Header logo is ei


2001


no image
Occam’s Razor

Rasmussen, CE., Ghahramani, Z.

In Advances in Neural Information Processing Systems 13, pages: 294-300, (Editors: Leen, T.K. , T.G. Dietterich, V. Tresp), MIT Press, Cambridge, MA, USA, Fourteenth Annual Neural Information Processing Systems Conference (NIPS), April 2001 (inproceedings)

Abstract
The Bayesian paradigm apparently only sometimes gives rise to Occam's Razor; at other times very large models perform well. We give simple examples of both kinds of behaviour. The two views are reconciled when measuring complexity of functions, rather than of the machinery used to implement them. We analyze the complexity of functions for some linear in the parameter models that are equivalent to Gaussian Processes, and always find Occam's Razor at work.

PDF Web [BibTex]

2001

PDF Web [BibTex]


no image
Plaid maskers revisited: asymmetric plaids

Wichmann, F.

pages: 57, 4. T{\"u}binger Wahrnehmungskonferenz (TWK), March 2001 (poster)

Abstract
A large number of psychophysical and physiological experiments suggest that luminance patterns are independently analysed in channels responding to different bands of spatial frequency. There are, however, interactions among stimuli falling well outside the usual estimates of channels' bandwidths. Derrington & Henning (1989) first reported that, in 2-AFC sinusoidal-grating detection, plaid maskers, whose components are oriented symmetrically about the signal orientation, cause a substantially larger threshold elevation than would be predicted from their sinusoidal constituents alone. Wichmann & Tollin (1997a,b) and Wichmann & Henning (1998) confirmed and extended the original findings, measuring masking as a function of presentation time and plaid mask contrast. Here I investigate masking using plaid patterns whose components are asymmetrically positioned about the signal orientation. Standard temporal 2-AFC pattern discrimination experiments were conducted using plaid patterns and oblique sinusoidal gratings as maskers, and horizontally orientated sinusoidal gratings as signals. Signal and maskers were always interleaved on the display (refresh rate 152 Hz). As in the case of the symmetrical plaid maskers, substantial masking was observed for many of the asymmetrical plaids. Masking is neither a straightforward function of the plaid's constituent sinusoidal components nor of the periodicity of the luminance beats between components. These results cause problems for the notion that, even for simple stimuli, detection and discrimination are based on the outputs of channels tuned to limited ranges of spatial frequency and orientation, even if a limited set of nonlinear interactions between these channels is allowed.

Web [BibTex]

Web [BibTex]


no image
Pattern Selection Using the Bias and Variance of Ensemble

Shin, H., Cho, S.

Journal of the Korean Institute of Industrial Engineers, 28(1):112-127, March 2001 (article)

Abstract
[Abstract]: A useful pattern is a pattern that contributes much to learning. For a classification problem those patterns near the class boundary surfaces carry more information to the classifier. For a regression problem the ones near the estimated surface carry more information. In both cases, the usefulness is defined only for those patterns either without error or with negligible error. Using only the useful patterns gives several benefits. First, computational complexity in memory and time for learning is decreased. Second, overfitting is avoided even when the learner is over-sized. Third, learning results in more stable learners. In this paper, we propose a pattern “utility index” that measures the utility of an individual pattern. The utility index is based on the bias and variance of a pattern trained by a network ensemble. In classification, the pattern with a low bias and a high variance gets a high score. In regression, on the other hand, the one with a low bias and a low variance gets a high score. Based on the distribution of the utility index, the original training set is divided into a high-score group and a low-score group. Only the high-score group is then used for training. The proposed method is tested on synthetic and real-world benchmark datasets. The proposed approach gives a better or at least similar performance.

[BibTex]

[BibTex]


no image
Structure and Functionality of a Designed p53 Dimer.

Davison, TS., Nie, X., Ma, W., Lin, Y., Kay, C., Benchimol, S., Arrowsmith, C.

Journal of Molecular Biology, 307(2):605-617, March 2001 (article)

Abstract
P53 is a homotetrameric tumor suppressor protein involved in transcriptional control of genes that regulate cell proliferation and death. In order to probe the role that oligomerization plays in this capacity, we have previously designed and characterized a series of p53 proteins with altered oligomeric states through hydrophilc substitution of residues Met340 or Leu344 in the normally tetrameric oligomerization domain. Although such mutations have little effect on the overall secondary structural content of the oligomerization domain, both solubility and the resistance to thermal denaturation are substantially reduced relative to that of the wild-type domain. Here, we report the design and characterization of a double-mutant p53 with alterations of residues at positions Met340 and Leu344. The double-mutations Met340Glu/Leu344Lys and Met340Gln/Leu344Arg resulted in distinct dimeric forms of the protein. Furthermore, we have verified by NMR structure determination that the double-mutant Met340Gln/Leu344Arg is essentially a "half-tetramer". Analysis of the in vivo activities of full-length p53 oligomeric mutants reveals that while cell-cycle arrest requires tetrameric p53, transcriptional transactivation activity of monomers and dimers retain roughly background and half of the wild-type activity, respectively.

Web [BibTex]

Web [BibTex]


no image
An Introduction to Kernel-Based Learning Algorithms

Müller, K., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.

IEEE Transactions on Neural Networks, 12(2):181-201, March 2001 (article)

Abstract
This paper provides an introduction to support vector machines, kernel Fisher discriminant analysis, and kernel principal component analysis, as examples for successful kernel-based learning methods. We first give a short background about Vapnik-Chervonenkis theory and kernel feature spaces and then proceed to kernel based learning in supervised and unsupervised scenarios including practical and algorithmic considerations. We illustrate the usefulness of kernel algorithms by discussing applications such as optical character recognition and DNA analysis

DOI [BibTex]

DOI [BibTex]


no image
Estimating the support of a high-dimensional distribution.

Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.

Neural Computation, 13(7):1443-1471, March 2001 (article)

Abstract
Suppose you are given some data set drawn from an underlying probability distribution P and you want to estimate a “simple” subset S of input space such that the probability that a test point drawn from P lies outside of S equals some a priori specified value between 0 and 1. We propose a method to approach this problem by trying to estimate a function f that is positive on S and negative on the complement. The functional form of f is given by a kernel expansion in terms of a potentially small subset of the training data; it is regularized by controlling the length of the weight vector in an associated feature space. The expansion coefficients are found by solving a quadratic programming problem, which we do by carrying out sequential optimization over pairs of input patterns. We also provide a theoretical analysis of the statistical performance of our algorithm. The algorithm is a natural extension of the support vector algorithm to the case of unlabeled data.

Web DOI [BibTex]

Web DOI [BibTex]


no image
An Improved Training Algorithm for Kernel Fisher Discriminants

Mika, S., Schölkopf, B., Smola, A.

In Proceedings AISTATS, pages: 98-104, (Editors: T Jaakkola and T Richardson), Morgan Kaufman, San Francisco, CA, Artificial Intelligence and Statistics (AISTATS), January 2001 (inproceedings)

Web [BibTex]

Web [BibTex]


no image
Nonstationary Signal Classification using Support Vector Machines

Gretton, A., Davy, M., Doucet, A., Rayner, P.

In 11th IEEE Workshop on Statistical Signal Processing, pages: 305-305, 11th IEEE Workshop on Statistical Signal Processing, 2001 (inproceedings)

Abstract
In this paper, we demonstrate the use of support vector (SV) techniques for the binary classification of nonstationary sinusoidal signals with quadratic phase. We briefly describe the theory underpinning SV classification, and introduce the Cohen's group time-frequency representation, which is used to process the non-stationary signals so as to define the classifier input space. We show that the SV classifier outperforms alternative classification methods on this processed data.

PostScript [BibTex]

PostScript [BibTex]


no image
Enhanced User Authentication through Typing Biometrics with Artificial Neural Networks and K-Nearest Neighbor Algorithm

Wong, FWMH., Supian, ASM., Ismail, AF., Lai, WK., Ong, CS.

In 2001 (inproceedings)

[BibTex]

[BibTex]


no image
Predicting the Nonlinear Dynamics of Biological Neurons using Support Vector Machines with Different Kernels

Frontzek, T., Lal, TN., Eckmiller, R.

In Proceedings of the International Joint Conference on Neural Networks (IJCNN'2001) Washington DC, 2, pages: 1492-1497, Proceedings of the International Joint Conference on Neural Networks (IJCNN'2001) Washington DC, 2001 (inproceedings)

Abstract
Based on biological data we examine the ability of Support Vector Machines (SVMs) with gaussian, polynomial and tanh-kernels to learn and predict the nonlinear dynamics of single biological neurons. We show that SVMs for regression learn the dynamics of the pyloric dilator neuron of the australian crayfish, and we determine the optimal SVM parameters with regard to the test error. Compared to conventional RBF networks and MLPs, SVMs with gaussian kernels learned faster and performed a better iterated one-step-ahead prediction with regard to training and test error. From a biological point of view SVMs are especially better in predicting the most important part of the dynamics, where the membranpotential is driven by superimposed synaptic inputs to the threshold for the oscillatory peak.

PDF [BibTex]

PDF [BibTex]


no image
Computationally Efficient Face Detection

Romdhani, S., Torr, P., Schölkopf, B., Blake, A.

In Computer Vision, ICCV 2001, vol. 2, (73):695-700, IEEE, 8th International Conference on Computer Vision, 2001 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Design and Verification of Supervisory Controller of High-Speed Train

Yoo, SP., Lee, DY., Son, HI.

In IEEE International Symposium on Industrial Electronics, pages: 1290-1295, IEEE Operations Center, Piscataway, NJ, USA, IEEE International Symposium on Industrial Electronics (ISIE), 2001 (inproceedings)

Abstract
A high-level controller, supervisory controller, is required to monitor, control, and diagnose the low-level controllers of the high-speed train. The supervisory controller controls low-level controllers by monitoring input and output signals, events, and the high-speed train can be modeled as a discrete event system (DES). The high-speed train is modeled with automata, and the high-level control specification is defined. The supervisory controller is designed using the high-speed train model and the control specification. The designed supervisory controller is verified and evaluated with simulation using a computer-aided software engineering (CASE) tool, Object GEODE

Web DOI [BibTex]

Web DOI [BibTex]


no image
Cerebellar Control of Robot Arms

Peters, J.

Biologische Kybernetik, Technische Univeristät München, München, Germany, 2001 (diplomathesis)

[BibTex]

[BibTex]


no image
The psychometric function: II. Bootstrap-based confidence intervals and sampling

Wichmann, F., Hill, N.

Perception and Psychophysics, 63 (8), pages: 1314-1329, 2001 (article)

PDF [BibTex]

PDF [BibTex]


no image
Towards Learning Path Planning for Solving Complex Robot Tasks

Frontzek, T., Lal, TN., Eckmiller, R.

In Proceedings of the International Conference on Artificial Neural Networks (ICANN'2001) Vienna, pages: 943-950, Proceedings of the International Conference on Artificial Neural Networks (ICANN'2001) Vienna, 2001 (inproceedings)

Abstract
For solving complex robot tasks it is necessary to incorporate path planning methods that are able to operate within different high-dimensional configuration spaces containing an unknown number of obstacles. Based on Advanced A*-algorithm (AA*) using expansion matrices instead of a simple expansion logic we propose a further improvement of AA* enabling the capability to learn directly from sample planning tasks. This is done by inserting weights into the expansion matrix which are modified according to a special learning rule. For an examplary planning task we show that Adaptive AA* learns movement vectors which allow larger movements than the initial ones into well-defined directions of the configuration space. Compared to standard approaches planning times are clearly reduced.

PDF [BibTex]

PDF [BibTex]


no image
Learning to predict the leave-one-out error of kernel based classifiers

Tsuda, K., Rätsch, G., Mika, S., Müller, K.

In International Conference on Artificial Neural Networks, ICANN'01, (LNCS 2130):331-338, (Editors: G. Dorffner, H. Bischof and K. Hornik), International Conference on Artificial Neural Networks, ICANN'01, 2001 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
A kernel approach for vector quantization with guaranteed distortion bounds

Tipping, M., Schölkopf, B.

In Artificial Intelligence and Statistics, pages: 129-134, (Editors: T Jaakkola and T Richardson), Morgan Kaufmann, San Francisco, CA, USA, 8th International Conference on Artificial Intelligence and Statistics (AI and STATISTICS), 2001 (inproceedings)

[BibTex]

[BibTex]


no image
Incorporating Invariances in Non-Linear Support Vector Machines

Chapelle, O., Schölkopf, B.

Max Planck Institute for Biological Cybernetics / Biowulf Technologies, 2001 (techreport)

Abstract
We consider the problem of how to incorporate in the Support Vector Machine (SVM) framework invariances given by some a priori known transformations under which the data should be invariant. It extends some previous work which was only applicable with linear SVMs and we show on a digit recognition task that the proposed approach is superior to the traditional Virtual Support Vector method.

PostScript [BibTex]

PostScript [BibTex]


no image
The psychometric function: I. Fitting, sampling and goodness-of-fit

Wichmann, F., Hill, N.

Perception and Psychophysics, 63 (8), pages: 1293-1313, 2001 (article)

Abstract
The psychometric function relates an observer'sperformance to an independent variable, usually some physical quantity of a stimulus in a psychophysical task. This paper, together with its companion paper (Wichmann & Hill, 2001), describes an integrated approach to (1) fitting psychometric functions, (2) assessing the goodness of fit, and (3) providing confidence intervals for the function'sparameters and other estimates derived from them, for the purposes of hypothesis testing. The present paper deals with the first two topics, describing a constrained maximum-likelihood method of parameter estimation and developing several goodness-of-fit tests. Using Monte Carlo simulations, we deal with two specific difficulties that arise when fitting functions to psychophysical data. First, we note that human observers are prone to stimulus-independent errors (or lapses ). We show that failure to account for this can lead to serious biases in estimates of the psychometric function'sparameters and illustrate how the problem may be overcome. Second, we note that psychophysical data sets are usually rather small by the standards required by most of the commonly applied statistical tests. We demonstrate the potential errors of applying traditional X^2 methods to psychophysical data and advocate use of Monte Carlo resampling techniques that do not rely on asymptotic theory. We have made available the software to implement our methods

PDF [BibTex]

PDF [BibTex]


no image
On Unsupervised Learning of Mixtures of Markov Sources

Seldin, Y.

Biologische Kybernetik, The Hebrew University of Jerusalem, Israel, 2001 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


no image
Tracking a Small Set of Experts by Mixing Past Posteriors

Bousquet, O., Warmuth, M.

In Proceedings of the 14th Annual Conference on Computational Learning Theory, Lecture Notes in Computer Science, 2111, pages: 31-47, Proceedings of the 14th Annual Conference on Computational Learning Theory, Lecture Notes in Computer Science, 2001 (inproceedings)

Abstract
In this paper, we examine on-line learning problems in which the target concept is allowed to change over time. In each trial a master algorithm receives predictions from a large set of $n$ experts. Its goal is to predict almost as well as the best sequence of such experts chosen off-line by partitioning the training sequence into $k+1$ sections and then choosing the best expert for each section. We build on methods developed by Herbster and Warmuth and consider an open problem posed by Freund where the experts in the best partition are from a small pool of size $m$. Since $k>>m$ the best expert shifts back and forth between the experts of the small pool. We propose algorithms that solve this open problem by mixing the past posteriors maintained by the master algorithm. We relate the number of bits needed for encoding the best partition to the loss bounds of the algorithms. Instead of paying $\log n$ for choosing the best expert in each section we first pay $\log {n\choose m}$ bits in the bounds for identifying the pool of $m$ experts and then $\log m$ bits per new section. In the bounds we also pay twice for encoding the boundaries of the sections.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Learning and Prediction of the Nonlinear Dynamics of Biological Neurons with Support Vector Machines

Frontzek, T., Lal, TN., Eckmiller, R.

In Proceedings of the International Conference on Artificial Neural Networks (ICANN'2001), pages: 390-398, Proceedings of the International Conference on Artificial Neural Networks (ICANN'2001), 2001 (inproceedings)

Abstract
Based on biological data we examine the ability of Support Vector Machines (SVMs) with gaussian kernels to learn and predict the nonlinear dynamics of single biological neurons. We show that SVMs for regression learn the dynamics of the pyloric dilator neuron of the australian crayfish, and we determine the optimal SVM parameters with regard to the test error. Compared to conventional RBF networks, SVMs learned faster and performed a better iterated one-step-ahead prediction with regard to training and test error. From a biological point of view SVMs are especially better in predicting the most important part of the dynamics, where the membranpotential is driven by superimposed synaptic inputs to the threshold for the oscillatory peak.

PDF [BibTex]

PDF [BibTex]


no image
Estimating a Kernel Fisher Discriminant in the Presence of Label Noise

Lawrence, N., Schölkopf, B.

In 18th International Conference on Machine Learning, pages: 306-313, (Editors: CE Brodley and A Pohoreckyj Danyluk), Morgan Kaufmann , San Fransisco, CA, USA, 18th International Conference on Machine Learning (ICML), 2001 (inproceedings)

Web [BibTex]

Web [BibTex]


no image
A Generalized Representer Theorem

Schölkopf, B., Herbrich, R., Smola, A.

In Lecture Notes in Computer Science, Vol. 2111, (2111):416-426, LNCS, (Editors: D Helmbold and R Williamson), Springer, Berlin, Germany, Annual Conference on Computational Learning Theory (COLT/EuroCOLT), 2001 (inproceedings)

[BibTex]

[BibTex]


no image
Extracting egomotion from optic flow: limits of accuracy and neural matched filters

Dahmen, H-J., Franz, MO., Krapp, HG.

In pages: 143-168, Springer, Berlin, 2001 (inbook)

[BibTex]

[BibTex]


no image
Bound on the Leave-One-Out Error for Density Support Estimation using nu-SVMs

Gretton, A., Herbrich, R., Schölkopf, B., Smola, A., Rayner, P.

University of Cambridge, 2001 (techreport)

[BibTex]

[BibTex]


no image
The pedestal effect with a pulse train and its constituent sinusoids

Henning, G., Wichmann, F., Bird, C.

Twenty-Sixth Annual Interdisciplinary Conference, 2001 (poster)

Abstract
Curves showing "threshold" contrast for detecting a signal grating as a function of the contrast of a masking grating of the same orientation, spatial frequency, and phase show a characteristic improvement in performance at masker contrasts near the contrast threshold of the unmasked signal. Depending on the percentage of correct responses used to define the threshold, the best performance can be as much as a factor of three better than the unmasked threshold obtained in the absence of any masking grating. The result is called the pedestal effect (sometimes, the dipper function). We used a 2AFC procedure to measure the effect with harmonically related sinusoids ranging from 2 to 16 c/deg - all with maskers of the same orientation, spatial frequency and phase - and with masker contrasts ranging from 0 to 50%. The curves for different spatial frequencies are identical if both the vertical axis (showing the threshold signal contrast) and the horizontal axis (showing the masker contrast) are scaled by the threshold contrast of the signal obtained with no masker. Further, a pulse train with a fundamental frequency of 2 c/deg produces a curve that is indistinguishable from that of a 2-c/deg sinusoid despite the fact that at higher masker contrasts, the pulse train contains at least 8 components all of them equally detectable. The effect of adding 1-D spatial noise is also discussed.

[BibTex]

[BibTex]


no image
Unsupervised Segmentation and Classification of Mixtures of Markovian Sources

Seldin, Y., Bejerano, G., Tishby, N.

In The 33rd Symposium on the Interface of Computing Science and Statistics (Interface 2001 - Frontiers in Data Mining and Bioinformatics), pages: 1-15, 33rd Symposium on the Interface of Computing Science and Statistics (Interface - Frontiers in Data Mining and Bioinformatics), 2001 (inproceedings)

Abstract
We describe a novel algorithm for unsupervised segmentation of sequences into alternating Variable Memory Markov sources, first presented in [SBT01]. The algorithm is based on competitive learning between Markov models, when implemented as Prediction Suffix Trees [RST96] using the MDL principle. By applying a model clustering procedure, based on rate distortion theory combined with deterministic annealing, we obtain a hierarchical segmentation of sequences between alternating Markov sources. The method is applied successfully to unsupervised segmentation of multilingual texts into languages where it is able to infer correctly both the number of languages and the language switching points. When applied to protein sequence families (results of the [BSMT01] work), we demonstrate the method‘s ability to identify biologically meaningful sub-sequences within the proteins, which correspond to signatures of important functional sub-units called domains. Our approach to proteins classification (through the obtained signatures) is shown to have both conceptual and practical advantages over the currently used methods.

PDF Web [BibTex]

PDF Web [BibTex]


no image
The control structure of artificial creatures

Zhou, D., Dai, R.

Artificial Life and Robotics, 5(3), 2001, invited article (article)

Web [BibTex]

Web [BibTex]


no image
Support Vector Regression for Black-Box System Identification

Gretton, A., Doucet, A., Herbrich, R., Rayner, P., Schölkopf, B.

In 11th IEEE Workshop on Statistical Signal Processing, pages: 341-344, IEEE Signal Processing Society, Piscataway, NY, USA, 11th IEEE Workshop on Statistical Signal Processing, 2001 (inproceedings)

Abstract
In this paper, we demonstrate the use of support vector regression (SVR) techniques for black-box system identification. These methods derive from statistical learning theory, and are of great theoretical and practical interest. We briefly describe the theory underpinning SVR, and compare support vector methods with other approaches using radial basis networks. Finally, we apply SVR to modeling the behaviour of a hydraulic robot arm, and show that SVR improves on previously published results.

PostScript [BibTex]

PostScript [BibTex]


no image
Bound on the Leave-One-Out Error for 2-Class Classification using nu-SVMs

Gretton, A., Herbrich, R., Schölkopf, B., Rayner, P.

University of Cambridge, 2001, Updated May 2003 (literature review expanded) (techreport)

Abstract
Three estimates of the leave-one-out error for $nu$-support vector (SV) machine binary classifiers are presented. Two of the estimates are based on the geometrical concept of the {em span}, which was introduced in the context of bounding the leave-one-out error for $C$-SV machine binary classifiers, while the third is based on optimisation over the criterion used to train the $nu$-support vector classifier. It is shown that the estimates presented herein provide informative and efficient approximations of the generalisation behaviour, in both a toy example and benchmark data sets. The proof strategies in the $nu$-SV context are also compared with those used to derive leave-one-out error estimates in the $C$-SV case.

PostScript [BibTex]

PostScript [BibTex]


no image
Markovian domain fingerprinting: statistical segmentation of protein sequences

Bejerano, G., Seldin, Y., Margalit, H., Tishby, N.

Bioinformatics, 17(10):927-934, 2001 (article)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Unsupervised Sequence Segmentation by a Mixture of Switching Variable Memory Markov Sources

Seldin, Y., Bejerano, G., Tishby, N.

In In the proceeding of the 18th International Conference on Machine Learning (ICML 2001), pages: 513-520, 18th International Conference on Machine Learning (ICML), 2001 (inproceedings)

Abstract
We present a novel information theoretic algorithm for unsupervised segmentation of sequences into alternating Variable Memory Markov sources. The algorithm is based on competitive learning between Markov models, when implemented as Prediction Suffix Trees (Ron et al., 1996) using the MDL principle. By applying a model clustering procedure, based on rate distortion theory combined with deterministic annealing, we obtain a hierarchical segmentation of sequences between alternating Markov sources. The algorithm seems to be self regulated and automatically avoids over segmentation. The method is applied successfully to unsupervised segmentation of multilingual texts into languages where it is able to infer correctly both the number of languages and the language switching points. When applied to protein sequence families, we demonstrate the method‘s ability to identify biologically meaningful sub-sequences within the proteins, which correspond to important functional sub-units called domains.

PDF [BibTex]

PDF [BibTex]


no image
Kernel Machine Based Learning for Multi-View Face Detection and Pose Estimation

Cheng, Y., Fu, Q., Gu, L., Li, S., Schölkopf, B., Zhang, H.

In Proceedings Computer Vision, 2001, Vol. 2, pages: 674-679, IEEE Computer Society, 8th International Conference on Computer Vision (ICCV), 2001 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Some kernels for structured data

Bartlett, P., Schölkopf, B.

Biowulf Technologies, 2001 (techreport)

[BibTex]

[BibTex]


no image
Modeling the Dynamics of Individual Neurons of the Stomatogastric Networks with Support Vector Machines

Frontzek, T., Gutzen, C., Lal, TN., Heinzel, H-G., Eckmiller, R., Böhm, H.

Abstract Proceedings of the 6th International Congress of Neuroethology (ICN'2001) Bonn, abstract 404, 2001 (poster)

Abstract
In small rhythmic active networks timing of individual neurons is crucial for generating different spatial-temporal motor patterns. Switching of one neuron between different rhythms can cause transition between behavioral modes. In order to understand the dynamics of rhythmically active neurons we analyzed the oscillatory membranpotential of a pacemaker neuron and used different neural network models to predict dynamics of its time series. In a first step we have trained conventional RBF networks and Support Vector Machines (SVMs) using gaussian kernels with intracellulary recordings of the pyloric dilatator neuron in the Australian crayfish, Cherax destructor albidus. As a rule SVMs were able to learn the nonlinear dynamics of pyloric neurons faster (e.g. 15s) than RBF networks (e.g. 309s) under the same hardware conditions. After training SVMs performed a better iterated one-step-ahead prediction of time series in the pyloric dilatator neuron with regard to test error and error sum. The test error decreased with increasing number of support vectors. The best SVM used 196 support vectors and produced a test error of 0.04622 as opposed to the best RBF with 0.07295 using 26 RBF-neurons. In pacemaker neuron PD the timepoint at which the membranpotential will cross threshold for generation of its oscillatory peak is most important for determination of the test error. Interestingly SVMs are especially better in predicting this important part of the membranpotential which is superimposed by various synaptic inputs, which drive the membranpotential to its threshold.

[BibTex]

[BibTex]


no image
Support Vector Machines: Theorie und Anwendung auf Prädiktion epileptischer Anfälle auf der Basis von EEG-Daten

Lal, TN.

Biologische Kybernetik, Institut für Angewandte Mathematik, Universität Bonn, 2001, Advised by Prof. Dr. S. Albeverio (diplomathesis)

ZIP [BibTex]

ZIP [BibTex]


no image
Inference Principles and Model Selection

Buhmann, J., Schölkopf, B.

(01301), Dagstuhl Seminar, 2001 (techreport)

Web [BibTex]

Web [BibTex]