Header logo is ei


2005


no image
Phenotypic characterization of chondrosarcoma-derived cell lines

Schorle, C., Finger, F., Zien, A., Block, J., Gebhard, P., Aigner, T.

Cancer Letters, 226(2):143-154, August 2005 (article)

Abstract
Gene expression profiling of three chondrosarcoma derived cell lines (AD, SM, 105KC) showed an increased proliferative activity and a reduced expression of chondrocytic-typical matrix products compared to primary chondrocytes. The incapability to maintain an adequate matrix synthesis as well as a notable proliferative activity at the same time is comparable to neoplastic chondrosarcoma cells in vivo which cease largely cartilage matrix formation as soon as their proliferative activity increases. Thus, the investigated cell lines are of limited value as substitute of primary chondrocytes but might have a much higher potential to investigate the behavior of neoplastic chondrocytes, i.e. chondrosarcoma biology.

Web [BibTex]

2005

Web [BibTex]


no image
Local Rademacher Complexities

Bartlett, P., Bousquet, O., Mendelson, S.

The Annals of Statistics, 33(4):1497-1537, August 2005 (article)

Abstract
We propose new bounds on the error of learning algorithms in terms of a data-dependent notion of complexity. The estimates we establish give optimal rates and are based on a local and empirical version of Rademacher averages, in the sense that the Rademacher averages are computed from the data, on a subset of functions with small empirical error. We present some applications to classification and prediction with convex function classes, and with kernel classes in particular.

PDF PostScript Web [BibTex]

PDF PostScript Web [BibTex]


no image
Inlier-based ICA with an application to superimposed images

Meinecke, F., Harmeling, S., Müller, K.

International Journal of Imaging Systems and Technology, 15(1):48-55, July 2005 (article)

Abstract
This paper proposes a new independent component analysis (ICA) method which is able to unmix overcomplete mixtures of sparce or structured signals like speech, music or images. Furthermore, the method is designed to be robust against outliers, which is a favorable feature for ICA algorithms since most of them are extremely sensitive to outliers. Our approach is based on a simple outlier index. However, instead of robustifying an existing algorithm by some outlier rejection technique we show how this index can be used directly to solve the ICA problem for super-Gaussian sources. The resulting inlier-based ICA (IBICA) is outlier-robust by construction and can be used for standard ICA as well as for overcomplete ICA (i.e. more source signals than observed signals).

Web DOI [BibTex]

Web DOI [BibTex]


no image
Learning the Kernel with Hyperkernels

Ong, CS., Smola, A., Williamson, R.

Journal of Machine Learning Research, 6, pages: 1043-1071, July 2005 (article)

Abstract
This paper addresses the problem of choosing a kernel suitable for estimation with a Support Vector Machine, hence further automating machine learning. This goal is achieved by defining a Reproducing Kernel Hilbert Space on the space of kernels itself. Such a formulation leads to a statistical estimation problem similar to the problem of minimizing a regularized risk functional. We state the equivalent representer theorem for the choice of kernels and present a semidefinite programming formulation of the resulting optimization problem. Several recipes for constructing hyperkernels are provided, as well as the details of common machine learning problems. Experimental results for classification, regression and novelty detection on UCI data show the feasibility of our approach.

PDF [BibTex]

PDF [BibTex]


no image
Comparative evaluation of Independent Components Analysis algorithms for isolating target-relevant information in brain-signal classification

Hill, N., Schröder, M., Lal, T., Schölkopf, B.

Brain-Computer Interface Technology, 3, pages: 95, June 2005 (poster)

PDF [BibTex]


no image
Image Reconstruction by Linear Programming

Tsuda, K., Rätsch, G.

IEEE Transactions on Image Processing, 14(6):737-744, June 2005 (article)

Abstract
One way of image denoising is to project a noisy image to the subspace of admissible images derived, for instance, by PCA. However, a major drawback of this method is that all pixels are updated by the projection, even when only a few pixels are corrupted by noise or occlusion. We propose a new method to identify the noisy pixels by l1-norm penalization and to update the identified pixels only. The identification and updating of noisy pixels are formulated as one linear program which can be efficiently solved. In particular, one can apply the upsilon trick to directly specify the fraction of pixels to be reconstructed. Moreover, we extend the linear program to be able to exploit prior knowledge that occlusions often appear in contiguous blocks (e.g., sunglasses on faces). The basic idea is to penalize boundary points and interior points of the occluded area differently. We are also able to show the upsilon property for this extended LP leading to a method which is easy to use. Experimental results demonstrate the power of our approach.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
RASE: recognition of alternatively spliced exons in C.elegans

Rätsch, G., Sonnenburg, S., Schölkopf, B.

Bioinformatics, 21(Suppl. 1):i369-i377, June 2005 (article)

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Matrix Exponentiated Gradient Updates for On-line Learning and Bregman Projection

Tsuda, K., Rätsch, G., Warmuth, M.

Journal of Machine Learning Research, 6, pages: 995-1018, June 2005 (article)

Abstract
We address the problem of learning a symmetric positive definite matrix. The central issue is to design parameter updates that preserve positive definiteness. Our updates are motivated with the von Neumann divergence. Rather than treating the most general case, we focus on two key applications that exemplify our methods: on-line learning with a simple square loss, and finding a symmetric positive definite matrix subject to linear constraints. The updates generalize the exponentiated gradient (EG) update and AdaBoost, respectively: the parameter is now a symmetric positive definite matrix of trace one instead of a probability vector (which in this context is a diagonal positive definite matrix with trace one). The generalized updates use matrix logarithms and exponentials to preserve positive definiteness. Most importantly, we show how the derivation and the analyses of the original EG update and AdaBoost generalize to the non-diagonal case. We apply the resulting matrix exponentiated gradient (MEG) update and DefiniteBoost to the problem of learning a kernel matrix from distance measurements.

PDF [BibTex]

PDF [BibTex]


no image
Protein function prediction via graph kernels

Borgwardt, KM., Ong, CS., Schönauer, S., Vishwanathan, ., Smola, AJ., Kriegel, H-P.

Bioinformatics, 21(Suppl. 1: ISMB 2005 Proceedings):i47-i56, June 2005 (article)

Abstract
Motivation: Computational approaches to protein function prediction infer protein function by finding proteins with similar sequence, structure, surface clefts, chemical properties, amino acid motifs, interaction partners or phylogenetic profiles. We present a new approach that combines sequential, structural and chemical information into one graph model of proteins. We predict functional class membership of enzymes and non-enzymes using graph kernels and support vector machine classification on these protein graphs. Results: Our graph model, derivable from protein sequence and structure only, is competitive with vector models that require additional protein information, such as the size of surface pockets. If we include this extra information into our graph model, our classifier yields significantly higher accuracy levels than the vector models. Hyperkernels allow us to select and to optimally combine the most relevant node attributes in our protein graphs. We have laid the foundation for a protein function prediction system that integrates protein information from various sources efficiently and effectively.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Texture and haptic cues in slant discrimination: Reliability-based cue weighting without statistically optimal cue combination

Rosas, P., Wagemans, J., Ernst, M., Wichmann, F.

Journal of the Optical Society of America A, 22(5):801-809, May 2005 (article)

Abstract
A number of models of depth cue combination suggest that the final depth percept results from a weighted average of independent depth estimates based on the different cues available. The weight of each cue in such an average is thought to depend on the reliability of each cue. In principle, such a depth estimation could be statistically optimal in the sense of producing the minimum variance unbiased estimator that can be constructed from the available information. Here we test such models using visual and haptic depth information. Different texture types produce differences in slant discrimination performance, providing a means for testing a reliability-sensitive cue combination model using texture as one of the cues to slant. Our results show that the weights for the cues were generally sensitive to their reliability, but fell short of statistically optimal combination—we find reliability-based re-weighting, but not statistically optimal cue combination.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Bayesian inference for psychometric functions

Kuss, M., Jäkel, F., Wichmann, F.

Journal of Vision, 5(5):478-492, May 2005 (article)

Abstract
In psychophysical studies, the psychometric function is used to model the relation between physical stimulus intensity and the observer’s ability to detect or discriminate between stimuli of different intensities. In this study, we propose the use of Bayesian inference to extract the information contained in experimental data to estimate the parameters of psychometric functions. Because Bayesian inference cannot be performed analytically, we describe how a Markov chain Monte Carlo method can be used to generate samples from the posterior distribution over parameters. These samples are used to estimate Bayesian confidence intervals and other characteristics of the posterior distribution. In addition, we discuss the parameterization of psychometric functions and the role of prior distributions in the analysis. The proposed approach is exemplified using artificially generated data and in a case study for real experimental data. Furthermore, we compare our approach with traditional methods based on maximum likelihood parameter estimation combined with bootstrap techniques for confidence interval estimation and find the Bayesian approach to be superior.

PDF PDF DOI [BibTex]


no image
Classification of natural scenes using global image statistics

Drewes, J., Wichmann, F., Gegenfurtner, K.

47, pages: 88, 47. Tagung Experimentell Arbeitender Psychologen, April 2005 (poster)

[BibTex]

[BibTex]


no image
A gene expression map of Arabidopsis thaliana development

Schmid, M., Davison, T., Henz, S., Pape, U., Demar, M., Vingron, M., Schölkopf, B., Weigel, D., Lohmann, J.

Nature Genetics, 37(5):501-506, April 2005 (article)

Abstract
Regulatory regions of plant genes tend to be more compact than those of animal genes, but the complement of transcription factors encoded in plant genomes is as large or larger than that found in those of animals. Plants therefore provide an opportunity to study how transcriptional programs control multicellular development. We analyzed global gene expression during development of the reference plant Arabidopsis thaliana in samples covering many stages, from embryogenesis to senescence, and diverse organs. Here, we provide a first analysis of this data set, which is part of the AtGenExpress expression atlas. We observed that the expression levels of transcription factor genes and signal transduction components are similar to those of metabolic genes. Examining the expression patterns of large gene families, we found that they are often more similar than would be expected by chance, indicating that many gene families have been co-opted for specific developmental processes.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Morphological characterization of molecular complexes present in the synaptic cleft

Lucic, V., Yang, T., Schweikert, G., Förster, F., Baumeister, W.

Structure, 13(3):423-434, March 2005 (article)

Abstract
We obtained tomograms of isolated mammalian excitatory synapses by cryo-electron tomography. This method allows the investigation of biological material in the frozen-hydrated state, without staining, and can therefore provide reliable structural information at the molecular level. We developed an automated procedure for the segmentation of molecular complexes present in the synaptic cleft based on thresholding and connectivity, and calculated several morphological characteristics of these complexes. Extensive lateral connections along the synaptic cleft are shown to form a highly connected structure with a complex topology. Our results are essentially parameter-free, i.e., they do not depend on the choice of certain parameter values (such as threshold). In addition, the results are not sensitive to noise; the same conclusions can be drawn from the analysis of both nondenoised and denoised tomograms.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Experimentally optimal v in support vector regression for different noise models and parameter settings

Chalimourda, A., Schölkopf, B., Smola, A.

Neural Networks, 18(2):205-205, March 2005 (article)

PDF DOI [BibTex]


no image
Classification of Natural Scenes using Global Image Statistics

Drewes, J., Wichmann, F., Gegenfurtner, K.

8, pages: 88, 8th T{\"u}bingen Perception Conference (TWK), February 2005 (poster)

Abstract
The algorithmic classification of complex, natural scenes is generally considered a difficult task due to the large amount of information conveyed by natural images. Work by Simon Thorpe and colleagues showed that humans are capable of detecting animals within novel natural scenes with remarkable speed and accuracy. This suggests that the relevant information for classification can be extracted at comparatively limited computational cost. One hypothesis is that global image statistics such as the amplitude spectrum could underly fast image classification (Johnson & Olshausen, Journal of Vision, 2003; Torralba & Oliva, Network: Comput. Neural Syst., 2003). We used linear discriminant analysis to classify a set of 11.000 images into animal and nonanimal images. After applying a DFT to the image, we put the Fourier spectrum of each image into 48 bins (8 orientations with 6 frequency bands). Using all of these bins, classification performance on the Fourier spectrum reached 70%. In an iterative procedure, we then removed the bins whose absence caused the smallest damage to the classification performance (one bin per iteration). Notably, performance stayed at about 70% until less then 6 bins were left. A detailed analysis of the classification weights showed that a comparatively high level of performance (67%) could also be obtained when only 2 bins were used, namely the vertical orientations at the highest spatial frequency band. When using only a single frequency band (8 bins) we found that 67% classification performance could be reached when only the high spatial frequency information was used, which decreased steadily at lower spatial frequencies, reaching a minimum (50%) for the low spatial frequency information. Similar results were obtained when all bins were used on spatially pre-filtered images. Our results show that in the absence of sophisticated machine learning techniques, animal detection in natural scenes is limited to rather modest levels of performance, far below those of human observers. If limiting oneself to global image statistics such as the DFT then mostly information at the highest spatial frequencies is useful for the task. This is analogous to the results obtained with human observers on filtered images (Kirchner et al, VSS 2004).

Web [BibTex]

Web [BibTex]


no image
Efficient Adaptive Sampling of the Psychometric Function by Maximizing Information Gain

Tanner, T., Hill, N., Rasmussen, C., Wichmann, F.

8, pages: 109, (Editors: Bülthoff, H. H., H. A. Mallot, R. Ulrich and F. A. Wichmann), 8th T{\"u}bingen Perception Conference (TWK), February 2005 (poster)

Abstract
A psychometric function can be described by its shape and four parameters: position or threshold, slope or width, false alarm rate or chance level, and miss or lapse rate. Depending on the parameters of interest some points on the psychometric function may be more informative than others. Adaptive methods attempt to place trials on the most informative points based on the data collected in previous trials. We introduce a new adaptive bayesian psychometric method which collects data for any set of parameters with high efficency. It places trials by minimizing the expected entropy [1] of the posterior pdf over a set of possible stimuli. In contrast to most other adaptive methods it is neither limited to threshold measurement nor to forced-choice designs. Nuisance parameters can be included in the estimation and lead to less biased estimates. The method supports block designs which do not harm the performance when a sufficient number of trials are performed. Block designs are useful for control of response bias and short term performance shifts such as adaptation. We present the results of evaluations of the method by computer simulations and experiments with human observers. In the simulations we investigated the role of parametric assumptions, the quality of different point estimates, the effect of dynamic termination criteria and many other settings. [1] Kontsevich, L.L. and Tyler, C.W. (1999): Bayesian adaptive estimation of psychometric slope and threshold. Vis. Res. 39 (16), 2729-2737.

Web [BibTex]

Web [BibTex]


no image
Automatic Classification of Plankton from Digital Images

Sieracki, M., Riseman, E., Balch, W., Benfield, M., Hanson, A., Pilskaln, C., Schultz, H., Sieracki, C., Utgoff, P., Blaschko, M., Holness, G., Mattar, M., Lisin, D., Tupper, B.

ASLO Aquatic Sciences Meeting, 1, pages: 1, February 2005 (poster)

[BibTex]

[BibTex]


no image
Bayesian Inference for Psychometric Functions

Kuss, M., Jäkel, F., Wichmann, F.

8, pages: 106, (Editors: Bülthoff, H. H., H. A. Mallot, R. Ulrich and F. A. Wichmann), 8th T{\"u}bingen Perception Conference (TWK), February 2005 (poster)

Abstract
In psychophysical studies of perception the psychometric function is used to model the relation between the physical stimulus intensity and the observer's ability to detect or discriminate between stimuli of different intensities. We propose the use of Bayesian inference to extract the information contained in experimental data to learn about the parameters of psychometric functions. Since Bayesian inference cannot be performed analytically we use a Markov chain Monte Carlo method to generate samples from the posterior distribution over parameters. These samples can be used to estimate Bayesian confidence intervals and other characteristics of the posterior distribution. We compare our approach with traditional methods based on maximum-likelihood parameter estimation combined with parametric bootstrap techniques for confidence interval estimation. Experiments indicate that Bayesian inference methods are superior to bootstrap-based methods and are thus the method of choice for estimating the psychometric function and its confidence-intervals.

Web [BibTex]

Web [BibTex]


no image
Invariance of Neighborhood Relation under Input Space to Feature Space Mapping

Shin, H., Cho, S.

Pattern Recognition Letters, 26(6):707-718, 2005 (article)

Abstract
If the training pattern set is large, it takes a large memory and a long time to train support vector machine (SVM). Recently, we proposed neighborhood property based pattern selection algorithm (NPPS) which selects only the patterns that are likely to be near the decision boundary ahead of SVM training [Proc. of the 7th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Lecture Notes in Artificial Intelligence (LNAI 2637), Seoul, Korea, pp. 376–387]. NPPS tries to identify those patterns that are likely to become support vectors in feature space. Preliminary reports show its effectiveness: SVM training time was reduced by two orders of magnitude with almost no loss in accuracy for various datasets. It has to be noted, however, that decision boundary of SVM and support vectors are all defined in feature space while NPPS described above operates in input space. If neighborhood relation in input space is not preserved in feature space, NPPS may not always be effective. In this paper, we sh ow that the neighborhood relation is invariant under input to feature space mapping. The result assures that the patterns selected by NPPS in input space are likely to be located near decision boundary in feature space.

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Global image statistics of natural scenes

Drewes, J., Wichmann, F., Gegenfurtner, K.

Bioinspired Information Processing, 08, pages: 1, 2005 (poster)

[BibTex]

[BibTex]


no image
Semi-supervised protein classification using cluster kernels

Weston, J., Leslie, C., Ie, E., Zhou, D., Elisseeff, A., Noble, W.

Bioinformatics, 21(15):3241-3247, 2005 (article)

[BibTex]

[BibTex]


no image
Extended Gaussianization Method for Blind Separation of Post-Nonlinear Mixtures

Zhang, K., Chan, L.

Neural Computation, 17(2):425-452, 2005 (article)

Abstract
The linear mixture model has been investigated in most articles tackling the problem of blind source separation. Recently, several articles have addressed a more complex model: blind source separation (BSS) of post-nonlinear (PNL) mixtures. These mixtures are assumed to be generated by applying an unknown invertible nonlinear distortion to linear instantaneous mixtures of some independent sources. The gaussianization technique for BSS of PNL mixtures emerged based on the assumption that the distribution of the linear mixture of independent sources is gaussian. In this letter, we review the gaussianization method and then extend it to apply to PNL mixture in which the linear mixture is close to gaussian. Our proposed method approximates the linear mixture using the Cornish-Fisher expansion. We choose the mutual information as the independence measurement to develop a learning algorithm to separate PNL mixtures. This method provides better applicability and accuracy. We then discuss the sufficient condition for the method to be valid. The characteristics of the nonlinearity do not affect the performance of this method. With only a few parameters to tune, our algorithm has a comparatively low computation. Finally, we present experiments to illustrate the efficiency of our method.

Web DOI [BibTex]


no image
Theory of Classification: A Survey of Some Recent Advances

Boucheron, S., Bousquet, O., Lugosi, G.

ESAIM: Probability and Statistics, 9, pages: 323 , 2005 (article)

Abstract
The last few years have witnessed important new developments in the theory and practice of pattern classification. We intend to survey some of the main new ideas that have lead to these important recent developments.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Support Vector Machines and Kernel Algorithms

Schölkopf, B., Smola, A.

In Encyclopedia of Biostatistics (2nd edition), Vol. 8, 8, pages: 5328-5335, (Editors: P Armitage and T Colton), John Wiley & Sons, NY USA, 2005 (inbook)

[BibTex]

[BibTex]


no image
Graph Kernels for Chemical Informatics

Ralaivola, L., Swamidass, J., Saigo, H., Baldi, P.

Neural Networks, 18(8):1093-1110, 2005 (article)

Abstract
Increased availability of large repositories of chemical compounds is creating new challenges and opportunities for the application of machine learning methods to problems in computational chemistry and chemical informatics. Because chemical compounds are often represented by the graph of their covalent bonds, machine learning methods in this domain must be capable of processing graphical structures with variable size. Here we first briefly review the literature on graph kernels and then introduce three new kernels (Tanimoto, MinMax, Hybrid) based on the idea of molecular fingerprints and counting labeled paths of depth up to d using depthfirst search from each possible vertex. The kernels are applied to three classification problems to predict mutagenicity, toxicity, and anti-cancer activity on three publicly available data sets. The kernels achieve performances at least comparable, and most often superior, to those previously reported in the literature reaching accuracies of 91.5% on the Mutag dataset, 65-67% on the PTC (Predictive Toxicology Challenge) dataset, and 72% on the NCI (National Cancer Institute) dataset. Properties and tradeoffs of these kernels, as well as other proposed kernels that leverage 1D or 3D representations of molecules, are briefly discussed.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Moment Inequalities for Functions of Independent Random Variables

Boucheron, S., Bousquet, O., Lugosi, G., Massart, P.

To appear in Annals of Probability, 33, pages: 514-560, 2005 (article)

Abstract
A general method for obtaining moment inequalities for functions of independent random variables is presented. It is a generalization of the entropy method which has been used to derive concentration inequalities for such functions cite{BoLuMa01}, and is based on a generalized tensorization inequality due to Lata{l}a and Oleszkiewicz cite{LaOl00}. The new inequalities prove to be a versatile tool in a wide range of applications. We illustrate the power of the method by showing how it can be used to effortlessly re-derive classical inequalities including Rosenthal and Kahane-Khinchine-type inequalities for sums of independent random variables, moment inequalities for suprema of empirical processes, and moment inequalities for Rademacher chaos and $U$-statistics. Some of these corollaries are apparently new. In particular, we generalize Talagrands exponential inequality for Rademacher chaos of order two to any order. We also discuss applications for other complex functions of independent random variables, such as suprema of boolean polynomials which include, as special cases, subgraph counting problems in random graphs.

PDF [BibTex]

PDF [BibTex]


no image
Visual perception I: Basic principles

Wagemans, J., Wichmann, F., de Beeck, H.

In Handbook of Cognition, pages: 3-47, (Editors: Lamberts, K. , R. Goldstone), Sage, London, 2005 (inbook)

[BibTex]

[BibTex]


no image
Kernel-Methods, Similarity, and Exemplar Theories of Categorization

Jäkel, F., Wichmann, F.

ASIC, 4, 2005 (poster)

Abstract
Kernel-methods are popular tools in machine learning and statistics that can be implemented in a simple feed-forward neural network. They have strong connections to several psychological theories. For example, Shepard‘s universal law of generalization can be given a kernel interpretation. This leads to an inner product and a metric on the psychological space that is different from the usual Minkowski norm. The metric has psychologically interesting properties: It is bounded from above and does not have additive segments. As categorization models often rely on Shepard‘s law as a model for psychological similarity some of them can be recast as kernel-methods. In particular, ALCOVE is shown to be closely related to kernel logistic regression. The relationship to the Generalized Context Model is also discussed. It is argued that functional analysis which is routinely used in machine learning provides valuable insights also for psychology.

Web [BibTex]


no image
Rapid animal detection in natural scenes: critical features are local

Wichmann, F., Rosas, P., Gegenfurtner, K.

Experimentelle Psychologie. Beitr{\"a}ge zur 47. Tagung experimentell arbeitender Psychologen, 47, pages: 225, 2005 (poster)

[BibTex]

[BibTex]


no image
A novel representation of protein sequences for prediction of subcellular location using support vector machines

Matsuda, S., Vert, J., Saigo, H., Ueda, N., Toh, H., Akutsu, T.

Protein Science, 14, pages: 2804-2813, 2005 (article)

Abstract
As the number of complete genomes rapidly increases, accurate methods to automatically predict the subcellular location of proteins are increasingly useful to help their functional annotation. In order to improve the predictive accuracy of the many prediction methods developed to date, a novel representation of protein sequences is proposed. This representation involves local compositions of amino acids and twin amino acids, and local frequencies of distance between successive (basic, hydrophobic, and other) amino acids. For calculating the local features, each sequence is split into three parts: N-terminal, middle, and C-terminal. The N-terminal part is further divided into four regions to consider ambiguity in the length and position of signal sequences. We tested this representation with support vector machines on two data sets extracted from the SWISS-PROT database. Through fivefold cross-validation tests, overall accuracies of more than 87% and 91% were obtained for eukaryotic and prokaryotic proteins, respectively. It is concluded that considering the respective features in the N-terminal, middle, and C-terminal parts is helpful to predict the subcellular location. Keywords: subcellular location; signal sequence; amino acid composition; distance frequency; support vector machine; predictive accuracy

Web DOI [BibTex]

Web DOI [BibTex]


no image
The human brain as large margin classifier

Graf, A., Wichmann, F., Bülthoff, H., Schölkopf, B.

Proceedings of the Computational & Systems Neuroscience Meeting (COSYNE), 2, pages: 1, 2005 (poster)

[BibTex]

[BibTex]


no image
A tutorial on v-support vector machines

Chen, P., Lin, C., Schölkopf, B.

Applied Stochastic Models in Business and Industry, 21(2):111-136, 2005 (article)

Abstract
We briefly describe the main ideas of statistical learning theory, support vector machines (SVMs), and kernel feature spaces. We place particular emphasis on a description of the so-called -SVM, including details of the algorithm and its implementation, theoretical results, and practical applications. Copyright © 2005 John Wiley & Sons, Ltd.

PDF [BibTex]

PDF [BibTex]


no image
Robust EEG Channel Selection Across Subjects for Brain Computer Interfaces

Schröder, M., Lal, T., Hinterberger, T., Bogdan, M., Hill, J., Birbaumer, N., Rosenstiel, W., Schölkopf, B.

EURASIP Journal on Applied Signal Processing, 2005(19, Special Issue: Trends in Brain Computer Interfaces):3103-3112, (Editors: Vesin, J. M., T. Ebrahimi), 2005 (article)

Abstract
Most EEG-based Brain Computer Interface (BCI) paradigms come along with specific electrode positions, e.g.~for a visual based BCI electrode positions close to the primary visual cortex are used. For new BCI paradigms it is usually not known where task relevant activity can be measured from the scalp. For individual subjects Lal et.~al showed that recording positions can be found without the use of prior knowledge about the paradigm used. However it remains unclear to what extend their method of Recursive Channel Elimination (RCE) can be generalized across subjects. In this paper we transfer channel rankings from a group of subjects to a new subject. For motor imagery tasks the results are promising, although cross-subject channel selection does not quite achieve the performance of channel selection on data of single subjects. Although the RCE method was not provided with prior knowledge about the mental task, channels that are well known to be important (from a physiological point of view) were consistently selected whereas task-irrelevant channels were reliably disregarded.

Web DOI [BibTex]

Web DOI [BibTex]

2003


no image
Natural Actor-Critic

Peters, J., Vijayakumar, S., Schaal, S.

NIPS Workshop " Planning for the Real World: The promises and challenges of dealing with uncertainty", December 2003 (poster)

PDF Web [BibTex]

2003

PDF Web [BibTex]


no image
Texture and haptic cues in slant discrimination: Measuring the effect of texture type on cue combination

Rosas, P., Wichmann, F., Ernst, M., Wagemans, J.

Journal of Vision, 3(12):26, 2003 Fall Vision Meeting of the Optical Society of America, December 2003 (poster)

Abstract
In a number of models of depth cue combination the depth percept is constructed via a weighted average combination of independent depth estimations. The influence of each cue in such average depends on the reliability of the source of information. (Young, Landy, & Maloney, 1993; Ernst & Banks, 2002.) In particular, Ernst & Banks (2002) formulate the combination performed by the human brain as that of the minimum variance unbiased estimator that can be constructed from the available cues. Using slant discrimination and slant judgment via probe adjustment as tasks, we have observed systematic differences in performance of human observers when a number of different types of textures were used as cue to slant (Rosas, Wichmann & Wagemans, 2003). If the depth percept behaves as described above, our measurements of the slopes of the psychometric functions provide the predicted weights for the texture cue for the ranked texture types. We have combined these texture types with object motion but the obtained results are difficult to reconcile with the unbiased minimum variance estimator model (Rosas & Wagemans, 2003). This apparent failure of such model might be explained by the existence of a coupling of texture and motion, violating the assumption of independence of cues. Hillis, Ernst, Banks, & Landy (2002) have shown that while for between-modality combination the human visual system has access to the single-cue information, for within-modality combination (visual cues: disparity and texture) the single-cue information is lost, suggesting a coupling between these cues. Then, in the present study we combine the different texture types with haptic information in a slant discrimination task, to test whether in the between-modality condition the texture cue and the haptic cue to slant are combined as predicted by an unbiased, minimum variance estimator model.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Molecular phenotyping of human chondrocyte cell lines T/C-28a2, T/C-28a4, and C-28/I2

Finger, F., Schorle, C., Zien, A., Gebhard, P., Goldring, M., Aigner, T.

Arthritis & Rheumatism, 48(12):3395-3403, December 2003 (article)

[BibTex]

[BibTex]


no image
A Study on Rainfall - Runoff Models for Improving Ensemble Streamflow Prediction: 1. Rainfallrunoff Models Using Artificial Neural Networks

Jeong, D., Kim, Y., Cho, S., Shin, H.

Journal of the Korean Society of Civil Engineers, 23(6B):521-530, December 2003 (article)

Abstract
The previous ESP (Ensemble Streamflow Prediction) studies conducted in Korea reported that the modeling error is a major source of the ESP forecast error in winter and spring (i.e. dry seasons), and thus suggested that improving the rainfall-runoff model would be critical to obtain more accurate probabilistic forecasts with ESP. This study used two types of Artificial Neural Networks (ANN), such as a Single Neural Network (SNN) and an Ensemble Neural Networks (ENN), to improve the simulation capability of the rainfall-runoff model of the ESP forecasting system for the monthly inflow to the Daecheong dam. Applied for the first time to Korean hydrology, ENN combines the outputs of member models so that it can control the generalization error better than SNN. Because the dry and the flood season in Korea shows considerably different streamflow characteristics, this study calibrated the rainfall-runoff model separately for each season. Therefore, four rainfall-runoff models were developed according to the ANN types and the seasons. This study compared the ANN models with a conceptual rainfall-runoff model called TANK and verified that the ANN models were superior to TANK. Among the ANN models, ENN was more accurate than SNN. The ANN model performance was improved when the model was calibrated separately for the dry and the flood season. The best ANN model developed in this article will be incorporated into the ESP system to increase the forecast capability of ESP for the monthly inflow to the Daecheong dam.

[BibTex]

[BibTex]


no image
Quantitative Cerebral Blood Flow Measurements in the Rat Using a Beta-Probe and H215O

Weber, B., Spaeth, N., Wyss, M., Wild, D., Burger, C., Stanley, R., Buck, A.

Journal of Cerebral Blood Flow and Metabolism, 23(12):1455-1460, December 2003 (article)

Abstract
Beta-probes are a relatively new tool for tracer kinetic studies in animals. They are highly suited to evaluate new positron emission tomography tracers or measure physiologic parameters at rest and after some kind of stimulation or intervention. In many of these experiments, the knowledge of CBF is highly important. Thus, the purpose of this study was to evaluate the method of CBF measurements using a beta-probe and H215O. CBF was measured in the barrel cortex of eight rats at baseline and after acetazolamide challenge. Trigeminal nerve stimulation was additionally performed in five animals. In each category, three injections of 250 to 300 MBq H215O were performed at 10-minute intervals. Data were analyzed using a standard one-tissue compartment model (K1 = CBF, k2 = CBF/p, where p is the partition coefficient). Values for K1 were 0.35 plusminus 0.09, 0.58 plusminus 0.16, and 0.49 plusminus 0.03 mL dot min-1 dot mL-1 at rest, after acetazolamide challenge, and during trigeminal nerve stimulation, respectively. The corresponding values for k2 were 0.55 plusminus 0.12, 0.94 plusminus 0.16, and 0.85 plusminus 0.12 min-7, and for p were 0.64 plusminus 0.05, 0.61 plusminus 0.07, and 0.59 plusminus 0.06.The standard deviation of the difference between two successive experiments, a measure for the reproducibility of the method, was 10.1%, 13.0%, and 5.7% for K1, k2, and p, respectively. In summary, beta-probes in conjunction with H215O allow the reproducible quantitative measurement of CBF, although some systematic underestimation seems to occur, probably because of partial volume effects.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Blind separation of post-nonlinear mixtures using linearizing transformations and temporal decorrelation

Ziehe, A., Kawanabe, M., Harmeling, S., Müller, K.

Journal of Machine Learning Research, 4(7-8):1319-1338, November 2003 (article)

Abstract
We propose two methods that reduce the post-nonlinear blind source separation problem (PNL-BSS) to a linear BSS problem. The first method is based on the concept of maximal correlation: we apply the alternating conditional expectation (ACE) algorithm--a powerful technique from non-parametric statistics--to approximately invert the componentwise nonlinear functions. The second method is a Gaussianizing transformation, which is motivated by the fact that linearly mixed signals before nonlinear transformation are approximately Gaussian distributed. This heuristic, but simple and efficient procedure works as good as the ACE method. Using the framework provided by ACE, convergence can be proven. The optimal transformations obtained by ACE coincide with the sought-after inverse functions of the nonlinearities. After equalizing the nonlinearities, temporal decorrelation separation (TDSEP) allows us to recover the source signals. Numerical simulations testing "ACE-TD" and "Gauss-TD" on realistic examples are performed with excellent results.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Correlated stage- and subfield-associated hippocampal gene expression patterns in experimental and human temporal lobe epilepsy

Becker, A., Chen, J., Zien, A., Sochivko, D., Normann, S., Schramm, J., Elger, C., Wiestler, O., Blumcke, I.

European Journal of Neuroscience, 18(10):2792-2802, November 2003 (article)

Abstract
Epileptic activity evokes profound alterations of hippocampal organization and function. Genomic responses may reflect immediate consequences of excitatory stimulation as well as sustained molecular processes related to neuronal plasticity and structural remodeling. Using oligonucleotide microarrays with 8799 sequences, we determined subregional gene expression profiles in rats subjected to pilocarpine-induced epilepsy (U34A arrays, Affymetrix, Santa Clara, CA, USA; P < 0.05, twofold change, n = 3 per stage). Patterns of gene expression corresponded to distinct stages of epilepsy development. The highest number of differentially expressed genes (dentate gyrus, approx. 400 genes and CA1, approx. 700 genes) was observed 3 days after status epilepticus. The majority of up-regulated genes was associated with mechanisms of cellular stress and injury - 14 days after status epilepticus, numerous transcription factors and genes linked to cytoskeletal and synaptic reorganization were differentially expressed and, in the stage of chronic spontaneous seizures, distinct changes were observed in the transcription of genes involved in various neurotransmission pathways and between animals with low vs. high seizure frequency. A number of genes (n = 18) differentially expressed during the chronic epileptic stage showed corresponding expression patterns in hippocampal subfields of patients with pharmacoresistant temporal lobe epilepsy (n = 5 temporal lobe epilepsy patients; U133A microarrays, Affymetrix; covering 22284 human sequences). These data provide novel insights into the molecular mechanisms of epileptogenesis and seizure-associated cellular and structural remodeling of the hippocampus.

[BibTex]

[BibTex]


no image
Concentration Inequalities for Sub-Additive Functions Using the Entropy Method

Bousquet, O.

Stochastic Inequalities and Applications, 56, pages: 213-247, Progress in Probability, (Editors: Giné, E., C. Houdré and D. Nualart), November 2003 (article)

Abstract
We obtain exponential concentration inequalities for sub-additive functions of independent random variables under weak conditions on the increments of those functions, like the existence of exponential moments for these increments. As a consequence of these general inequalities, we obtain refinements of Talagrand's inequality for empirical processes and new bounds for randomized empirical processes. These results are obtained by further developing the entropy method introduced by Ledoux.

PostScript [BibTex]

PostScript [BibTex]


no image
YKL-39 (chitinase 3-like protein 2), but not YKL-40 (chitinase 3-like protein 1), is up regulated in osteoarthritic chondrocytes

Knorr, T., Obermayr, F., Bartnik, E., Zien, A., Aigner, T.

Annals of the Rheumatic Diseases, 62(10):995-998, October 2003 (article)

Abstract
OBJECTIVE: To investigate quantitatively the mRNA expression levels of YKL-40, an established marker of rheumatoid and osteoarthritic cartilage degeneration in synovial fluid and serum, and a closely related molecule YKL-39, in articular chondrocytes. METHODS: cDNA array and online quantitative polymerase chain reaction (PCR) were used to measure mRNA expression levels of YKL-39 and YKL-40 in chondrocytes in normal, early degenerative, and late stage osteoarthritic cartilage samples. RESULTS: Expression analysis showed high levels of both proteins in normal articular chondrocytes, with lower levels of YKL-39 than YKL-40. Whereas YKL-40 was significantly down regulated in late stage osteoarthritic chondrocytes, YKL-39 was significantly up regulated. In vitro both YKLs were down regulated by interleukin 1beta. CONCLUSIONS: The up regulation of YKL-39 in osteoarthritic cartilage suggests that YKL-39 may be a more accurate marker of chondrocyte activation than YKL-40, although it has yet to be established as a suitable marker in synovial fluid and serum. The decreased expression of YKL-40 by osteoarthritic chondrocytes is surprising as increased levels have been reported in rheumatoid and osteoarthritic synovial fluid, where it may derive from activated synovial cells or osteophytic tissue or by increased matrix destruction in the osteoarthritic joint. YKL-39 and YKL-40 are potentially interesting marker molecules for arthritic joint disease because they are abundantly expressed by both normal and osteoarthritic chondrocytes.

[BibTex]

[BibTex]


no image
Statistical Learning Theory, Capacity and Complexity

Schölkopf, B.

Complexity, 8(4):87-94, July 2003 (article)

Abstract
We give an exposition of the ideas of statistical learning theory, followed by a discussion of how a reinterpretation of the insights of learning theory could potentially also benefit our understanding of a certain notion of complexity.

Web DOI [BibTex]


no image
Dealing with large Diagonals in Kernel Matrices

Weston, J., Schölkopf, B., Eskin, E., Leslie, C., Noble, W.

Annals of the Institute of Statistical Mathematics, 55(2):391-408, June 2003 (article)

Abstract
In kernel methods, all the information about the training data is contained in the Gram matrix. If this matrix has large diagonal values, which arises for many types of kernels, then kernel methods do not perform well: We propose and test several methods for dealing with this problem by reducing the dynamic range of the matrix while preserving the positive definiteness of the Hessian of the quadratic programming problem that one has to solve when training a Support Vector Machine, which is a common kernel approach for pattern recognition.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
The em Algorithm for Kernel Matrix Completion with Auxiliary Data

Tsuda, K., Akaho, S., Asai, K.

Journal of Machine Learning Research, 4, pages: 67-81, May 2003 (article)

PDF [BibTex]

PDF [BibTex]


no image
Constructing Descriptive and Discriminative Non-linear Features: Rayleigh Coefficients in Kernel Feature Spaces

Mika, S., Rätsch, G., Weston, J., Schölkopf, B., Smola, A., Müller, K.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5):623-628, May 2003 (article)

Abstract
We incorporate prior knowledge to construct nonlinear algorithms for invariant feature extraction and discrimination. Employing a unified framework in terms of a nonlinearized variant of the Rayleigh coefficient, we propose nonlinear generalizations of Fisher‘s discriminant and oriented PCA using support vector kernel functions. Extensive simulations show the utility of our approach.

DOI [BibTex]

DOI [BibTex]


no image
A unifying computational framework for optimization and dynamic systemsapproaches to motor control

Mohajerian, P., Peters, J., Ijspeert, A., Schaal, S.

10th Joint Symposium on Neural Computation (JSNC 2003), 10, pages: 1, May 2003 (poster)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernel-based nonlinear blind source separation

Harmeling, S., Ziehe, A., Kawanabe, M., Müller, K.

Neural Computation, 15(5):1089-1124, May 2003 (article)

Abstract
We propose kTDSEP, a kernel-based algorithm for nonlinear blind source separation (BSS). It combines complementary research fields: kernel feature spaces and BSS using temporal information. This yields an efficient algorithm for nonlinear BSS with invertible nonlinearity. Key assumptions are that the kernel feature space is chosen rich enough to approximate the nonlinearity and that signals of interest contain temporal information. Both assumptions are fulfilled for a wide set of real-world applications. The algorithm works as follows: First, the data are (implicitly) mapped to a high (possibly infinite)—dimensional kernel feature space. In practice, however, the data form a smaller submanifold in feature space—even smaller than the number of training data points—a fact that has already been used by, for example, reduced set techniques for support vector machines. We propose to adapt to this effective dimension as a preprocessing step and to construct an orthonormal basis of this submanifold. The latter dimension-reduction step is essential for making the subsequent application of BSS methods computationally and numerically tractable. In the reduced space, we use a BSS algorithm that is based on second-order temporal decorrelation. Finally, we propose a selection procedure to obtain the original sources from the extracted nonlinear components automatically. Experiments demonstrate the excellent performance and efficiency of our kTDSEP algorithm for several problems of nonlinear BSS and for more than two sources.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]