocratic elution of acetonitrile-0.5% aqueous acetic acid (17:83, v/v) as the mobile phase. The flow-rate was set at 1 mL/min and the eluent was detected at 350 nm for both quercitrin and isoquercitrin. The method was linear over the studied ranges of 50-6000 and 50-5000 ng/mL for quercitrin and isoquercitrin, respectively. The intra- and inter-day precisions of the analysis were better than 13.1 and 13.2%, respectively. The lower limits of quantitation for quercitrin and isoquercitrin in plasma were both of 50 ng/mL. The mean extraction recoveries were 73 and 61% for quercitrin and i soquercitrin, respectively. The validated method was successfully applied to pharmacokinetic studies of the two analytes in rat plasma after the oral administration of Hypericum japonicum thunb. ethanol extract.

Web DOI [BibTex]


no image
Graph sharpening plus graph integration: a synergy that improves protein functional classification

Shin, HH., Lisewski, AM., Lichtarge, O.

Bioinformatics, 23(23):3217-3224, December 2007 (article)

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Tutorial on Spectral Clustering

von Luxburg, U.

Statistics and Computing, 17(4):395-416, December 2007 (article)

Abstract
In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition on those questions. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
A Tutorial on Kernel Methods for Categorization

Jäkel, F., Schölkopf, B., Wichmann, F.

Journal of Mathematical Psychology, 51(6):343-358, December 2007 (article)

Abstract
The abilities to learn and to categorize are fundamental for cognitive systems, be it animals or machines, and therefore have attracted attention from engineers and psychologists alike. Modern machine learning methods and psychological models of categorization are remarkably similar, partly because these two fields share a common history in artificial neural networks and reinforcement learning. However, machine learning is now an independent and mature field that has moved beyond psychologically or neurally inspired algorithms towards providing foundations for a theory of learning that is rooted in statistics and functional analysis. Much of this research is potentially interesting for psychological theories of learning and categorization but also hardly accessible for psychologists. Here, we provide a tutorial introduction to a popular class of machine learning tools, called kernel methods. These methods are closely related to perceptrons, radial-basis-function neural networks and exemplar theories of catego rization. Recent theoretical advances in machine learning are closely tied to the idea that the similarity of patterns can be encapsulated in a positive definite kernel. Such a positive definite kernel can define a reproducing kernel Hilbert space which allows one to use powerful tools from functional analysis for the analysis of learning algorithms. We give basic explanations of some key concepts—the so-called kernel trick, the representer theorem and regularization—which may open up the possibility that insights from machine learning can feed back into psychology.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A semigroup approach to queueing systems

Haji, A., Radl, A.

Semigroup Forum, 75(3):610-624, December 2007 (article)

Abstract
We prove asymptotic stability of the solutions of equations describing a simple queueing system consisting of two machines separated by a finite storage buffer. Following an approach by G. Gupur, we apply the theory of C0-semigroups and spectral theory of positive operators.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Point-spread functions for backscattered imaging in the scanning electron microscope

Hennig, P., Denk, W.

Journal of Applied Physics , 102(12):1-8, December 2007 (article)

Abstract
One knows the imaging system's properties are central to the correct interpretation of any image. In a scanning electron microscope regions of different composition generally interact in a highly nonlinear way during signal generation. Using Monte Carlo simulations we found that in resin-embedded, heavy metal-stained biological specimens staining is sufficiently dilute to allow an approximately linear treatment. We then mapped point-spread functions for backscattered-electron contrast, for primary energies of 3 and 7 keV and for different detector specifications. The point-spread functions are surprisingly well confined (both laterally and in depth) compared even to the distribution of only those scattered electrons that leave the sample again.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Accurate Splice site Prediction Using Support Vector Machines

Sonnenburg, S., Schweikert, G., Philips, P., Behr, J., Rätsch, G.

BMC Bioinformatics, 8(Supplement 10):1-16, December 2007 (article)

Abstract
Background: For splice site recognition, one has to solve two classification problems: discriminating true from decoy splice sites for both acceptor and donor sites. Gene finding systems typically rely on Markov Chains to solve these tasks. Results: In this work we consider Support Vector Machines for splice site recognition. We employ the so-called weighted degree kernel which turns out well suited for this task, as we will illustrate in several experiments where we compare its prediction accuracy with that of recently proposed systems. We apply our method to the genome-wide recognition of splice sites in Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, Danio rerio, and Homo sapiens. Our performance estimates indicate that splice sites can be recognized very accurately in these genomes and that our method outperforms many other methods including Markov Chains, GeneSplicer and SpliceMachine. We provide genome-wide predictions of splice sites and a stand-alone prediction tool ready to be used for incorporation in a gene finder. Availability: Data, splits, additional information on the model selection, the whole genome predictions, as well as the stand-alone prediction tool are available for download at http:// www.fml.mpg.de/raetsch/projects/splice.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Towards compliant humanoids: an experimental assessment of suitable task space position/orientation controllers

Nakanishi, J., Mistry, M., Peters, J., Schaal, S.

In IROS 2007, 2007, pages: 2520-2527, (Editors: Grant, E. , T. C. Henderson), IEEE Service Center, Piscataway, NJ, USA, IEEE/RSJ International Conference on Intelligent Robots and Systems, November 2007 (inproceedings)

Abstract
Compliant control will be a prerequisite for humanoid robotics if these robots are supposed to work safely and robustly in human and/or dynamic environments. One view of compliant control is that a robot should control a minimal number of degrees-of-freedom (DOFs) directly, i.e., those relevant DOFs for the task, and keep the remaining DOFs maximally compliant, usually in the null space of the task. This view naturally leads to task space control. However, surprisingly few implementations of task space control can be found in actual humanoid robots. This paper makes a first step towards assessing the usefulness of task space controllers for humanoids by investigating which choices of controllers are available and what inherent control characteristics they have—this treatment will concern position and orientation control, where the latter is based on a quaternion formulation. Empirical evaluations on an anthropomorphic Sarcos master arm illustrate the robustness of the different controllers as well as the eas e of implementing and tuning them. Our extensive empirical results demonstrate that simpler task space controllers, e.g., classical resolved motion rate control or resolved acceleration control can be quite advantageous in face of inevitable modeling errors in model-based control, and that well chosen formulations are easy to implement and quite robust, such that they are useful for humanoids.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Sistema avanzato per la classificazione delle aree agricole in immagini ad elevata risoluzione geometrica: applicazione al territorio del Trentino

Arnoldi, E., Bruzzone, L., Carlin, L., Pedron, L., Persello, C.

In pages: 1-6, 11. Conferenza Nazionale ASITA, November 2007 (inproceedings)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Performance Stabilization and Improvement in Graph-based Semi-supervised Learning with Ensemble Method and Graph Sharpening

Choi, I., Shin, H.

In Korean Data Mining Society Conference, pages: 257-262, Korean Data Mining Society, Seoul, Korea, Korean Data Mining Society Conference, November 2007 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
A unifying framework for robot control with redundant DOFs

Peters, J., Mistry, M., Udwadia, F., Nakanishi, J., Schaal, S.

Autonomous Robots, 24(1):1-12, October 2007 (article)

Abstract
Recently, Udwadia (Proc. R. Soc. Lond. A 2003:1783–1800, 2003) suggested to derive tracking controllers for mechanical systems with redundant degrees-of-freedom (DOFs) using a generalization of Gauss’ principle of least constraint. This method allows reformulating control problems as a special class of optimal controllers. In this paper, we take this line of reasoning one step further and demonstrate that several well-known and also novel nonlinear robot control laws can be derived from this generic methodology. We show experimental verifications on a Sarcos Master Arm robot for some of the derived controllers. The suggested approach offers a promising unification and simplification of nonlinear control law design for robots obeying rigid body dynamics equations, both with or without external constraints, with over-actuation or underactuation, as well as open-chain and closed-chain kinematics.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
The Need for Open Source Software in Machine Learning

Sonnenburg, S., Braun, M., Ong, C., Bengio, S., Bottou, L., Holmes, G., LeCun, Y., Müller, K., Pereira, F., Rasmussen, C., Rätsch, G., Schölkopf, B., Smola, A., Vincent, P., Weston, J., Williamson, R.

Journal of Machine Learning Research, 8, pages: 2443-2466, October 2007 (article)

Abstract
Open source tools have recently reached a level of maturity which makes them suitable for building large-scale real-world systems. At the same time, the field of machine learning has developed a large body of powerful learning algorithms for diverse applications. However, the true potential of these methods is not realized, since existing implementations are not openly shared, resulting in software with low usability, and weak interoperability. We argue that this situation can be significantly improved by increasing incentives for researchers to publish their software under an open source model. Additionally, we outline the problems authors are faced with when trying to publish algorithmic implementations of machine learning methods. We believe that a resource of peer reviewed software accompanied by short articles would be highly valuable to both the machine learning and the general scientific community.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Discriminative Subsequence Mining for Action Classification

Nowozin, S., BakIr, G., Tsuda, K.

In ICCV 2007, pages: 1919-1923, IEEE Computer Society, Los Alamitos, CA, USA, 11th IEEE International Conference on Computer Vision, October 2007 (inproceedings)

Abstract
Recent approaches to action classification in videos have used sparse spatio-temporal words encoding local appearance around interesting movements. Most of these approaches use a histogram representation, discarding the temporal order among features. But this ordering information can contain important information about the action itself, e.g. consider the sport disciplines of hurdle race and long jump, where the global temporal order of motions (running, jumping) is important to discriminate between the two. In this work we propose to use a sequential representation which retains this temporal order. Further, we introduce Discriminative Subsequence Mining to find optimal discriminative subsequence patterns. In combination with the LPBoost classifier, this amounts to simultaneously learning a classification function and performing feature selection in the space of all possible feature sequences. The resulting classifier linearly combines a small number of interpretable decision functions, each checking for the presence of a single discriminative pattern. The classifier is benchmarked on the KTH action classification data set and outperforms the best known results in the literature.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
On the Representer Theorem and Equivalent Degrees of Freedom of SVR

Dinuzzo, F., Neve, M., De Nicolao, G., Gianazza, U.

Journal of Machine Learning Research, 8, pages: 2467-2495, October 2007 (article)

Abstract
Support Vector Regression (SVR) for discrete data is considered. An alternative formulation of the representer theorem is derived. This result is based on the newly introduced notion of pseudoresidual and the use of subdifferential calculus. The representer theorem is exploited to analyze the sensitivity properties of ε-insensitive SVR and introduce the notion of approximate degrees of freedom. The degrees of freedom are shown to play a key role in the evaluation of the optimism, that is the difference between the expected in-sample error and the expected empirical risk. In this way, it is possible to define a Cp-like statistic that can be used for tuning the parameters of SVR. The proposed tuning procedure is tested on a simulated benchmark problem and on a real world problem (Boston Housing data set).

Web [BibTex]

Web [BibTex]


no image
Unsupervised Classification for non-invasive Brain-Computer-Interfaces

Eren, S., Grosse-Wentrup, M., Buss, M.

In Automed 2007, pages: 65-66, VDI Verlag, Düsseldorf, Germany, Automed Workshop, October 2007 (inproceedings)

Abstract
Non-invasive Brain-Computer-Interfaces (BCIs) are devices that infer the intention of human subjects from signals generated by the central nervous system and recorded outside the skull, e.g., by electroencephalography (EEG). They can be used to enable basic communication for patients who are not able to communicate by normal means, e.g., due to neuro-degenerative diseases such as amyotrophic lateral sclerosis (ALS) (see [Vaughan2003] for a review). One challenge in research on BCIs is minimizing the training time prior to usage of the BCI. Since EEG patterns vary across subjects, it is usually necessary to record a number of trials in which the intention of the user is known to train a classifier. This classifier is subsequently used to infer the intention of the BCI-user. In this paper, we present the application of an unsupervised classification method to a binary noninvasive BCI based on motor imagery. The result is a BCI that does not require any training, since the mapping from EEG pattern changes to the intention of the user is learned online by the BCI without any feedback. We present experimental results from six healthy subjects, three of which display classification errors below 15%. We conclude that unsupervised BCIs are a viable option, but not yet as reliable as supervised BCIs. The rest of this paper is organized as follows. In the Methods section, we first introduce the experimental paradigm. This is followed by a description of the methods used for spatial filtering, feature extraction, and unsupervised classification. We then present the experimental results, and conclude the paper with a brief discussion.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Some observations on the masking effects of Mach bands

Curnow, T., Cowie, DA., Henning, GB., Hill, NJ.

Journal of the Optical Society of America A, 24(10):3233-3241, October 2007 (article)

Abstract
There are 8 cycle / deg ripples or oscillations in performance as a function of location near Mach bands in experiments measuring Mach bands’ masking effects on random polarity signal bars. The oscillations with increments are 180 degrees out of phase with those for decrements. The oscillations, much larger than the measurement error, appear to relate to the weighting function of the spatial-frequency-tuned channel detecting the broad- band signals. The ripples disappear with step maskers and become much smaller at durations below 25 ms, implying either that the site of masking has changed or that the weighting function and hence spatial-frequency tuning is slow to develop.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A Hilbert Space Embedding for Distributions

Smola, A., Gretton, A., Song, L., Schölkopf, B.

In Algorithmic Learning Theory, Lecture Notes in Computer Science 4754 , pages: 13-31, (Editors: M Hutter and RA Servedio and E Takimoto), Springer, Berlin, Germany, 18th International Conference on Algorithmic Learning Theory (ALT), October 2007 (inproceedings)

Abstract
We describe a technique for comparing distributions without the need for density estimation as an intermediate step. Our approach relies on mapping the distributions into a reproducing kernel Hilbert space. Applications of this technique can be found in two-sample tests, which are used for determining whether two sets of observations arise from the same distribution, covariate shift correction, local learning, measures of independence, and density estimation.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Cluster Identification in Nearest-Neighbor Graphs

Maier, M., Hein, M., von Luxburg, U.

In ALT 2007, pages: 196-210, (Editors: Hutter, M. , R. A. Servedio, E. Takimoto), Springer, Berlin, Germany, 18th International Conference on Algorithmic Learning Theory, October 2007 (inproceedings)

Abstract
Assume we are given a sample of points from some underlying distribution which contains several distinct clusters. Our goal is to construct a neighborhood graph on the sample points such that clusters are ``identified‘‘: that is, the subgraph induced by points from the same cluster is connected, while subgraphs corresponding to different clusters are not connected to each other. We derive bounds on the probability that cluster identification is successful, and use them to predict ``optimal‘‘ values of k for the mutual and symmetric k-nearest-neighbor graphs. We point out different properties of the mutual and symmetric nearest-neighbor graphs related to the cluster identification problem.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Inducing Metric Violations in Human Similarity Judgements

Laub, J., Macke, J., Müller, K., Wichmann, F.

In Advances in Neural Information Processing Systems 19, pages: 777-784, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
Attempting to model human categorization and similarity judgements is both a very interesting but also an exceedingly difficult challenge. Some of the difficulty arises because of conflicting evidence whether human categorization and similarity judgements should or should not be modelled as to operate on a mental representation that is essentially metric. Intuitively, this has a strong appeal as it would allow (dis)similarity to be represented geometrically as distance in some internal space. Here we show how a single stimulus, carefully constructed in a psychophysical experiment, introduces l2 violations in what used to be an internal similarity space that could be adequately modelled as Euclidean. We term this one influential data point a conflictual judgement. We present an algorithm of how to analyse such data and how to identify the crucial point. Thus there may not be a strict dichotomy between either a metric or a non-metric internal space but rather degrees to which potentially large subsets of stimuli are represented metrically with a small subset causing a global violation of metricity.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Cross-Validation Optimization for Large Scale Hierarchical Classification Kernel Methods

Seeger, M.

In Advances in Neural Information Processing Systems 19, pages: 1233-1240, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
We propose a highly efficient framework for kernel multi-class models with a large and structured set of classes. Kernel parameters are learned automatically by maximizing the cross-validation log likelihood, and predictive probabilities are estimated. We demonstrate our approach on large scale text classification tasks with hierarchical class structure, achieving state-of-the-art results in an order of magnitude less time than previous work.

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Local Learning Approach for Clustering

Wu, M., Schölkopf, B.

In Advances in Neural Information Processing Systems 19, pages: 1529-1536, (Editors: B Schölkopf and J Platt and T Hofmann), MIT Press, Cambridge, MA, USA, 20th Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
We present a local learning approach for clustering. The basic idea is that a good clustering result should have the property that the cluster label of each data point can be well predicted based on its neighboring data and their cluster labels, using current supervised learning methods. An optimization problem is formulated such that its solution has the above property. Relaxation and eigen-decomposition are applied to solve this optimization problem. We also briefly investigate the parameter selection issue and provide a simple parameter selection method for the proposed algorithm. Experimental results are provided to validate the effectiveness of the proposed approach.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Adaptive Spatial Filters with predefined Region of Interest for EEG based Brain-Computer-Interfaces

Grosse-Wentrup, M., Gramann, K., Buss, M.

In Advances in Neural Information Processing Systems 19, pages: 537-544, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
The performance of EEG-based Brain-Computer-Interfaces (BCIs) critically depends on the extraction of features from the EEG carrying information relevant for the classification of different mental states. For BCIs employing imaginary movements of different limbs, the method of Common Spatial Patterns (CSP) has been shown to achieve excellent classification results. The CSP-algorithm however suffers from a lack of robustness, requiring training data without artifacts for good performance. To overcome this lack of robustness, we propose an adaptive spatial filter that replaces the training data in the CSP approach by a-priori information. More specifically, we design an adaptive spatial filter that maximizes the ratio of the variance of the electric field originating in a predefined region of interest (ROI) and the overall variance of the measured EEG. Since it is known that the component of the EEG used for discriminating imaginary movements originates in the motor cortex, we design two adaptive spatial filters with the ROIs centered in the hand areas of the left and right motor cortex. We then use these to classify EEG data recorded during imaginary movements of the right and left hand of three subjects, and show that the adaptive spatial filters outperform the CSP-algorithm, enabling classification rates of up to 94.7 % without artifact rejection.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Mining complex genotypic features for predicting HIV-1 drug resistance

Saigo, H., Uno, T., Tsuda, K.

Bioinformatics, 23(18):2455-2462, September 2007 (article)

Abstract
Human immunodeficiency virus type 1 (HIV-1) evolves in human body, and its exposure to a drug often causes mutations that enhance the resistance against the drug. To design an effective pharmacotherapy for an individual patient, it is important to accurately predict the drug resistance based on genotype data. Notably, the resistance is not just the simple sum of the effects of all mutations. Structural biological studies suggest that the association of mutations is crucial: Even if mutations A or B alone do not affect the resistance, a significant change might happen when the two mutations occur together. Linear regression methods cannot take the associations into account, while decision tree methods can reveal only limited associations. Kernel methods and neural networks implicitly use all possible associations for prediction, but cannot select salient associations explicitly. Our method, itemset boosting, performs linear regression in the complete space of power sets of mutations. It implements a forward feature selection procedure where, in each iteration, one mutation combination is found by an efficient branch-and-bound search. This method uses all possible combinations, and salient associations are explicitly shown. In experiments, our method worked particularly well for predicting the resistance of nucleotide reverse transcriptase inhibitors (NRTIs). Furthermore, it successfully recovered many mutation associations known in biological literature.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Branch and Bound for Semi-Supervised Support Vector Machines

Chapelle, O., Sindhwani, V., Keerthi, S.

In Advances in Neural Information Processing Systems 19, pages: 217-224, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
Semi-supervised SVMs (S3VMs) attempt to learn low-density separators by maximizing the margin over labeled and unlabeled examples. The associated optimization problem is non-convex. To examine the full potential of S3VMs modulo local minima problems in current implementations, we apply branch and bound techniques for obtaining exact, globally optimal solutions. Empirical evidence suggests that the globally optimal solution can return excellent generalization performance in situations where other implementations fail completely. While our current implementation is only applicable to small datasets, we discuss variants that can potentially lead to practically useful algorithms.

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Kernel Method for the Two-Sample-Problem

Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.

In Advances in Neural Information Processing Systems 19, pages: 513-520, (Editors: B Schölkopf and J Platt and T Hofmann), MIT Press, Cambridge, MA, USA, 20th Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
We propose two statistical tests to determine if two samples are from different distributions. Our test statistic is in both cases the distance between the means of the two samples mapped into a reproducing kernel Hilbert space (RKHS). The first test is based on a large deviation bound for the test statistic, while the second is based on the asymptotic distribution of this statistic. The test statistic can be computed in $O(m^2)$ time. We apply our approach to a variety of problems, including attribute matching for databases using the Hungarian marriage method, where our test performs strongly. We also demonstrate excellent performance when comparing distributions over graphs, for which no alternative tests currently exist.

PDF Web [BibTex]

PDF Web [BibTex]


no image
An Efficient Method for Gradient-Based Adaptation of Hyperparameters in SVM Models

Keerthi, S., Sindhwani, V., Chapelle, O.

In Advances in Neural Information Processing Systems 19, pages: 673-680, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
We consider the task of tuning hyperparameters in SVM models based on minimizing a smooth performance validation function, e.g., smoothed k-fold cross-validation error, using non-linear optimization techniques. The key computation in this approach is that of the gradient of the validation function with respect to hyperparameters. We show that for large-scale problems involving a wide choice of kernel-based models and validation functions, this computation can be very efficiently done; often within just a fraction of the training time. Empirical results show that a near-optimal set of hyperparameters can be identified by our approach with very few training rounds and gradient computations.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning Dense 3D Correspondence

Steinke, F., Schölkopf, B., Blanz, V.

In Advances in Neural Information Processing Systems 19, pages: 1313-1320, (Editors: B Schölkopf and J Platt and T Hofmann), MIT Press, Cambridge, MA, USA, 20th Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
Establishing correspondence between distinct objects is an important and nontrivial task: correctness of the correspondence hinges on properties which are difficult to capture in an a priori criterion. While previous work has used a priori criteria which in some cases led to very good results, the present paper explores whether it is possible to learn a combination of features that, for a given training set of aligned human heads, characterizes the notion of correct correspondence. By optimizing this criterion, we are then able to compute correspondence and morphs for novel heads.

PDF Web [BibTex]

PDF Web [BibTex]