Shin, H., Lee, H., Cho, S.
Observational Learning with Modular Networks
In Lecture Notes in Computer Science (LNCS 1983), LNCS 1983, pages: 126-132, Springer-Verlag, Heidelberg, International Conference on Intelligent Data Engineering and Automated Learning (IDEAL), July 2000 (inproceedings)
Rasmussen, CE.
The Infinite Gaussian Mixture Model
In Advances in Neural Information Processing Systems 12, pages: 554-560, (Editors: Solla, S.A. , T.K. Leen, K-R Müller), MIT Press, Cambridge, MA, USA, Thirteenth Annual Neural Information Processing Systems Conference (NIPS), June 2000 (inproceedings)
Shin, H., Jang, M., Cho, S.
Generalization Abilities of Ensemble Learning Algorithms
In Proc. of the Korean Brain Society Conference, pages: 129-133, Korean Brain Society Conference, June 2000 (inproceedings)
Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., Platt, J.
Support vector method for novelty detection
In Advances in Neural Information Processing Systems 12, pages: 582-588, (Editors: SA Solla and TK Leen and K-R Müller), MIT Press, Cambridge, MA, USA, 13th Annual Neural Information Processing Systems Conference (NIPS), June 2000 (inproceedings)
Harmeling, S.
Solving Satisfiability Problems with Genetic Algorithms
In Genetic Algorithms and Genetic Programming at Stanford 2000, pages: 206-213, (Editors: Koza, J. R.), Stanford Bookstore, Stanford, CA, USA, June 2000 (inbook)
Rätsch, G., Schölkopf, B., Smola, A., Müller, K., Onoda, T., Mika, S.
v-Arc: Ensemble Learning in the Presence of Outliers
In Advances in Neural Information Processing Systems 12, pages: 561-567, (Editors: SA Solla and TK Leen and K-R Müller), MIT Press, Cambridge, MA, USA, 13th Annual Neural Information Processing Systems Conference (NIPS), June 2000 (inproceedings)
Mika, S., Rätsch, G., Weston, J., Schölkopf, B., Smola, A., Müller, K.
Invariant feature extraction and classification in kernel spaces
In Advances in neural information processing systems 12, pages: 526-532, (Editors: SA Solla and TK Leen and K-R Müller), MIT Press, Cambridge, MA, USA, 13th Annual Neural Information Processing Systems Conference (NIPS), June 2000 (inproceedings)
Chapelle, O., Vapnik, V., Weston, J.
Transductive Inference for Estimating Values of Functions
In Advances in Neural Information Processing Systems 12, pages: 421-427, (Editors: Solla, S.A. , T.K. Leen, K-R Müller), MIT Press, Cambridge, MA, USA, Thirteenth Annual Neural Information Processing Systems Conference (NIPS), June 2000 (inproceedings)
Smola, A., Shawe-Taylor, J., Schölkopf, B., Williamson, R.
The entropy regularization information criterion
In Advances in Neural Information Processing Systems 12, pages: 342-348, (Editors: SA Solla and TK Leen and K-R Müller), MIT Press, Cambridge, MA, USA, 13th Annual Neural Information Processing Systems Conference (NIPS), June 2000 (inproceedings)
Chapelle, O., Vapnik, V.
Model Selection for Support Vector Machines
In Advances in Neural Information Processing Systems 12, pages: 230-236, (Editors: Solla, S.A. , T.K. Leen, K-R Müller), MIT Press, Cambridge, MA, USA, Thirteenth Annual Neural Information Processing Systems Conference (NIPS), June 2000 (inproceedings)
Schölkopf, B., Smola, A., Williamson, R., Bartlett, P.
New Support Vector Algorithms
Neural Computation, 12(5):1207-1245, May 2000 (article)
Shin, H., Jang, M., Cho, S., Lee, B., Lim, Y.
Generalization Abilities of Ensemble Learning Algorithms: OLA, Bagging, Boosting
In Proc. of the Korea Information Science Conference, pages: 226-228, Conference on Korean Information Science, April 2000 (inproceedings)
Zien, A., Zimmer, R., Lengauer, T.
A simple iterative approach to parameter optimization
In RECOMB2000, pages: 318-327, ACM Press, New York, NY, USA, Forth Annual Conference on Research in Computational Molecular Biology, April 2000 (inproceedings)
Wichmann, F., Henning, G.
Contrast discrimination using periodic pulse trains
pages: 74, 3. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2000 (poster)
Staedtgen, M., Hahn, S., Franz, MO., Spitzer, M.
Subliminale Darbietung verkehrsrelevanter Information in Kraftfahrzeugen
pages: 98, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot), 3. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2000 (poster)
Schölkopf, B.
Statistical Learning and Kernel Methods
In CISM Courses and Lectures, International Centre for Mechanical Sciences Vol.431, CISM Courses and Lectures, International Centre for
Mechanical Sciences, 431(23):3-24, (Editors: G Della Riccia and H-J Lenz and R Kruse), Springer, Vienna, Data Fusion and Perception, 2000 (inbook)
Vapnik, V., Chapelle, O.
Bounds on Error Expectation for Support Vector Machines
Neural Computation, 12(9):2013-2036, 2000 (article)
Zhou, D.
Intelligence as a Complex System
Biologische Kybernetik, 2000 (phdthesis)
Peters, J.
Neural Networks in Robot Control
Biologische Kybernetik, Fernuniversität Hagen, Hagen, Germany, 2000 (diplomathesis)
, PADFR., Rasmussen, CE., Hansen, LK.
Bayesian modelling of fMRI time series
In pages: 754-760, (Editors: Sara A. Solla, Todd K. Leen and Klaus-Robert Müller), 2000 (inproceedings)
Müller, K., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.
An Introduction to Kernel-Based Learning Algorithms
In Handbook of Neural Network Signal Processing, 4, (Editors: Yu Hen Hu and Jang-Neng Hwang), CRC Press, 2000 (inbook)
Chalimourda, A., Schölkopf, B., Smola, A.
Choosing nu in support vector regression with
different noise models — theory and experiments
In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, IJCNN 2000, Neural Computing: New Challenges and Perspectives for the New Millennium, IEEE, International Joint Conference on Neural Networks, 2000 (inproceedings)
Ong, CS., Wong, F., Lai, WK.
A High Resolution and Accurate Pentium Based Timer
In 2000 (inproceedings)
Rätsch, G., Schölkopf, B., Smola, A., Mika, S., Onoda, T., Müller, K.
Robust Ensemble Learning for Data Mining
In Fourth Pacific-Asia Conference on Knowledge Discovery and Data Mining, 1805, pages: 341-341, Lecture Notes in Artificial Intelligence, (Editors: H. Terano), Fourth Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2000 (inproceedings)
Smola, A., Schölkopf, B.
Sparse greedy matrix approximation for machine learning.
In 17th International Conference on Machine Learning, Stanford, 2000, pages: 911-918, (Editors: P Langley), Morgan Kaufman, San Fransisco, CA, USA, 17th International Conference on Machine Learning (ICML), 2000 (inproceedings)
Schölkopf, B.
The Kernel Trick for Distances
(MSR-TR-2000-51), Microsoft Research, Redmond, WA, USA, 2000 (techreport)
Ong, CS., Lai, WK.
Enhanced Password Authentication Through Typing Biometrics with K-Means Clustering Algorithm
In 2000 (inproceedings)
Williamson, R., Smola, A., Schölkopf, B.
Entropy Numbers of Linear Function Classes.
In 13th Annual Conference on Computational Learning Theory, pages: 309-319, (Editors: N Cesa-Bianchi and S Goldman), Morgan Kaufman, San Fransisco, CA, USA, 13th Annual Conference on Computational Learning Theory (COLT), 2000 (inproceedings)
Schölkopf, B., Platt, J., Smola, A.
Kernel method for percentile feature extraction
(MSR-TR-2000-22), Microsoft Research, 2000 (techreport)
Wichmann, F.
Some Aspects of Modelling Human Spatial Vision: Contrast Discrimination
University of Oxford, University of Oxford, October 1999 (phdthesis)
Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lemmen, C., Smola, A., Lengauer, T., Müller, K.
Engineering Support Vector Machine Kernels That Recognize Translation Initiation Sites in DNA
In German Conference on Bioinformatics (GCB 1999), October 1999 (inproceedings)
Ploghaus, A., Clare, S., Wichmann, F., Tracey, I.
Unexpected and anticipated pain: identification of specific brain activations by correlation with reference functions derived form conditioning theory
29, 29th Annual Meeting of the Society for Neuroscience (Neuroscience), October 1999 (poster)
Schölkopf, B., Müller, K., Smola, A.
Lernen mit Kernen: Support-Vektor-Methoden zur Analyse hochdimensionaler Daten
Informatik - Forschung und Entwicklung, 14(3):154-163, September 1999 (article)
Schölkopf, B., Mika, S., Burges, C., Knirsch, P., Müller, K., Rätsch, G., Smola, A.
Input space versus feature space in kernel-based methods
IEEE Transactions On Neural Networks, 10(5):1000-1017, September 1999 (article)
Davison, T., Vagner, C., Kaghad, M., Ayed, A., Caput, D., CH, ..
p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53.
Journal of Biological Chemistry, 274(26):18709-18714, June 1999 (article)
Schölkopf, B., Bartlett, P., Smola, A., Williamson, R.
Shrinking the tube: a new support vector regression algorithm
In Advances in Neural Information Processing Systems 11, pages: 330-336 , (Editors: MS Kearns and SA Solla and DA Cohn), MIT Press, Cambridge, MA, USA, 12th Annual Conference on Neural Information Processing Systems (NIPS), June 1999 (inproceedings)
Smola, A., Friess, T., Schölkopf, B.
Semiparametric support vector and linear programming machines
In Advances in Neural Information Processing Systems 11, pages: 585-591 , (Editors: MS Kearns and SA Solla and DA Cohn), MIT Press, Cambridge, MA, USA, Twelfth Annual Conference on Neural Information Processing Systems (NIPS), June 1999 (inproceedings)
Mika, S., Schölkopf, B., Smola, A., Müller, K., Scholz, M., Rätsch, G.
Kernel PCA and De-noising in feature spaces
In Advances in Neural Information Processing Systems 11, pages: 536-542 , (Editors: MS Kearns and SA Solla and DA Cohn), MIT Press, Cambridge, MA, USA, 12th Annual Conference on Neural Information Processing Systems (NIPS), June 1999 (inproceedings)
Schölkopf, B., Smola, A., Müller, K.
Kernel principal component analysis.
In Advances in Kernel Methods—Support Vector Learning, pages: 327-352, (Editors: B Schölkopf and CJC Burges and AJ Smola), MIT Press, Cambridge, MA, 1999 (inbook)
Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.
Estimating the support of a high-dimensional distribution
(MSR-TR-99-87), Microsoft Research, 1999 (techreport)
Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J.
Single-class Support Vector Machines
Dagstuhl-Seminar on Unsupervised Learning, pages: 19-20, (Editors: J. Buhmann, W. Maass, H. Ritter and N. Tishby), 1999 (poster)
Balakrishnan, K., Bousquet, O., Honavar, V.
Spatial Learning and Localization in Animals: A Computational Model and Its Implications for Mobile Robots
Adaptive Behavior, 7(2):173-216, 1999 (article)
Chapelle, O., Haffner, P., Vapnik, V.
SVMs for Histogram Based Image Classification
IEEE Transactions on Neural Networks, (9), 1999 (article)
Vannerem, P., Müller, K., Smola, A., Schölkopf, B., Söldner-Rembold, S.
Classifying LEP data with support vector algorithms.
In Artificial Intelligence in High Energy Nuclear Physics 99, Artificial Intelligence in High Energy Nuclear Physics 99, 1999 (inproceedings)
Schölkopf, B., Shawe-Taylor, J., Smola, A., Williamson, R.
Generalization Bounds via Eigenvalues of the Gram matrix
(99-035), NeuroCOLT, 1999 (techreport)
Henning, G., Wichmann, F.
Pedestal effects with periodic pulse trains
Perception, 28, pages: S137, 1999 (poster)
Bousquet, O.
Apprentissage Automatique et Simplicite
Biologische Kybernetik, 1999, In french (diplomathesis)
Graepel, T., Herbrich, R., Schölkopf, B., Smola, A., Bartlett, P., Müller, K., Obermayer, K., Williamson, R.
Classification on proximity data with LP-machines
In Artificial Neural Networks, 1999. ICANN 99, 470, pages: 304-309, Conference Publications , IEEE, 9th International Conference on Artificial Neural Networks, 1999 (inproceedings)
Schölkopf, B., Shawe-Taylor, J., Smola, A., Williamson, R.
Kernel-dependent support vector error bounds
In Artificial Neural Networks, 1999. ICANN 99, 470, pages: 103-108 , Conference Publications , IEEE, 9th International Conference on Artificial Neural Networks, 1999 (inproceedings)
Smola, A., Schölkopf, B., Rätsch, G.
Linear programs for automatic accuracy control in regression
In Artificial Neural Networks, 1999. ICANN 99, 470, pages: 575-580 , Conference Publications , IEEE, 9th International Conference on Artificial Neural Networks, 1999 (inproceedings)