Header logo is ei


1999


no image
p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53.

Davison, T., Vagner, C., Kaghad, M., Ayed, A., Caput, D., CH, ..

Journal of Biological Chemistry, 274(26):18709-18714, June 1999 (article)

Abstract
Mutations in the p53 tumor suppressor gene are the most frequent genetic alterations found in human cancers. Recent identification of two human homologues of p53 has raised the prospect of functional interactions between family members via a conserved oligomerization domain. Here we report in vitro and in vivo analysis of homo- and hetero-oligomerization of p53 and its homologues, p63 and p73. The oligomerization domains of p63 and p73 can independently fold into stable homotetramers, as previously observed for p53. However, the oligomerization domain of p53 does not associate with that of either p73 or p63, even when p53 is in 15-fold excess. On the other hand, the oligomerization domains of p63 and p73 are able to weakly associate with one another in vitro. In vivo co-transfection assays of the ability of p53 and its homologues to activate reporter genes showed that a DNA-binding mutant of p53 was not able to act in a dominant negative manner over wild-type p73 or p63 but that a p73 mutant could inhibit the activity of wild-type p63. These data suggest that mutant p53 in cancer cells will not interact with endogenous or exogenous p63 or p73 via their respective oligomerization domains. It also establishes that the multiple isoforms of p63 as well as those of p73 are capable of interacting via their common oligomerization domain.

Web [BibTex]

1999

Web [BibTex]


no image
Single-class Support Vector Machines

Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J.

Dagstuhl-Seminar on Unsupervised Learning, pages: 19-20, (Editors: J. Buhmann, W. Maass, H. Ritter and N. Tishby), 1999 (poster)

[BibTex]

[BibTex]


no image
Spatial Learning and Localization in Animals: A Computational Model and Its Implications for Mobile Robots

Balakrishnan, K., Bousquet, O., Honavar, V.

Adaptive Behavior, 7(2):173-216, 1999 (article)

[BibTex]


no image
SVMs for Histogram Based Image Classification

Chapelle, O., Haffner, P., Vapnik, V.

IEEE Transactions on Neural Networks, (9), 1999 (article)

Abstract
Traditional classification approaches generalize poorly on image classification tasks, because of the high dimensionality of the feature space. This paper shows that Support Vector Machines (SVM) can generalize well on difficult image classification problems where the only features are high dimensional histograms. Heavy-tailed RBF kernels of the form $K(mathbf{x},mathbf{y})=e^{-rhosum_i |x_i^a-y_i^a|^{b}}$ with $aleq 1$ and $b leq 2$ are evaluated on the classification of images extracted from the Corel Stock Photo Collection and shown to far outperform traditional polynomial or Gaussian RBF kernels. Moreover, we observed that a simple remapping of the input $x_i rightarrow x_i^a$ improves the performance of linear SVMs to such an extend that it makes them, for this problem, a valid alternative to RBF kernels.

GZIP [BibTex]

GZIP [BibTex]


no image
Pedestal effects with periodic pulse trains

Henning, G., Wichmann, F.

Perception, 28, pages: S137, 1999 (poster)

Abstract
It is important to know for theoretical reasons how performance varies with stimulus contrast. But, for objects on CRT displays, retinal contrast is limited by the linear range of the display and the modulation transfer function of the eye. For example, with an 8 c/deg sinusoidal grating at 90% contrast, the contrast of the retinal image is barely 45%; more retinal contrast is required, however, to discriminate among theories of contrast discrimination (Wichmann, Henning and Ploghaus, 1998). The stimulus with the greatest contrast at any spatial-frequency component is a periodic pulse train which has 200% contrast at every harmonic. Such a waveform cannot, of course, be produced; the best we can do with our Mitsubishi display provides a contrast of 150% at an 8-c/deg fundamental thus producing a retinal image with about 75% contrast. The penalty of using this stimulus is that the 2nd harmonic of the retinal image also has high contrast (with an emmetropic eye, more than 60% of the contrast of the 8-c/deg fundamental ) and the mean luminance is not large (24.5 cd/m2 on our display). We have used standard 2-AFC experiments to measure the detectability of an 8-c/deg pulse train against the background of an identical pulse train of different contrasts. An unusually large improvement in detetectability was measured, the pedestal effect or "dipper," and the dipper was unusually broad. The implications of these results will be discussed.

[BibTex]

[BibTex]


no image
Implications of the pedestal effect for models of contrast-processing and gain-control

Wichmann, F., Henning, G.

OSA Conference Program, pages: 62, 1999 (poster)

Abstract
Understanding contrast processing is essential for understanding spatial vision. Pedestal contrast systematically affects slopes of functions relating 2-AFC contrast discrimination performance to pedestal contrast. The slopes provide crucial information because only full sets of data allow discrimination among contrast-processing and gain-control models. Issues surrounding Weber's law will also be discussed.

[BibTex]


no image
Advances in Kernel Methods - Support Vector Learning

Schölkopf, B., Burges, C., Smola, A.

MIT Press, Cambridge, MA, 1999 (book)

[BibTex]

[BibTex]