Header logo is ei


2011


no image
Towards Motor Skill Learning for Robotics

Peters, J., Mülling, K., Kober, J., Nguyen-Tuong, D., Kroemer, O.

In Robotics Research, pages: 469-482, (Editors: Pradalier, C. , R. Siegwart, G. Hirzinger), Springer, Berlin, Germany, 14th International Symposium on Robotics Research (ISRR), January 2011 (inproceedings)

Abstract
Learning robots that can acquire new motor skills and refine existing one has been a long standing vision of robotics, artificial intelligence, and the cognitive sciences. Early steps towards this goal in the 1980s made clear that reasoning and human insights will not suffice. Instead, new hope has been offered by the rise of modern machine learning approaches. However, to date, it becomes increasingly clear that off-the-shelf machine learning approaches will not suffice for motor skill learning as these methods often do not scale into the high-dimensional domains of manipulator and humanoid robotics nor do they fulfill the real-time requirement of our domain. As an alternative, we propose to break the generic skill learning problem into parts that we can understand well from a robotics point of view. After designing appropriate learning approaches for these basic components, these will serve as the ingredients of a general approach to motor skill learning. In this paper, we discuss our recent and current progress in this direction. For doing so, we present our work on learning to control, on learning elementary movements as well as our steps towards learning of complex tasks. We show several evaluations both using real robots as well as physically realistic simulations.

PDF Web DOI [BibTex]

2011

PDF Web DOI [BibTex]


no image
Robust Control of Teleoperation Systems Interacting with Viscoelastic Soft Tissues

Cho, JH., Son, HI., Bhattacharjee, T., Lee, DG., Lee, DY.

IEEE Transactions on Control Systems Technology, January 2011 (article) In revision

[BibTex]

[BibTex]


no image
Learning Visual Representations for Interactive Systems

Piater, J., Jodogne, S., Detry, R., Kraft, D., Krüger, N., Kroemer, O., Peters, J.

In Robotics Research, pages: 399-416, (Editors: Pradalier, C. , R. Siegwart, G. Hirzinger), Springer, Berlin, Germany, 14th International Symposium on Robotics Research (ISRR), January 2011 (inproceedings)

Abstract
We describe two quite different methods for associating action parameters to visual percepts. Our RLVC algorithm performs reinforcement learning directly on the visual input space. To make this very large space manageable, RLVC interleaves the reinforcement learner with a supervised classification algorithm that seeks to split perceptual states so as to reduce perceptual aliasing. This results in an adaptive discretization of the perceptual space based on the presence or absence of visual features. Its extension RLJC also handles continuous action spaces. In contrast to the minimalistic visual representations produced by RLVC and RLJC, our second method learns structural object models for robust object detection and pose estimation by probabilistic inference. To these models, the method associates grasp experiences autonomously learned by trial and error. These experiences form a non-parametric representation of grasp success likelihoods over gripper poses, which we call a gra sp d ensi ty. Thus, object detection in a novel scene simultaneously produces suitable grasping options.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Effect of Control Parameters and Haptic Cues on Human Perception for Remote Operations

Son, HI., Bhattacharjee, T., Jung, H., Lee, DY.

Experimental Brain Research, January 2011 (article) Submitted

[BibTex]

[BibTex]


no image
Joint Genetic Analysis of Gene Expression Data with Inferred Cellular Phenotypes

Parts, L., Stegle, O., Winn, J., Durbin, R.

PLoS Genetics, 7(1):1-10, January 2011 (article)

Abstract
Even within a defined cell type, the expression level of a gene differs in individual samples. The effects of genotype, measured factors such as environmental conditions, and their interactions have been explored in recent studies. Methods have also been developed to identify unmeasured intermediate factors that coherently influence transcript levels of multiple genes. Here, we show how to bring these two approaches together and analyse genetic effects in the context of inferred determinants of gene expression. We use a sparse factor analysis model to infer hidden factors, which we treat as intermediate cellular phenotypes that in turn affect gene expression in a yeast dataset. We find that the inferred phenotypes are associated with locus genotypes and environmental conditions and can explain genetic associations to genes in trans. For the first time, we consider and find interactions between genotype and intermediate phenotypes inferred from gene expression levels, complementing and extending established results.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Robot Learning

Peters, J., Tedrake, R., Roy, N., Morimoto, J.

In Encyclopedia of Machine Learning, pages: 865-869, Encyclopedia of machine learning, (Editors: Sammut, C. and Webb, G. I.), Springer, New York, NY, USA, January 2011 (inbook)

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Multiple testing, uncertainty and realistic pictures

Langovoy, M., Wittich, O.

(2011-004), EURANDOM, Technische Universiteit Eindhoven, January 2011 (techreport)

Abstract
We study statistical detection of grayscale objects in noisy images. The object of interest is of unknown shape and has an unknown intensity, that can be varying over the object and can be negative. No boundary shape constraints are imposed on the object, only a weak bulk condition for the object's interior is required. We propose an algorithm that can be used to detect grayscale objects of unknown shapes in the presence of nonparametric noise of unknown level. Our algorithm is based on a nonparametric multiple testing procedure. We establish the limit of applicability of our method via an explicit, closed-form, non-asymptotic and nonparametric consistency bound. This bound is valid for a wide class of nonparametric noise distributions. We achieve this by proving an uncertainty principle for percolation on nite lattices.

PDF [BibTex]

PDF [BibTex]


no image
A Non-Parametric Approach to Dynamic Programming

Kroemer, O., Peters, J.

In Advances in Neural Information Processing Systems 24, pages: 1719-1727, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
In this paper, we consider the problem of policy evaluation for continuousstate systems. We present a non-parametric approach to policy evaluation, which uses kernel density estimation to represent the system. The true form of the value function for this model can be determined, and can be computed using Galerkin’s method. Furthermore, we also present a unified view of several well-known policy evaluation methods. In particular, we show that the same Galerkin method can be used to derive Least-Squares Temporal Difference learning, Kernelized Temporal Difference learning, and a discrete-state Dynamic Programming solution, as well as our proposed method. In a numerical evaluation of these algorithms, the proposed approach performed better than the other methods.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Reinforcement Learning with Bounded Information Loss

Peters, J., Peters, J., Mülling, K., Altun, Y.

AIP Conference Proceedings, 1305(1):365-372, 2011 (article)

Abstract
Policy search is a successful approach to reinforcement learning. However, policy improvements often result in the loss of information. Hence, it has been marred by premature convergence and implausible solutions. As first suggested in the context of covariant or natural policy gradients, many of these problems may be addressed by constraining the information loss. In this paper, we continue this path of reasoning and suggest two reinforcement learning methods, i.e., a model‐based and a model free algorithm that bound the loss in relative entropy while maximizing their return. The resulting methods differ significantly from previous policy gradient approaches and yields an exact update step. It works well on typical reinforcement learning benchmark problems as well as novel evaluations in robotics. We also show a Bayesian bound motivation of this new approach [8].

Web DOI [BibTex]


no image
Transfer Learning with Copulas

Lopez-Paz, D., Hernandez-Lobato, J.

In pages: 2, NIPS, Workshop on Copulas in Machine Learning, 2011 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Denoising sparse noise via online dictionary learning

Cherian, A., Sra, S., Papanikolopoulos, N.

In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011, pages: 2060 -2063, IEEE, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2011 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Support Vector Machines for finding deletions and short insertions using paired-end short reads

Grimm, D., Hagmann, J., König, D., Weigel, D., Borgwardt, KM.

International Conference on Intelligent Systems for Molecular Biology (ISMB), 2011 (poster)

Web [BibTex]

Web [BibTex]


no image
What You Expect Is What You Get? Potential Use of Contingent Negative Variation for Passive BCI Systems in Gaze-Based HCI

Ihme, K., Zander, TO.

In Affective Computing and Intelligent Interaction, 6975, pages: 447-456, Lecture Notes in Computer Science, (Editors: D’Mello, S., Graesser, A., Schuller, B. and Martin, J.-C.), Springer, Berlin, Germany, 2011 (inbook)

Abstract
When using eye movements for cursor control in human-computer interaction (HCI), it may be difficult to find an appropriate substitute for the click operation. Most approaches make use of dwell times. However, in this context the so-called Midas-Touch-Problem occurs which means that the system wrongly interprets fixations due to long processing times or spontaneous dwellings of the user as command. Lately it has been shown that brain-computer interface (BCI) input bears good prospects to overcome this problem using imagined hand movements to elicit a selection. The current approach tries to develop this idea further by exploring potential signals for the use in a passive BCI, which would have the advantage that the brain signals used as input are generated automatically without conscious effort of the user. To explore event-related potentials (ERPs) giving information about the user’s intention to select an object, 32-channel electroencephalography (EEG) was recorded from ten participants interacting with a dwell-time-based system. Comparing ERP signals during the dwell time with those occurring during fixations on a neutral cross hair, a sustained negative slow cortical potential at central electrode sites was revealed. This negativity might be a contingent negative variation (CNV) reflecting the participants’ anticipation of the upcoming selection. Offline classification suggests that the CNV is detectable in single trial (mean accuracy 74.9 %). In future, research on the CNV should be accomplished to ensure its stable occurence in human-computer interaction and render possible its use as a potential substitue for the click operation.

DOI [BibTex]

DOI [BibTex]


no image
PILCO: A Model-Based and Data-Efficient Approach to Policy Search

Deisenroth, MP., Rasmussen, CE.

In Proceedings of the 28th International Conference on Machine Learning, ICML 2011, pages: 465-472, (Editors: L Getoor and T Scheffer), Omnipress, 2011 (inproceedings)

Abstract
In this paper, we introduce PILCO, a practical, data-efficient model-based policy search method. PILCO reduces model bias, one of the key problems of model-based reinforcement learning, in a principled way. By learning a probabilistic dynamics model and explicitly incorporating model uncertainty into long-term planning, PILCO can cope with very little data and facilitates learning from scratch in only a few trials. Policy evaluation is performed in closed form using state-of-the-art approximate inference. Furthermore, policy gradients are computed analytically for policy improvement. We report unprecedented learning efficiency on challenging and high-dimensional control tasks.

Web [BibTex]

Web [BibTex]


no image
Kernel Bayes’ Rule

Fukumizu, K., Song, L., Gretton, A.

In Advances in Neural Information Processing Systems 24, pages: 1737-1745, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Curran Associates, Inc., Red Hook, NY, USA, Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Handbook of Statistical Bioinformatics

Lu, H., Schölkopf, B., Zhao, H.

pages: 627, Springer Handbooks of Computational Statistics, Springer, Berlin, Germany, 2011 (book)

Web DOI [BibTex]

Web DOI [BibTex]


no image
Optimal Reinforcement Learning for Gaussian Systems

Hennig, P.

In Advances in Neural Information Processing Systems 24, pages: 325-333, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
The exploration-exploitation trade-off is among the central challenges of reinforcement learning. The optimal Bayesian solution is intractable in general. This paper studies to what extent analytic statements about optimal learning are possible if all beliefs are Gaussian processes. A first order approximation of learning of both loss and dynamics, for nonlinear, time-varying systems in continuous time and space, subject to a relatively weak restriction on the dynamics, is described by an infinite-dimensional partial differential equation. An approximate finitedimensional projection gives an impression for how this result may be helpful.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Efficient inference in matrix-variate Gaussian models with iid observation noise

Stegle, O., Lippert, C., Mooij, J., Lawrence, N., Borgwardt, K.

In Advances in Neural Information Processing Systems 24, pages: 630-638, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
Inference in matrix-variate Gaussian models has major applications for multioutput prediction and joint learning of row and column covariances from matrixvariate data. Here, we discuss an approach for efficient inference in such models that explicitly account for iid observation noise. Computational tractability can be retained by exploiting the Kronecker product between row and column covariance matrices. Using this framework, we show how to generalize the Graphical Lasso in order to learn a sparse inverse covariance between features while accounting for a low-rank confounding covariance between samples. We show practical utility on applications to biology, where we model covariances with more than 100,000 dimensions. We find greater accuracy in recovering biological network structures and are able to better reconstruct the confounders.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernel Methods in Bioinformatics

Borgwardt, KM.

In Handbook of Statistical Bioinformatics, pages: 317-334, Springer Handbooks of Computational Statistics ; 3, (Editors: Lu, H.H.-S., Schölkopf, B. and Zhao, H.), Springer, Berlin, Germany, 2011 (inbook)

Abstract
Kernel methods have now witnessed more than a decade of increasing popularity in the bioinformatics community. In this article, we will compactly review this development, examining the areas in which kernel methods have contributed to computational biology and describing the reasons for their success.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Expectation Propagation for the Estimation of Conditional Bivariate Copulas

Hernandez-Lobato, J., Lopez-Paz, D., Gharhamani, Z.

In pages: 2, NIPS, Workshop on Copulas in Machine Learning, 2011 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Efficient Similarity Search for Covariance Matrices via the Jensen-Bregman LogDet Divergence

Cherian, A., Sra, S., Banerjee, A., Papanikolopoulos, N.

In IEEE International Conference on Computer Vision, ICCV 2011, pages: 2399-2406, (Editors: DN Metaxas and L Quan and A Sanfeliu and LJ Van Gool), IEEE, 13th International Conference on Computer Vision (ICCV), 2011 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Introducing the detection of auditory error responses based on BCI technology for passive interaction

Zander, TO., Klippel, DM., Scherer, R.

In Proceedings of the 5th International Brain–Computer Interface Conference, pages: 252-255, (Editors: GR Müller-Putz and R Scherer and M Billinger and A Kreilinger and V Kaiser and C Neuper), Graz: Verlag der Technischen Universität, 2011 (inproceedings)

[BibTex]

[BibTex]


no image
Statistical estimation for optimization problems on graphs

Langovoy, M., Sra, S.

Empirical Inference Symposium, 2011 (poster)

[BibTex]


no image
Phase transition in the family of p-resistances

Alamgir, M., von Luxburg, U.

In Advances in Neural Information Processing Systems 24, pages: 379-387, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We study the family of p-resistances on graphs for p ≥ 1. This family generalizes the standard resistance distance. We prove that for any fixed graph, for p=1, the p-resistance coincides with the shortest path distance, for p=2 it coincides with the standard resistance distance, and for p → ∞ it converges to the inverse of the minimal s-t-cut in the graph. Secondly, we consider the special case of random geometric graphs (such as k-nearest neighbor graphs) when the number n of vertices in the graph tends to infinity. We prove that an interesting phase-transition takes place. There exist two critical thresholds p^* and p^** such that if p < p^*, then the p-resistance depends on meaningful global properties of the graph, whereas if p > p^**, it only depends on trivial local quantities and does not convey any useful information. We can explicitly compute the critical values: p^* = 1 + 1/(d-1) and p^** = 1 + 1/(d-2) where d is the dimension of the underlying space (we believe that the fact that there is a small gap between p^* and p^** is an artifact of our proofs. We also relate our findings to Laplacian regularization and suggest to use q-Laplacians as regularizers, where q satisfies 1/p^* + 1/q = 1.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Cue Combination: Beyond Optimality

Rosas, P., Wichmann, F.

In Sensory Cue Integration, pages: 144-152, (Editors: Trommershäuser, J., Körding, K. and Landy, M. S.), Oxford University Press, 2011 (inbook)

[BibTex]

[BibTex]


no image
Generalized Dictionary Learning for Symmetric Positive Definite Matrices with Application to Nearest Neighbor Retrieval

Sra, S., Cherian, A.

In Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2011, LNCS vol 6913, Part III, pages: 318-332, (Editors: D Gunopulos and T Hofmann and D Malerba and M Vazirgiannis), Springer, 22th European Conference on Machine Learning (ECML), 2011 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Nonconvex proximal splitting: batch and incremental algorithms

Sra, S.

(2), Max Planck Institute for Intelligent Systems, Tübingen, Germany, 2011 (techreport)

Abstract
Within the unmanageably large class of nonconvex optimization, we consider the rich subclass of nonsmooth problems having composite objectives (this includes the extensively studied convex, composite objective problems as a special case). For this subclass, we introduce a powerful, new framework that permits asymptotically non-vanishing perturbations. In particular, we develop perturbation-based batch and incremental (online like) nonconvex proximal splitting algorithms. To our knowledge, this is the rst time that such perturbation-based nonconvex splitting algorithms are being proposed and analyzed. While the main contribution of the paper is the theoretical framework, we complement our results by presenting some empirical results on matrix factorization.

PDF [BibTex]

PDF [BibTex]


no image
Restricted boltzmann machines as useful tool for detecting oscillatory eeg components

Balderas, D., Zander, TO., Bachl, F., Neuper, C., Scherer, R.

In Proceedings of the 5th International Brain–Computer Interface Conference, pages: 68-71, (Editors: GR Müller-Putz and R Scherer and M Billinger and A Kkreilinger and V Kaiser and C Neuper), Graz: Verlag der Technischen Universität, 2011 (inproceedings)

[BibTex]

[BibTex]


no image
Hierarchical Multitask Structured Output Learning for Large-scale Sequence Segmentation

Görnitz, N., Widmer, C., Zeller, G., Kahles, A., Sonnenburg, S., Rätsch, G.

In Advances in Neural Information Processing Systems 24, pages: 2690-2698, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and FCN Pereira and KQ Weinberger), Curran Associates, Inc., Red Hook, NY, USA, Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
On Fast Approximate Submodular Minimization

Jegelka, S., Lin, H., Bilmes, J.

In Advances in Neural Information Processing Systems 24, pages: 460-468, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We are motivated by an application to extract a representative subset of machine learning training data and by the poor empirical performance we observe of the popular minimum norm algorithm. In fact, for our application, minimum norm can have a running time of about O(n7) (O(n5) oracle calls). We therefore propose a fast approximate method to minimize arbitrary submodular functions. For a large sub-class of submodular functions, the algorithm is exact. Other submodular functions are iteratively approximated by tight submodular upper bounds, and then repeatedly optimized. We show theoretical properties, and empirical results suggest significant speedups over minimum norm while retaining higher accuracies.

PDF Web [BibTex]

PDF Web [BibTex]


no image
PAC-Bayesian Analysis of Contextual Bandits

Seldin, Y., Auer, P., Laviolette, F., Shawe-Taylor, J., Ortner, R.

In Advances in Neural Information Processing Systems 24, pages: 1683-1691, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We derive an instantaneous (per-round) data-dependent regret bound for stochastic multiarmed bandits with side information (also known as contextual bandits). The scaling of our regret bound with the number of states (contexts) $N$ goes as $\sqrt{N I_{\rho_t}(S;A)}$, where $I_{\rho_t}(S;A)$ is the mutual information between states and actions (the side information) used by the algorithm at round $t$. If the algorithm uses all the side information, the regret bound scales as $\sqrt{N \ln K}$, where $K$ is the number of actions (arms). However, if the side information $I_{\rho_t}(S;A)$ is not fully used, the regret bound is significantly tighter. In the extreme case, when $I_{\rho_t}(S;A) = 0$, the dependence on the number of states reduces from linear to logarithmic. Our analysis allows to provide the algorithm large amount of side information, let the algorithm to decide which side information is relevant for the task, and penalize the algorithm only for the side information that it is using de facto. We also present an algorithm for multiarmed bandits with side information with computational complexity that is a linear in the number of actions.

PDF PDF Web [BibTex]

PDF PDF Web [BibTex]


no image
Fast projections onto L1,q-norm balls for grouped feature selection

Sra, S.

In Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2011, LNCS vol 6913, Part III, pages: 305-317, (Editors: D Gunopulos and T Hofmann and D Malerba and M Vazirgiannis), Springer, 22th European Conference on Machine Learning (ECML), 2011 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Model Learning in Robot Control

Nguyen-Tuong, D.

Albert-Ludwigs-Universität Freiburg, Germany, 2011 (phdthesis)

[BibTex]

[BibTex]


no image
Kernel Belief Propagation

Song, L., Gretton, A., Bickson, D., Low, Y., Guestrin, C.

In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, Vol. 15, pages: 707-715, (Editors: G Gordon and D Dunson and M Dudík), JMLR, AISTATS, 2011 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
On Causal Discovery with Cyclic Additive Noise Models

Mooij, J., Janzing, D., Schölkopf, B., Heskes, T.

In Advances in Neural Information Processing Systems 24, pages: 639-647, (Editors: J Shawe-Taylor and RS Zemel and PL Bartlett and FCN Pereira and KQ Weinberger), Curran Associates, Inc., Red Hook, NY, USA, Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We study a particular class of cyclic causal models, where each variable is a (possibly nonlinear) function of its parents and additive noise. We prove that the causal graph of such models is generically identifiable in the bivariate, Gaussian-noise case. We also propose a method to learn such models from observational data. In the acyclic case, the method reduces to ordinary regression, but in the more challenging cyclic case, an additional term arises in the loss function, which makes it a special case of nonlinear independent component analysis. We illustrate the proposed method on synthetic data.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Additive Gaussian Processes

Duvenaud, D., Nickisch, H., Rasmussen, C.

In Advances in Neural Information Processing Systems 24, pages: 226-234, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We introduce a Gaussian process model of functions which are additive. An additive function is one which decomposes into a sum of low-dimensional functions, each depending on only a subset of the input variables. Additive GPs generalize both Generalized Additive Models, and the standard GP models which use squared-exponential kernels. Hyperparameter learning in this model can be seen as Bayesian Hierarchical Kernel Learning (HKL). We introduce an expressive but tractable parameterization of the kernel function, which allows efficient evaluation of all input interaction terms, whose number is exponential in the input dimension. The additional structure discoverable by this model results in increased interpretability, as well as state-of-the-art predictive power in regression tasks.

PDF Web [BibTex]

PDF Web [BibTex]


no image
k-NN Regression Adapts to Local Intrinsic Dimension

Kpotufe, S.

In Advances in Neural Information Processing Systems 24, pages: 729-737, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
Many nonparametric regressors were recently shown to converge at rates that depend only on the intrinsic dimension of data. These regressors thus escape the curse of dimension when high-dimensional data has low intrinsic dimension (e.g. a manifold). We show that k-NN regression is also adaptive to intrinsic dimension. In particular our rates are local to a query x and depend only on the way masses of balls centered at x vary with radius. Furthermore, we show a simple way to choose k = k(x) locally at any x so as to nearly achieve the minimax rate at x in terms of the unknown intrinsic dimension in the vicinity of x. We also establish that the minimax rate does not depend on a particular choice of metric space or distribution, but rather that this minimax rate holds for any metric space and doubling measure.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Fast Newton-type Methods for Total-Variation with Applications

Barbero, A., Sra, S.

In Proceedings of the 28th International Conference on Machine Learning, ICML 2011, pages: 313-320, (Editors: L Getoor and T Scheffer), Omnipress, 28th International Conference on Machine Learning (ICML), 2011 (inproceedings)

[BibTex]

[BibTex]


no image
Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees

Gonzalez, J., Low, Y., Gretton, A., Guestrin, C.

In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, Vol. 15, pages: 324-332, (Editors: G Gordon and D Dunson and M Dudík), JMLR, AISTATS, 2011 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Transfer Learning with Copulas

Lopez-Paz, D., Hernandez-Lobato, J.

Neural Information Processing Systems (NIPS), 2011 (poster)

PDF [BibTex]

PDF [BibTex]


no image
Access to Unlabeled Data can Speed up Prediction Time

Urner, R., Shalev-Shwartz, S., Ben-David, S.

In Proceedings of the 28th International Conference on Machine Learning, pages: 641-648, ICML, 2011 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


Recovering Intrinsic Images with a Global Sparsity Prior on Reflectance
Recovering Intrinsic Images with a Global Sparsity Prior on Reflectance

Gehler, P., Rother, C., Kiefel, M., Zhang, L., Schölkopf, B.

In Advances in Neural Information Processing Systems 24, pages: 765-773, (Editors: Shawe-Taylor, John and Zemel, Richard S. and Bartlett, Peter L. and Pereira, Fernando C. N. and Weinberger, Kilian Q.), Curran Associates, Inc., Red Hook, NY, USA, Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We address the challenging task of decoupling material properties from lighting properties given a single image. In the last two decades virtually all works have concentrated on exploiting edge information to address this problem. We take a different route by introducing a new prior on reflectance, that models reflectance values as being drawn from a sparse set of basis colors. This results in a Random Field model with global, latent variables (basis colors) and pixel-accurate output reflectance values. We show that without edge information high-quality results can be achieved, that are on par with methods exploiting this source of information. Finally, we are able to improve on state-of-the-art results by integrating edge information into our model. We believe that our new approach is an excellent starting point for future developments in this field.

website + code pdf poster Project Page Project Page [BibTex]

website + code pdf poster Project Page Project Page [BibTex]

2008


no image
BCPy2000

Hill, N., Schreiner, T., Puzicha, C., Farquhar, J.

Workshop "Machine Learning Open-Source Software" at NIPS, December 2008 (talk)

Web [BibTex]

2008

Web [BibTex]


no image
Stereo Matching for Calibrated Cameras without Correspondence

Helmke, U., Hüper, K., Vences, L.

In CDC 2008, pages: 2408-2413, IEEE Service Center, Piscataway, NJ, USA, 47th IEEE Conference on Decision and Control, December 2008 (inproceedings)

Abstract
We study the stereo matching problem for reconstruction of the location of 3D-points on an unknown surface patch from two calibrated identical cameras without using any a priori information about the pointwise correspondences. We assume that camera parameters and the pose between the cameras are known. Our approach follows earlier work for coplanar cameras where a gradient flow algorithm was proposed to match associated Gramians. Here we extend this method by allowing arbitrary poses for the cameras. We introduce an intrinsic Riemannian Newton algorithm that achieves local quadratic convergence rates. A closed form solution is presented, too. The efficiency of both algorithms is demonstrated by numerical experiments.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Joint Kernel Support Estimation for Structured Prediction

Lampert, C., Blaschko, M.

In Proceedings of the NIPS 2008 Workshop on "Structured Input - Structured Output" (NIPS SISO 2008), pages: 1-4, NIPS Workshop on "Structured Input - Structured Output" (NIPS SISO), December 2008 (inproceedings)

Abstract
We present a new technique for structured prediction that works in a hybrid generative/ discriminative way, using a one-class support vector machine to model the joint probability of (input, output)-pairs in a joint reproducing kernel Hilbert space. Compared to discriminative techniques, like conditional random elds or structured out- put SVMs, the proposed method has the advantage that its training time depends only on the number of training examples, not on the size of the label space. Due to its generative aspect, it is also very tolerant against ambiguous, incomplete or incorrect labels. Experiments on realistic data show that our method works eciently and robustly in situations for which discriminative techniques have computational or statistical problems.

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Predictive Model for Imitation Learning in Partially Observable Environments

Boularias, A.

In ICMLA 2008, pages: 83-90, (Editors: Wani, M. A., X.-W. Chen, D. Casasent, L. A. Kurgan, T. Hu, K. Hafeez), IEEE, Piscataway, NJ, USA, Seventh International Conference on Machine Learning and Applications, December 2008 (inproceedings)

Abstract
Learning by imitation has shown to be a powerful paradigm for automated learning in autonomous robots. This paper presents a general framework of learning by imitation for stochastic and partially observable systems. The model is a Predictive Policy Representation (PPR) whose goal is to represent the teacher‘s policies without any reference to states. The model is fully described in terms of actions and observations only. We show how this model can efficiently learn the personal behavior and preferences of an assistive robot user.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Frequent Subgraph Retrieval in Geometric Graph Databases

Nowozin, S., Tsuda, K.

In ICDM 2008, pages: 953-958, (Editors: Giannotti, F. , D. Gunopulos, F. Turini, C. Zaniolo, N. Ramakrishnan, X. Wu), IEEE Computer Society, Los Alamitos, CA, USA, 8th IEEE International Conference on Data Mining, December 2008 (inproceedings)

Abstract
Discovery of knowledge from geometric graph databases is of particular importance in chemistry and biology, because chemical compounds and proteins are represented as graphs with 3D geometric coordinates. In such applications, scientists are not interested in the statistics of the whole database. Instead they need information about a novel drug candidate or protein at hand, represented as a query graph. We propose a polynomial-delay algorithm for geometric frequent subgraph retrieval. It enumerates all subgraphs of a single given query graph which are frequent geometric $epsilon$-subgraphs under the entire class of rigid geometric transformations in a database. By using geometric$epsilon$-subgraphs, we achieve tolerance against variations in geometry. We compare the proposed algorithm to gSpan on chemical compound data, and we show that for a given minimum support the total number of frequent patterns is substantially limited by requiring geometric matching. Although the computation time per pattern is lar ger than for non-geometric graph mining,the total time is within a reasonable level even for small minimum support.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Block Iterative Algorithms for Non-negative Matrix Approximation

Sra, S.

In ICDM 2008, pages: 1037-1042, (Editors: Giannotti, F. , D. Gunopulos, F. Turini, C. Zaniolo, N. Ramakrishnan, X. Wu), IEEE Service Center, Piscataway, NJ, USA, Eighth IEEE International Conference on Data Mining, December 2008 (inproceedings)

Abstract
In this paper we present new algorithms for non-negative matrix approximation (NMA), commonly known as the NMF problem. Our methods improve upon the well-known methods of Lee & Seung~cite{lee00} for both the Frobenius norm as well the Kullback-Leibler divergence versions of the problem. For the latter problem, our results are especially interesting because it seems to have witnessed much lesser algorithmic progress as compared to the Frobenius norm NMA problem. Our algorithms are based on a particular textbf {block-iterative} acceleration technique for EM, which preserves the multiplicative nature of the updates and also ensures monotonicity. Furthermore, our algorithms also naturally apply to the Bregman-divergence NMA algorithms of~cite{suv.nips}. Experimentally, we show that our algorithms outperform the traditional Lee/Seung approach most of the time.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Metropolis Algorithms for Representative Subgraph Sampling

Hübler, C., Kriegel, H., Borgwardt, K., Ghahramani, Z.

In pages: 283-292, (Editors: Giannotti, F.), IEEE, Piscataway, NJ, USA, Eighth IEEE International Conference on Data Mining (ICDM '08) , December 2008 (inproceedings)

Abstract
While data mining in chemoinformatics studied graph data with dozens of nodes, systems biology and the Internet are now generating graph data with thousands and millions of nodes. Hence data mining faces the algorithmic challenge of coping with this significant increase in graph size: Classic algorithms for data analysis are often too expensive and too slow on large graphs. While one strategy to overcome this problem is to design novel efficient algorithms, the other is to 'reduce' the size of the large graph by sampling. This is the scope of this paper: We will present novel Metropolis algorithms for sampling a 'representative' small subgraph from the original large graph, with 'representative' describing the requirement that the sample shall preserve crucial graph properties of the original graph. In our experiments, we improve over the pioneering work of Leskovec and Faloutsos (KDD 2006), by producing representative subgraph samples that are both smaller and of higher quality than those produced by other methods from the literature.

Web DOI [BibTex]

Web DOI [BibTex]