Header logo is ei


2001


no image
Estimating the support of a high-dimensional distribution.

Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.

Neural Computation, 13(7):1443-1471, March 2001 (article)

Abstract
Suppose you are given some data set drawn from an underlying probability distribution P and you want to estimate a “simple” subset S of input space such that the probability that a test point drawn from P lies outside of S equals some a priori specified value between 0 and 1. We propose a method to approach this problem by trying to estimate a function f that is positive on S and negative on the complement. The functional form of f is given by a kernel expansion in terms of a potentially small subset of the training data; it is regularized by controlling the length of the weight vector in an associated feature space. The expansion coefficients are found by solving a quadratic programming problem, which we do by carrying out sequential optimization over pairs of input patterns. We also provide a theoretical analysis of the statistical performance of our algorithm. The algorithm is a natural extension of the support vector algorithm to the case of unlabeled data.

Web DOI [BibTex]

2001

Web DOI [BibTex]


no image
An Improved Training Algorithm for Kernel Fisher Discriminants

Mika, S., Schölkopf, B., Smola, A.

In Proceedings AISTATS, pages: 98-104, (Editors: T Jaakkola and T Richardson), Morgan Kaufman, San Francisco, CA, Artificial Intelligence and Statistics (AISTATS), January 2001 (inproceedings)

Web [BibTex]

Web [BibTex]


no image
Nonstationary Signal Classification using Support Vector Machines

Gretton, A., Davy, M., Doucet, A., Rayner, P.

In 11th IEEE Workshop on Statistical Signal Processing, pages: 305-305, 11th IEEE Workshop on Statistical Signal Processing, 2001 (inproceedings)

Abstract
In this paper, we demonstrate the use of support vector (SV) techniques for the binary classification of nonstationary sinusoidal signals with quadratic phase. We briefly describe the theory underpinning SV classification, and introduce the Cohen's group time-frequency representation, which is used to process the non-stationary signals so as to define the classifier input space. We show that the SV classifier outperforms alternative classification methods on this processed data.

PostScript [BibTex]

PostScript [BibTex]


no image
Enhanced User Authentication through Typing Biometrics with Artificial Neural Networks and K-Nearest Neighbor Algorithm

Wong, FWMH., Supian, ASM., Ismail, AF., Lai, WK., Ong, CS.

In 2001 (inproceedings)

[BibTex]

[BibTex]


no image
Predicting the Nonlinear Dynamics of Biological Neurons using Support Vector Machines with Different Kernels

Frontzek, T., Lal, TN., Eckmiller, R.

In Proceedings of the International Joint Conference on Neural Networks (IJCNN'2001) Washington DC, 2, pages: 1492-1497, Proceedings of the International Joint Conference on Neural Networks (IJCNN'2001) Washington DC, 2001 (inproceedings)

Abstract
Based on biological data we examine the ability of Support Vector Machines (SVMs) with gaussian, polynomial and tanh-kernels to learn and predict the nonlinear dynamics of single biological neurons. We show that SVMs for regression learn the dynamics of the pyloric dilator neuron of the australian crayfish, and we determine the optimal SVM parameters with regard to the test error. Compared to conventional RBF networks and MLPs, SVMs with gaussian kernels learned faster and performed a better iterated one-step-ahead prediction with regard to training and test error. From a biological point of view SVMs are especially better in predicting the most important part of the dynamics, where the membranpotential is driven by superimposed synaptic inputs to the threshold for the oscillatory peak.

PDF [BibTex]

PDF [BibTex]


no image
Computationally Efficient Face Detection

Romdhani, S., Torr, P., Schölkopf, B., Blake, A.

In Computer Vision, ICCV 2001, vol. 2, (73):695-700, IEEE, 8th International Conference on Computer Vision, 2001 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Design and Verification of Supervisory Controller of High-Speed Train

Yoo, SP., Lee, DY., Son, HI.

In IEEE International Symposium on Industrial Electronics, pages: 1290-1295, IEEE Operations Center, Piscataway, NJ, USA, IEEE International Symposium on Industrial Electronics (ISIE), 2001 (inproceedings)

Abstract
A high-level controller, supervisory controller, is required to monitor, control, and diagnose the low-level controllers of the high-speed train. The supervisory controller controls low-level controllers by monitoring input and output signals, events, and the high-speed train can be modeled as a discrete event system (DES). The high-speed train is modeled with automata, and the high-level control specification is defined. The supervisory controller is designed using the high-speed train model and the control specification. The designed supervisory controller is verified and evaluated with simulation using a computer-aided software engineering (CASE) tool, Object GEODE

Web DOI [BibTex]

Web DOI [BibTex]


no image
Cerebellar Control of Robot Arms

Peters, J.

Biologische Kybernetik, Technische Univeristät München, München, Germany, 2001 (diplomathesis)

[BibTex]

[BibTex]


no image
The psychometric function: II. Bootstrap-based confidence intervals and sampling

Wichmann, F., Hill, N.

Perception and Psychophysics, 63 (8), pages: 1314-1329, 2001 (article)

PDF [BibTex]

PDF [BibTex]


no image
Towards Learning Path Planning for Solving Complex Robot Tasks

Frontzek, T., Lal, TN., Eckmiller, R.

In Proceedings of the International Conference on Artificial Neural Networks (ICANN'2001) Vienna, pages: 943-950, Proceedings of the International Conference on Artificial Neural Networks (ICANN'2001) Vienna, 2001 (inproceedings)

Abstract
For solving complex robot tasks it is necessary to incorporate path planning methods that are able to operate within different high-dimensional configuration spaces containing an unknown number of obstacles. Based on Advanced A*-algorithm (AA*) using expansion matrices instead of a simple expansion logic we propose a further improvement of AA* enabling the capability to learn directly from sample planning tasks. This is done by inserting weights into the expansion matrix which are modified according to a special learning rule. For an examplary planning task we show that Adaptive AA* learns movement vectors which allow larger movements than the initial ones into well-defined directions of the configuration space. Compared to standard approaches planning times are clearly reduced.

PDF [BibTex]

PDF [BibTex]


no image
Learning to predict the leave-one-out error of kernel based classifiers

Tsuda, K., Rätsch, G., Mika, S., Müller, K.

In International Conference on Artificial Neural Networks, ICANN'01, (LNCS 2130):331-338, (Editors: G. Dorffner, H. Bischof and K. Hornik), International Conference on Artificial Neural Networks, ICANN'01, 2001 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
A kernel approach for vector quantization with guaranteed distortion bounds

Tipping, M., Schölkopf, B.

In Artificial Intelligence and Statistics, pages: 129-134, (Editors: T Jaakkola and T Richardson), Morgan Kaufmann, San Francisco, CA, USA, 8th International Conference on Artificial Intelligence and Statistics (AI and STATISTICS), 2001 (inproceedings)

[BibTex]

[BibTex]


no image
Incorporating Invariances in Non-Linear Support Vector Machines

Chapelle, O., Schölkopf, B.

Max Planck Institute for Biological Cybernetics / Biowulf Technologies, 2001 (techreport)

Abstract
We consider the problem of how to incorporate in the Support Vector Machine (SVM) framework invariances given by some a priori known transformations under which the data should be invariant. It extends some previous work which was only applicable with linear SVMs and we show on a digit recognition task that the proposed approach is superior to the traditional Virtual Support Vector method.

PostScript [BibTex]

PostScript [BibTex]


no image
The psychometric function: I. Fitting, sampling and goodness-of-fit

Wichmann, F., Hill, N.

Perception and Psychophysics, 63 (8), pages: 1293-1313, 2001 (article)

Abstract
The psychometric function relates an observer'sperformance to an independent variable, usually some physical quantity of a stimulus in a psychophysical task. This paper, together with its companion paper (Wichmann & Hill, 2001), describes an integrated approach to (1) fitting psychometric functions, (2) assessing the goodness of fit, and (3) providing confidence intervals for the function'sparameters and other estimates derived from them, for the purposes of hypothesis testing. The present paper deals with the first two topics, describing a constrained maximum-likelihood method of parameter estimation and developing several goodness-of-fit tests. Using Monte Carlo simulations, we deal with two specific difficulties that arise when fitting functions to psychophysical data. First, we note that human observers are prone to stimulus-independent errors (or lapses ). We show that failure to account for this can lead to serious biases in estimates of the psychometric function'sparameters and illustrate how the problem may be overcome. Second, we note that psychophysical data sets are usually rather small by the standards required by most of the commonly applied statistical tests. We demonstrate the potential errors of applying traditional X^2 methods to psychophysical data and advocate use of Monte Carlo resampling techniques that do not rely on asymptotic theory. We have made available the software to implement our methods

PDF [BibTex]

PDF [BibTex]


no image
On Unsupervised Learning of Mixtures of Markov Sources

Seldin, Y.

Biologische Kybernetik, The Hebrew University of Jerusalem, Israel, 2001 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


no image
Tracking a Small Set of Experts by Mixing Past Posteriors

Bousquet, O., Warmuth, M.

In Proceedings of the 14th Annual Conference on Computational Learning Theory, Lecture Notes in Computer Science, 2111, pages: 31-47, Proceedings of the 14th Annual Conference on Computational Learning Theory, Lecture Notes in Computer Science, 2001 (inproceedings)

Abstract
In this paper, we examine on-line learning problems in which the target concept is allowed to change over time. In each trial a master algorithm receives predictions from a large set of $n$ experts. Its goal is to predict almost as well as the best sequence of such experts chosen off-line by partitioning the training sequence into $k+1$ sections and then choosing the best expert for each section. We build on methods developed by Herbster and Warmuth and consider an open problem posed by Freund where the experts in the best partition are from a small pool of size $m$. Since $k>>m$ the best expert shifts back and forth between the experts of the small pool. We propose algorithms that solve this open problem by mixing the past posteriors maintained by the master algorithm. We relate the number of bits needed for encoding the best partition to the loss bounds of the algorithms. Instead of paying $\log n$ for choosing the best expert in each section we first pay $\log {n\choose m}$ bits in the bounds for identifying the pool of $m$ experts and then $\log m$ bits per new section. In the bounds we also pay twice for encoding the boundaries of the sections.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Learning and Prediction of the Nonlinear Dynamics of Biological Neurons with Support Vector Machines

Frontzek, T., Lal, TN., Eckmiller, R.

In Proceedings of the International Conference on Artificial Neural Networks (ICANN'2001), pages: 390-398, Proceedings of the International Conference on Artificial Neural Networks (ICANN'2001), 2001 (inproceedings)

Abstract
Based on biological data we examine the ability of Support Vector Machines (SVMs) with gaussian kernels to learn and predict the nonlinear dynamics of single biological neurons. We show that SVMs for regression learn the dynamics of the pyloric dilator neuron of the australian crayfish, and we determine the optimal SVM parameters with regard to the test error. Compared to conventional RBF networks, SVMs learned faster and performed a better iterated one-step-ahead prediction with regard to training and test error. From a biological point of view SVMs are especially better in predicting the most important part of the dynamics, where the membranpotential is driven by superimposed synaptic inputs to the threshold for the oscillatory peak.

PDF [BibTex]

PDF [BibTex]


no image
Estimating a Kernel Fisher Discriminant in the Presence of Label Noise

Lawrence, N., Schölkopf, B.

In 18th International Conference on Machine Learning, pages: 306-313, (Editors: CE Brodley and A Pohoreckyj Danyluk), Morgan Kaufmann , San Fransisco, CA, USA, 18th International Conference on Machine Learning (ICML), 2001 (inproceedings)

Web [BibTex]

Web [BibTex]


no image
A Generalized Representer Theorem

Schölkopf, B., Herbrich, R., Smola, A.

In Lecture Notes in Computer Science, Vol. 2111, (2111):416-426, LNCS, (Editors: D Helmbold and R Williamson), Springer, Berlin, Germany, Annual Conference on Computational Learning Theory (COLT/EuroCOLT), 2001 (inproceedings)

[BibTex]

[BibTex]


no image
Extracting egomotion from optic flow: limits of accuracy and neural matched filters

Dahmen, H-J., Franz, MO., Krapp, HG.

In pages: 143-168, Springer, Berlin, 2001 (inbook)

[BibTex]

[BibTex]


no image
Bound on the Leave-One-Out Error for Density Support Estimation using nu-SVMs

Gretton, A., Herbrich, R., Schölkopf, B., Smola, A., Rayner, P.

University of Cambridge, 2001 (techreport)

[BibTex]

[BibTex]


no image
The pedestal effect with a pulse train and its constituent sinusoids

Henning, G., Wichmann, F., Bird, C.

Twenty-Sixth Annual Interdisciplinary Conference, 2001 (poster)

Abstract
Curves showing "threshold" contrast for detecting a signal grating as a function of the contrast of a masking grating of the same orientation, spatial frequency, and phase show a characteristic improvement in performance at masker contrasts near the contrast threshold of the unmasked signal. Depending on the percentage of correct responses used to define the threshold, the best performance can be as much as a factor of three better than the unmasked threshold obtained in the absence of any masking grating. The result is called the pedestal effect (sometimes, the dipper function). We used a 2AFC procedure to measure the effect with harmonically related sinusoids ranging from 2 to 16 c/deg - all with maskers of the same orientation, spatial frequency and phase - and with masker contrasts ranging from 0 to 50%. The curves for different spatial frequencies are identical if both the vertical axis (showing the threshold signal contrast) and the horizontal axis (showing the masker contrast) are scaled by the threshold contrast of the signal obtained with no masker. Further, a pulse train with a fundamental frequency of 2 c/deg produces a curve that is indistinguishable from that of a 2-c/deg sinusoid despite the fact that at higher masker contrasts, the pulse train contains at least 8 components all of them equally detectable. The effect of adding 1-D spatial noise is also discussed.

[BibTex]

[BibTex]


no image
Unsupervised Segmentation and Classification of Mixtures of Markovian Sources

Seldin, Y., Bejerano, G., Tishby, N.

In The 33rd Symposium on the Interface of Computing Science and Statistics (Interface 2001 - Frontiers in Data Mining and Bioinformatics), pages: 1-15, 33rd Symposium on the Interface of Computing Science and Statistics (Interface - Frontiers in Data Mining and Bioinformatics), 2001 (inproceedings)

Abstract
We describe a novel algorithm for unsupervised segmentation of sequences into alternating Variable Memory Markov sources, first presented in [SBT01]. The algorithm is based on competitive learning between Markov models, when implemented as Prediction Suffix Trees [RST96] using the MDL principle. By applying a model clustering procedure, based on rate distortion theory combined with deterministic annealing, we obtain a hierarchical segmentation of sequences between alternating Markov sources. The method is applied successfully to unsupervised segmentation of multilingual texts into languages where it is able to infer correctly both the number of languages and the language switching points. When applied to protein sequence families (results of the [BSMT01] work), we demonstrate the method‘s ability to identify biologically meaningful sub-sequences within the proteins, which correspond to signatures of important functional sub-units called domains. Our approach to proteins classification (through the obtained signatures) is shown to have both conceptual and practical advantages over the currently used methods.

PDF Web [BibTex]

PDF Web [BibTex]


no image
The control structure of artificial creatures

Zhou, D., Dai, R.

Artificial Life and Robotics, 5(3), 2001, invited article (article)

Web [BibTex]

Web [BibTex]


no image
Support Vector Regression for Black-Box System Identification

Gretton, A., Doucet, A., Herbrich, R., Rayner, P., Schölkopf, B.

In 11th IEEE Workshop on Statistical Signal Processing, pages: 341-344, IEEE Signal Processing Society, Piscataway, NY, USA, 11th IEEE Workshop on Statistical Signal Processing, 2001 (inproceedings)

Abstract
In this paper, we demonstrate the use of support vector regression (SVR) techniques for black-box system identification. These methods derive from statistical learning theory, and are of great theoretical and practical interest. We briefly describe the theory underpinning SVR, and compare support vector methods with other approaches using radial basis networks. Finally, we apply SVR to modeling the behaviour of a hydraulic robot arm, and show that SVR improves on previously published results.

PostScript [BibTex]

PostScript [BibTex]


no image
Bound on the Leave-One-Out Error for 2-Class Classification using nu-SVMs

Gretton, A., Herbrich, R., Schölkopf, B., Rayner, P.

University of Cambridge, 2001, Updated May 2003 (literature review expanded) (techreport)

Abstract
Three estimates of the leave-one-out error for $nu$-support vector (SV) machine binary classifiers are presented. Two of the estimates are based on the geometrical concept of the {em span}, which was introduced in the context of bounding the leave-one-out error for $C$-SV machine binary classifiers, while the third is based on optimisation over the criterion used to train the $nu$-support vector classifier. It is shown that the estimates presented herein provide informative and efficient approximations of the generalisation behaviour, in both a toy example and benchmark data sets. The proof strategies in the $nu$-SV context are also compared with those used to derive leave-one-out error estimates in the $C$-SV case.

PostScript [BibTex]

PostScript [BibTex]


no image
Markovian domain fingerprinting: statistical segmentation of protein sequences

Bejerano, G., Seldin, Y., Margalit, H., Tishby, N.

Bioinformatics, 17(10):927-934, 2001 (article)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Unsupervised Sequence Segmentation by a Mixture of Switching Variable Memory Markov Sources

Seldin, Y., Bejerano, G., Tishby, N.

In In the proceeding of the 18th International Conference on Machine Learning (ICML 2001), pages: 513-520, 18th International Conference on Machine Learning (ICML), 2001 (inproceedings)

Abstract
We present a novel information theoretic algorithm for unsupervised segmentation of sequences into alternating Variable Memory Markov sources. The algorithm is based on competitive learning between Markov models, when implemented as Prediction Suffix Trees (Ron et al., 1996) using the MDL principle. By applying a model clustering procedure, based on rate distortion theory combined with deterministic annealing, we obtain a hierarchical segmentation of sequences between alternating Markov sources. The algorithm seems to be self regulated and automatically avoids over segmentation. The method is applied successfully to unsupervised segmentation of multilingual texts into languages where it is able to infer correctly both the number of languages and the language switching points. When applied to protein sequence families, we demonstrate the method‘s ability to identify biologically meaningful sub-sequences within the proteins, which correspond to important functional sub-units called domains.

PDF [BibTex]

PDF [BibTex]


no image
Kernel Machine Based Learning for Multi-View Face Detection and Pose Estimation

Cheng, Y., Fu, Q., Gu, L., Li, S., Schölkopf, B., Zhang, H.

In Proceedings Computer Vision, 2001, Vol. 2, pages: 674-679, IEEE Computer Society, 8th International Conference on Computer Vision (ICCV), 2001 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Some kernels for structured data

Bartlett, P., Schölkopf, B.

Biowulf Technologies, 2001 (techreport)

[BibTex]

[BibTex]


no image
Modeling the Dynamics of Individual Neurons of the Stomatogastric Networks with Support Vector Machines

Frontzek, T., Gutzen, C., Lal, TN., Heinzel, H-G., Eckmiller, R., Böhm, H.

Abstract Proceedings of the 6th International Congress of Neuroethology (ICN'2001) Bonn, abstract 404, 2001 (poster)

Abstract
In small rhythmic active networks timing of individual neurons is crucial for generating different spatial-temporal motor patterns. Switching of one neuron between different rhythms can cause transition between behavioral modes. In order to understand the dynamics of rhythmically active neurons we analyzed the oscillatory membranpotential of a pacemaker neuron and used different neural network models to predict dynamics of its time series. In a first step we have trained conventional RBF networks and Support Vector Machines (SVMs) using gaussian kernels with intracellulary recordings of the pyloric dilatator neuron in the Australian crayfish, Cherax destructor albidus. As a rule SVMs were able to learn the nonlinear dynamics of pyloric neurons faster (e.g. 15s) than RBF networks (e.g. 309s) under the same hardware conditions. After training SVMs performed a better iterated one-step-ahead prediction of time series in the pyloric dilatator neuron with regard to test error and error sum. The test error decreased with increasing number of support vectors. The best SVM used 196 support vectors and produced a test error of 0.04622 as opposed to the best RBF with 0.07295 using 26 RBF-neurons. In pacemaker neuron PD the timepoint at which the membranpotential will cross threshold for generation of its oscillatory peak is most important for determination of the test error. Interestingly SVMs are especially better in predicting this important part of the membranpotential which is superimposed by various synaptic inputs, which drive the membranpotential to its threshold.

[BibTex]

[BibTex]


no image
Support Vector Machines: Theorie und Anwendung auf Prädiktion epileptischer Anfälle auf der Basis von EEG-Daten

Lal, TN.

Biologische Kybernetik, Institut für Angewandte Mathematik, Universität Bonn, 2001, Advised by Prof. Dr. S. Albeverio (diplomathesis)

ZIP [BibTex]

ZIP [BibTex]


no image
Inference Principles and Model Selection

Buhmann, J., Schölkopf, B.

(01301), Dagstuhl Seminar, 2001 (techreport)

Web [BibTex]

Web [BibTex]

2000


no image
Knowledge Discovery in Databases: An Information Retrieval Perspective

Ong, CS.

Malaysian Journal of Computer Science, 13(2):54-63, December 2000 (article)

Abstract
The current trend of increasing capabilities in data generation and collection has resulted in an urgent need for data mining applications, also called knowledge discovery in databases. This paper identifies and examines the issues involved in extracting useful grains of knowledge from large amounts of data. It describes a framework to categorise data mining systems. The author also gives an overview of the issues pertaining to data pre processing, as well as various information gathering methodologies and techniques. The paper covers some popular tools such as classification, clustering, and generalisation. A summary of statistical and machine learning techniques used currently is also provided.

PDF [BibTex]

2000

PDF [BibTex]


no image
A real-time model of the human knee for application in virtual orthopaedic trainer

Peters, J., Riener, R.

In Proceedings of the 10th International Conference on BioMedical Engineering (ICBME 2000), 10, pages: 1-2, 10th International Conference on BioMedical Engineering (ICBME) , December 2000 (inproceedings)

Abstract
In this paper a real-time capable computational model of the human knee is presented. The model describes the passive elastic joint characteristics in six degrees-of-freedom (DOF). A black-box approach was chosen, where experimental data were approximated by piecewise polynomial functions. The knee model has been applied in a the Virtual Orthopaedic Trainer, which can support training of physical knee evaluation required for diagnosis and surgical planning.

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Simple Iterative Approach to Parameter Optimization

Zien, A., Zimmer, R., Lengauer, T.

Journal of Computational Biology, 7(3,4):483-501, November 2000 (article)

Abstract
Various bioinformatics problems require optimizing several different properties simultaneously. For example, in the protein threading problem, a scoring function combines the values for different parameters of possible sequence-to-structure alignments into a single score to allow for unambiguous optimization. In this context, an essential question is how each property should be weighted. As the native structures are known for some sequences, a partial ordering on optimal alignments to other structures, e.g., derived from structural comparisons, may be used to adjust the weights. To resolve the arising interdependence of weights and computed solutions, we propose a heuristic approach: iterating the computation of solutions (here, threading alignments) given the weights and the estimation of optimal weights of the scoring function given these solutions via systematic calibration methods. For our application (i.e., threading), this iterative approach results in structurally meaningful weights that significantly improve performance on both the training and the test data sets. In addition, the optimized parameters show significant improvements on the recognition rate for a grossly enlarged comprehensive benchmark, a modified recognition protocol as well as modified alignment types (local instead of global and profiles instead of single sequences). These results show the general validity of the optimized weights for the given threading program and the associated scoring contributions.

Web [BibTex]

Web [BibTex]


no image
Identification of Drug Target Proteins

Zien, A., Küffner, R., Mevissen, T., Zimmer, R., Lengauer, T.

ERCIM News, 43, pages: 16-17, October 2000 (article)

Web [BibTex]

Web [BibTex]


no image
On Designing an Automated Malaysian Stemmer for the Malay Language

Tai, SY., Ong, CS., Abullah, NA.

In Fifth International Workshop on Information Retrieval with Asian Languages, pages: 207-208, ACM Press, New York, NY, USA, Fifth International Workshop on Information Retrieval with Asian Languages, October 2000 (inproceedings)

Abstract
Online and interactive information retrieval systems are likely to play an increasing role in the Malay Language community. To facilitate and automate the process of matching morphological term variants, a stemmer focusing on common affix removal algorithms is proposed as part of the design of an information retrieval system for the Malay Language. Stemming is a morphological process of normalizing word tokens down to their essential roots. The proposed stemmer strips prefixes and suffixes off the word. The experiment conducted with web sites selected from the World Wide Web has exhibited substantial improvements in the number of words indexed.

PostScript Web DOI [BibTex]

PostScript Web DOI [BibTex]


no image
Robust ensemble learning

Rätsch, G., Schölkopf, B., Smola, A., Mika, S., Onoda, T., Müller, K.

In Advances in Large Margin Classifiers, pages: 207-220, Neural Information Processing Series, (Editors: AJ Smola and PJ Bartlett and B Schölkopf and D. Schuurmans), MIT Press, Cambridge, MA, USA, October 2000 (inbook)

[BibTex]

[BibTex]


no image
Entropy numbers for convex combinations and MLPs

Smola, A., Elisseeff, A., Schölkopf, B., Williamson, R.

In Advances in Large Margin Classifiers, pages: 369-387, Neural Information Processing Series, (Editors: AJ Smola and PL Bartlett and B Schölkopf and D Schuurmans), MIT Press, Cambridge, MA,, October 2000 (inbook)

[BibTex]

[BibTex]


no image
Ensemble of Specialized Networks based on Input Space Partition

Shin, H., Lee, H., Cho, S.

In Proc. of the Korean Operations Research and Management Science Conference, pages: 33-36, Korean Operations Research and Management Science Conference, October 2000 (inproceedings)

[BibTex]

[BibTex]


no image
DES Approach Failure Recovery of Pump-valve System

Son, HI., Kim, KW., Lee, S.

In Korean Society of Precision Engineering (KSPE) Conference, pages: 647-650, Annual Meeting of the Korean Society of Precision Engineering (KSPE), October 2000 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Natural Regularization from Generative Models

Oliver, N., Schölkopf, B., Smola, A.

In Advances in Large Margin Classifiers, pages: 51-60, Neural Information Processing Series, (Editors: AJ Smola and PJ Bartlett and B Schölkopf and D Schuurmans), MIT Press, Cambridge, MA, USA, October 2000 (inbook)

[BibTex]

[BibTex]


no image
Advances in Large Margin Classifiers

Smola, A., Bartlett, P., Schölkopf, B., Schuurmans, D.

pages: 422, Neural Information Processing, MIT Press, Cambridge, MA, USA, October 2000 (book)

Abstract
The concept of large margins is a unifying principle for the analysis of many different approaches to the classification of data from examples, including boosting, mathematical programming, neural networks, and support vector machines. The fact that it is the margin, or confidence level, of a classification--that is, a scale parameter--rather than a raw training error that matters has become a key tool for dealing with classifiers. This book shows how this idea applies to both the theoretical analysis and the design of algorithms. The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research. Among the contributors are Manfred Opper, Vladimir Vapnik, and Grace Wahba.

Web [BibTex]

Web [BibTex]


no image
Ensemble Learning Algorithm of Specialized Networks

Shin, H., Lee, H., Cho, S.

In Proc. of the Korea Information Science Conference, pages: 308-310, Korea Information Science Conference, October 2000 (inproceedings)

[BibTex]

[BibTex]


no image
DES Approach Failure Diagnosis of Pump-valve System

Son, HI., Kim, KW., Lee, S.

In Korean Society of Precision Engineering (KSPE) Conference, pages: 643-646, Annual Meeting of the Korean Society of Precision Engineering (KSPE), October 2000 (inproceedings)

Abstract
As many industrial systems become more complex, it becomes extremely difficult to diagnose the cause of failures. This paper presents a failure diagnosis approach based on discrete event system theory. In particular, the approach is a hybrid of event-based and state-based ones leading to a simpler failure diagnoser with supervisory control capability. The design procedure is presented along with a pump-valve system as an example.

PDF [BibTex]

PDF [BibTex]


no image
Engineering Support Vector Machine Kernels That Recognize Translation Initiation Sites

Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lengauer, T., Müller, K.

Bioinformatics, 16(9):799-807, September 2000 (article)

Abstract
Motivation: In order to extract protein sequences from nucleotide sequences, it is an important step to recognize points at which regions start that code for proteins. These points are called translation initiation sites (TIS). Results: The task of finding TIS can be modeled as a classification problem. We demonstrate the applicability of support vector machines for this task, and show how to incorporate prior biological knowledge by engineering an appropriate kernel function. With the described techniques the recognition performance can be improved by 26% over leading existing approaches. We provide evidence that existing related methods (e.g. ESTScan) could profit from advanced TIS recognition.

Web DOI [BibTex]

Web DOI [BibTex]