Header logo is ei


2013


no image
Simultaneous PET/MR reveals Brain Function in Activated and Resting State on Metabolic, Hemodynamic and Multiple Temporal Scales

Wehrl, H., Hossain, M., Lankes, K., Liu, C., Bezrukov, I., Martirosian, P., Schick, F., Reischl, G., Pichler, B.

Nature Medicine, 19, pages: 1184–1189, 2013 (article)

Abstract
Combined positron emission tomography (PET) and magnetic resonance imaging (MRI) is a new tool to study functional processes in the brain. Here we study brain function in response to a barrel-field stimulus simultaneously using PET, which traces changes in glucose metabolism on a slow time scale, and functional MRI (fMRI), which assesses fast vascular and oxygenation changes during activation. We found spatial and quantitative discrepancies between the PET and the fMRI activation data. The functional connectivity of the rat brain was assessed by both modalities: the fMRI approach determined a total of nine known neural networks, whereas the PET method identified seven glucose metabolism–related networks. These results demonstrate the feasibility of combined PET-MRI for the simultaneous study of the brain at activation and rest, revealing comprehensive and complementary information to further decode brain function and brain networks.

Web DOI [BibTex]

2013

Web DOI [BibTex]


no image
A Guided Hybrid Genetic Algorithm for Feature Selection with Expensive Cost Functions

Jung, M., Zscheischler, J.

In Proceedings of the International Conference on Computational Science, 18, pages: 2337 - 2346, Procedia Computer Science, (Editors: Alexandrov, V and Lees, M and Krzhizhanovskaya, V and Dongarra, J and Sloot, PMA), Elsevier, Amsterdam, Netherlands, ICCS, 2013 (inproceedings)

Web DOI [BibTex]

Web DOI [BibTex]


no image
Finding Potential Support Vectors in Separable Classification Problems

Varagnolo, D., Del Favero, S., Dinuzzo, F., Schenato, L., Pillonetto, G.

IEEE Transactions on Neural Networks and Learning Systems, 24(11):1799-1813, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
Learning responsive robot behavior by imitation

Ben Amor, H., Vogt, D., Ewerton, M., Berger, E., Jung, B., Peters, J.

In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2013), pages: 3257-3264, IEEE, 2013 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Learning Skills with Motor Primitives

Peters, J., Kober, J., Mülling, K., Kroemer, O., Neumann, G.

In Proceedings of the 16th Yale Workshop on Adaptive and Learning Systems, 2013 (inproceedings)

[BibTex]

[BibTex]


no image
Scalable Influence Estimation in Continuous-Time Diffusion Networks

Du, N., Song, L., Gomez Rodriguez, M., Zha, H.

In Advances in Neural Information Processing Systems 26, pages: 3147-3155, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Rapid Distance-Based Outlier Detection via Sampling

Sugiyama, M., Borgwardt, KM.

In Advances in Neural Information Processing Systems 26, pages: 467-475, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Probabilistic Movement Primitives

Paraschos, A., Daniel, C., Peters, J., Neumann, G.

In Advances in Neural Information Processing Systems 26, pages: 2616-2624, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Causal Inference on Time Series using Restricted Structural Equation Models

Peters, J., Janzing, D., Schölkopf, B.

In Advances in Neural Information Processing Systems 26, pages: 154-162, (Editors: C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Regression-tree Tuning in a Streaming Setting

Kpotufe, S., Orabona, F.

In Advances in Neural Information Processing Systems 26, pages: 1788-1796, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Density estimation from unweighted k-nearest neighbor graphs: a roadmap

von Luxburg, U., Alamgir, M.

In Advances in Neural Information Processing Systems 26, pages: 225-233, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Open-Box Spectral Clustering: Applications to Medical Image Analysis

Schultz, T., Kindlmann, G.

IEEE Transactions on Visualization and Computer Graphics, 19(12):2100-2108, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
Comparative Classifier Evaluation for Web-Scale Taxonomies Using Power Law

Babbar, R., Partalas, I., Metzig, C., Gaussier, E., Amini, M.

In The Semantic Web: ESWC 2013 Satellite Events, Lecture Notes in Computer Science, Vol. 7955 , pages: 310-311, (Editors: P Cimiano and M Fernández and V Lopez and S Schlobach and J Völker), Springer, ESWC, 2013 (inproceedings)

Web [BibTex]

Web [BibTex]


no image
PAC-Bayes-Empirical-Bernstein Inequality

Tolstikhin, I. O., Seldin, Y.

In Advances in Neural Information Processing Systems 26, pages: 109-117, (Editors: C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
im3shape: a maximum likelihood galaxy shear measurement code for cosmic gravitational lensing

Zuntz, J., Kacprzak, T., Voigt, L., Hirsch, M., Rowe, B., Bridle, S.

Monthly Notices of the Royal Astronomical Society, 434(2):1604-1618, Oxford University Press, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
PLAL: Cluster-based active learning

Urner, R., Wulff, S., Ben-David, S.

In Proceedings of the 26th Annual Conference on Learning Theory, 30, pages: 376-397, (Editors: Shalev-Shwartz, S. and Steinwart, I.), JMLR, COLT, 2013 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Accurate detection of differential RNA processing

Drewe, P., Stegle, O., Hartmann, L., Kahles, A., Bohnert, R., Wachter, A., Borgwardt, K. M., Rätsch, G.

Nucleic Acids Research, 41(10):5189-5198, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
Significance of variable height-bandwidth group delay filters in the spectral reconstruction of speech

Devanshu, A., Raj, A., Hegde, R. M.

INTERSPEECH 2013, 14th Annual Conference of the International Speech Communication Association, pages: 1682-1686, 2013 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Monochromatic Bi-Clustering

Wulff, S., Urner, R., Ben-David, S.

In Proceedings of the 30th International Conference on Machine Learning, 28, pages: 145-153, (Editors: Dasgupta, S. and McAllester, D.), JMLR, ICML, 2013 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Detecting regulatory gene–environment interactions with unmeasured environmental factors

Fusi, N., Lippert, C., Borgwardt, K. M., Lawrence, N. D., Stegle, O.

Bioinformatics, 29(11):1382-1389, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
Automatic Malaria Diagnosis system

Mehrjou, A., Abbasian, T., Izadi, M.

In First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), pages: 205-211, 2013 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Generative Multiple-Instance Learning Models For Quantitative Electromyography

Adel, T., Smith, B., Urner, R., Stashuk, D., Lizotte, D. J.

In Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence, AUAI Press, UAI, 2013 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Fragmentation of Slow Wave Sleep after Onset of Complete Locked-In State

Soekadar, S. R., Born, J., Birbaumer, N., Bensch, M., Halder, S., Murguialday, A. R., Gharabaghi, A., Nijboer, F., Schölkopf, B., Martens, S.

Journal of Clinical Sleep Medicine, 9(9):951-953, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
Structural learning

Braun, D

Scholarpedia, 8(10):12312, October 2013 (article)

Abstract
Structural learning in motor control refers to a metalearning process whereby an agent extracts (abstract) invariants from its sensorimotor stream when experiencing a range of environments that share similar structure. Such invariants can then be exploited for faster generalization and learning-to-learn when experiencing novel, but related task environments.

DOI [BibTex]

DOI [BibTex]


no image
The effect of model uncertainty on cooperation in sensorimotor interactions

Grau-Moya, J, Hez, E, Pezzulo, G, Braun, DA

Journal of the Royal Society Interface, 10(87):1-11, October 2013 (article)

Abstract
Decision-makers have been shown to rely on probabilistic models for perception and action. However, these models can be incorrect or partially wrong in which case the decision-maker has to cope with model uncertainty. Model uncertainty has recently also been shown to be an important determinant of sensorimotor behaviour in humans that can lead to risk-sensitive deviations from Bayes optimal behaviour towards worst-case or best-case outcomes. Here, we investigate the effect of model uncertainty on cooperation in sensorimotor interactions similar to the stag-hunt game, where players develop models about the other player and decide between a pay-off-dominant cooperative solution and a risk-dominant, non-cooperative solution. In simulations, we show that players who allow for optimistic deviations from their opponent model are much more likely to converge to cooperative outcomes. We also implemented this agent model in a virtual reality environment, and let human subjects play against a virtual player. In this game, subjects' pay-offs were experienced as forces opposing their movements. During the experiment, we manipulated the risk sensitivity of the computer player and observed human responses. We found not only that humans adaptively changed their level of cooperation depending on the risk sensitivity of the computer player but also that their initial play exhibited characteristic risk-sensitive biases. Our results suggest that model uncertainty is an important determinant of cooperation in two-player sensorimotor interactions.

DOI [BibTex]

DOI [BibTex]


no image
Thermodynamics as a theory of decision-making with information-processing costs

Ortega, PA, Braun, DA

Proceedings of the Royal Society of London A, 469(2153):1-18, May 2013 (article)

Abstract
Perfectly rational decision-makers maximize expected utility, but crucially ignore the resource costs incurred when determining optimal actions. Here, we propose a thermodynamically inspired formalization of bounded rational decision-making where information processing is modelled as state changes in thermodynamic systems that can be quantified by differences in free energy. By optimizing a free energy, bounded rational decision-makers trade off expected utility gains and information-processing costs measured by the relative entropy. As a result, the bounded rational decision-making problem can be rephrased in terms of well-known variational principles from statistical physics. In the limit when computational costs are ignored, the maximum expected utility principle is recovered. We discuss links to existing decision-making frameworks and applications to human decision-making experiments that are at odds with expected utility theory. Since most of the mathematical machinery can be borrowed from statistical physics, the main contribution is to re-interpret the formalism of thermodynamic free-energy differences in terms of bounded rational decision-making and to discuss its relationship to human decision-making experiments.

DOI [BibTex]

DOI [BibTex]


no image
Abstraction in Decision-Makers with Limited Information Processing Capabilities

Genewein, T, Braun, DA

pages: 1-9, NIPS Workshop Planning with Information Constraints for Control, Reinforcement Learning, Computational Neuroscience, Robotics and Games, December 2013 (conference)

Abstract
A distinctive property of human and animal intelligence is the ability to form abstractions by neglecting irrelevant information which allows to separate structure from noise. From an information theoretic point of view abstractions are desirable because they allow for very efficient information processing. In artificial systems abstractions are often implemented through computationally costly formations of groups or clusters. In this work we establish the relation between the free-energy framework for decision-making and rate-distortion theory and demonstrate how the application of rate-distortion for decision-making leads to the emergence of abstractions. We argue that abstractions are induced due to a limit in information processing capacity.

link (url) [BibTex]

link (url) [BibTex]


no image
Bounded Rational Decision-Making in Changing Environments

Grau-Moya, J, Braun, DA

pages: 1-9, NIPS Workshop Planning with Information Constraints for Control, Reinforcement Learning, Computational Neuroscience, Robotics and Games, December 2013 (conference)

Abstract
A perfectly rational decision-maker chooses the best action with the highest utility gain from a set of possible actions. The optimality principles that describe such decision processes do not take into account the computational costs of finding the optimal action. Bounded rational decision-making addresses this problem by specifically trading off information-processing costs and expected utility. Interestingly, a similar trade-off between energy and entropy arises when describing changes in thermodynamic systems. This similarity has been recently used to describe bounded rational agents. Crucially, this framework assumes that the environment does not change while the decision-maker is computing the optimal policy. When this requirement is not fulfilled, the decision-maker will suffer inefficiencies in utility, that arise because the current policy is optimal for an environment in the past. Here we borrow concepts from non-equilibrium thermodynamics to quantify these inefficiencies and illustrate with simulations its relationship with computational resources.

link (url) [BibTex]

link (url) [BibTex]

2012


no image
Jensen-Bregman LogDet Divergence with Application to Efficient Similarity Search for Covariance Matrices

Cherian, A., Sra, S., Banerjee, A., Papanikolopoulos, N.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(9):2161-2174, December 2012 (article)

DOI [BibTex]

2012

DOI [BibTex]


no image
Hippocampal-Cortical Interaction during Periods of Subcortical Silence

Logothetis, N., Eschenko, O., Murayama, Y., Augath, M., Steudel, T., Evrard, H., Besserve, M., Oeltermann, A.

Nature, 491, pages: 547-553, November 2012 (article)

Abstract
Hippocampal ripples, episodic high-frequency field-potential oscillations primarily occurring during sleep and calmness, have been described in mice, rats, rabbits, monkeys and humans, and so far they have been associated with retention of previously acquired awake experience. Although hippocampal ripples have been studied in detail using neurophysiological methods, the global effects of ripples on the entire brain remain elusive, primarily owing to a lack of methodologies permitting concurrent hippocampal recordings and whole-brain activity mapping. By combining electrophysiological recordings in hippocampus with ripple-triggered functional magnetic resonance imaging, here we show that most of the cerebral cortex is selectively activated during the ripples, whereas most diencephalic, midbrain and brainstem regions are strongly and consistently inhibited. Analysis of regional temporal response patterns indicates that thalamic activity suppression precedes the hippocampal population burst, which itself is temporally bounded by massive activations of association and primary cortical areas. These findings suggest that during off-line memory consolidation, synergistic thalamocortical activity may be orchestrating a privileged interaction state between hippocampus and cortex by silencing the output of subcortical centres involved in sensory processing or potentially mediating procedural learning. Such a mechanism would cause minimal interference, enabling consolidation of hippocampus-dependent memory.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Thermodynamic limits of dynamic cooling

Allahverdyan, A., Hovhannisyan, K., Janzing, D., Mahler, G.

Physical Review E, 84(4):16, October 2012 (article)

Abstract
We study dynamic cooling, where an externally driven two-level system is cooled via reservoir, a quantum system with initial canonical equilibrium state. We obtain explicitly the minimal possible temperature Tmin>0 reachable for the two-level system. The minimization goes over all unitary dynamic processes operating on the system and reservoir and over the reservoir energy spectrum. The minimal work needed to reach Tmin grows as 1/Tmin. This work cost can be significantly reduced, though, if one is satisfied by temperatures slightly above Tmin. Our results on Tmin>0 prove unattainability of the absolute zero temperature without ambiguities that surround its derivation from the entropic version of the third law. We also study cooling via a reservoir consisting of N≫1 identical spins. Here we show that Tmin∝1/N and find the maximal cooling compatible with the minimal work determined by the free energy. Finally we discuss cooling by reservoir with an initially microcanonic state and show that although a purely microcanonic state can yield the zero temperature, the unattainability is recovered when taking into account imperfections in preparing the microcanonic state.

Web DOI [BibTex]

Web DOI [BibTex]


no image
GLIDE: GPU-Based Linear Regression for Detection of Epistasis

Kam-Thong, T., Azencott, C., Cayton, L., Pütz, B., Altmann, A., Karbalai, N., Sämann, P., Schölkopf, B., Müller-Myhsok, B., Borgwardt, K.

Human Heredity, 73(4):220-236, September 2012 (article)

Abstract
Due to recent advances in genotyping technologies, mapping phenotypes to single loci in the genome has become a standard technique in statistical genetics. However, one-locus mapping fails to explain much of the phenotypic variance in complex traits. Here, we present GLIDE, which maps phenotypes to pairs of genetic loci and systematically searches for the epistatic interactions expected to reveal part of this missing heritability. GLIDE makes use of the computational power of consumer-grade graphics cards to detect such interactions via linear regression. This enabled us to conduct a systematic two-locus mapping study on seven disease data sets from the Wellcome Trust Case Control Consortium and on in-house hippocampal volume data in 6 h per data set, while current single CPU-based approaches require more than a year’s time to complete the same task.

Web [BibTex]

Web [BibTex]


no image
Fast projection onto mixed-norm balls with applications

Sra, S.

Minining and Knowledge Discovery (DMKD), 25(2):358-377, September 2012 (article)

DOI [BibTex]

DOI [BibTex]


no image
Bayesian estimation of free energies from equilibrium simulations

Habeck, M.

Physical Review Letters, 109(10):5, September 2012 (article)

Abstract
Free energy calculations are an important tool in statistical physics and biomolecular simulation. This Letter outlines a Bayesian method to estimate free energies from equilibrium Monte Carlo simulations. A Gibbs sampler is developed that allows efficient sampling of free energies and the density of states. The Gibbs sampling output can be used to estimate expected free energy differences and their uncertainties. The probabilistic formulation offers a unifying framework for existing methods such as the weighted histogram analysis method and the multistate Bennett acceptance ratio; both are shown to be approximate versions of the full probabilistic treatment.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Influence Maximization in Continuous Time Diffusion Networks

Gomez Rodriguez, M., Schölkopf, B.

In Proceedings of the 29th International Conference on Machine Learning, pages: 313-320, (Editors: J, Langford and J, Pineau), Omnipress, New York, NY, USA, ICML, July 2012 (inproceedings)

Web [BibTex]

Web [BibTex]


no image
Submodular Inference of Diffusion Networks from Multiple Trees

Gomez Rodriguez, M., Schölkopf, B.

In Proceedings of the 29th International Conference on Machine Learning , pages: 489-496, (Editors: J Langford, and J Pineau), Omnipress, New York, NY, USA, ICML, July 2012 (inproceedings)

Web [BibTex]

Web [BibTex]


Quasi-Newton Methods: A New Direction
Quasi-Newton Methods: A New Direction

Hennig, P., Kiefel, M.

In Proceedings of the 29th International Conference on Machine Learning, pages: 25-32, ICML ’12, (Editors: John Langford and Joelle Pineau), Omnipress, New York, NY, USA, ICML, July 2012 (inproceedings)

Abstract
Four decades after their invention, quasi- Newton methods are still state of the art in unconstrained numerical optimization. Although not usually interpreted thus, these are learning algorithms that fit a local quadratic approximation to the objective function. We show that many, including the most popular, quasi-Newton methods can be interpreted as approximations of Bayesian linear regression under varying prior assumptions. This new notion elucidates some shortcomings of classical algorithms, and lights the way to a novel nonparametric quasi-Newton method, which is able to make more efficient use of available information at computational cost similar to its predecessors.

website+code pdf link (url) [BibTex]

website+code pdf link (url) [BibTex]


no image
Image denoising: Can plain Neural Networks compete with BM3D?

Burger, H., Schuler, C., Harmeling, S.

In pages: 2392 - 2399, 25th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2012 (inproceedings)

Abstract
Image denoising can be described as the problem of mapping from a noisy image to a noise-free image. The best currently available denoising methods approximate this mapping with cleverly engineered algorithms. In this work we attempt to learn this mapping directly with a plain multi layer perceptron (MLP) applied to image patches. While this has been done before, we will show that by training on large image databases we are able to compete with the current state-of-the-art image denoising methods. Furthermore, our approach is easily adapted to less extensively studied types of noise (by merely exchanging the training data), for which we achieve excellent results as well.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
PAC-Bayesian Inequalities for Martingales

Seldin, Y., Laviolette, F., Cesa-Bianchi, N., Shawe-Taylor, J., Auer, P.

IEEE Transactions on Information Theory, 58(12):7086-7093, June 2012 (article)

Abstract
We present a set of high-probability inequalities that control the concentration of weighted averages of multiple (possibly uncountably many) simultaneously evolving and interdependent martingales. We also present a comparison inequality that bounds expectation of a convex function of martingale difference type variables by expectation of the same function of independent Bernoulli variables. This inequality is applied to derive a tighter analog of Hoeffding-Azuma inequality.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Climate classifications: the value of unsupervised clustering

Zscheischler, J., Mahecha, M., Harmeling, S.

In Proceedings of the International Conference on Computational Science , 9, pages: 897-906, Procedia Computer Science, (Editors: H. Ali, Y. Shi, D. Khazanchi, M. Lees, G.D. van Albada, J. Dongarra, P.M.A. Sloot, J. Dongarra), Elsevier, Amsterdam, Netherlands, ICCS, June 2012 (inproceedings)

Abstract
Classifying the land surface according to di erent climate zones is often a prerequisite for global diagnostic or predictive modelling studies. Classical classifications such as the prominent K¨oppen–Geiger (KG) approach rely on heuristic decision rules. Although these heuristics may transport some process understanding, such a discretization may appear “arbitrary” from a data oriented perspective. In this contribution we compare the precision of a KG classification to an unsupervised classification (k-means clustering). Generally speaking, we revisit the problem of “climate classification” by investigating the inherent patterns in multiple data streams in a purely data driven way. One question is whether we can reproduce the KG boundaries by exploring di erent combinations of climate and remotely sensed vegetation variables. In this context we also investigate whether climate and vegetation variables build similar clusters. In terms of statistical performances, k-means clearly outperforms classical climate classifications. However, a subsequent stability analysis only reveals a meaningful number of clusters if both climate and vegetation data are considered in the analysis. This is a setback for the hope to explain vegetation by means of climate alone. Clearly, classification schemes like K¨oppen-Geiger will play an important role in the future. However, future developments in this area need to be assessed based on data driven approaches.

Web DOI [BibTex]

Web DOI [BibTex]


Entropy Search for Information-Efficient Global Optimization
Entropy Search for Information-Efficient Global Optimization

Hennig, P., Schuler, C.

Journal of Machine Learning Research, 13, pages: 1809-1837, -, June 2012 (article)

Abstract
Contemporary global optimization algorithms are based on local measures of utility, rather than a probability measure over location and value of the optimum. They thus attempt to collect low function values, not to learn about the optimum. The reason for the absence of probabilistic global optimizers is that the corresponding inference problem is intractable in several ways. This paper develops desiderata for probabilistic optimization algorithms, then presents a concrete algorithm which addresses each of the computational intractabilities with a sequence of approximations and explicitly adresses the decision problem of maximizing information gain from each evaluation.

PDF Web Project Page [BibTex]

PDF Web Project Page [BibTex]


no image
A Neuromorphic Architecture for Object Recognition and Motion Anticipation Using Burst-STDP

Nere, A., Olcese, U., Balduzzi, D., Tononi, G.

PLoS ONE, 7(5):17, May 2012 (article)

Abstract
In this work we investigate the possibilities offered by a minimal framework of artificial spiking neurons to be deployed in silico. Here we introduce a hierarchical network architecture of spiking neurons which learns to recognize moving objects in a visual environment and determine the correct motor output for each object. These tasks are learned through both supervised and unsupervised spike timing dependent plasticity (STDP). STDP is responsible for the strengthening (or weakening) of synapses in relation to pre- and post-synaptic spike times and has been described as a Hebbian paradigm taking place both in vitro and in vivo. We utilize a variation of STDP learning, called burst-STDP, which is based on the notion that, since spikes are expensive in terms of energy consumption, then strong bursting activity carries more information than single (sparse) spikes. Furthermore, this learning algorithm takes advantage of homeostatic renormalization, which has been hypothesized to promote memory consolidation during NREM sleep. Using this learning rule, we design a spiking neural network architecture capable of object recognition, motion detection, attention towards important objects, and motor control outputs. We demonstrate the abilities of our design in a simple environment with distractor objects, multiple objects moving concurrently, and in the presence of noise. Most importantly, we show how this neural network is capable of performing these tasks using a simple leaky-integrate-and-fire (LIF) neuron model with binary synapses, making it fully compatible with state-of-the-art digital neuromorphic hardware designs. As such, the building blocks and learning rules presented in this paper appear promising for scalable fully neuromorphic systems to be implemented in hardware chips.

PDF Web DOI [BibTex]


no image
Online Kernel-based Learning for Task-Space Tracking Robot Control

Nguyen-Tuong, D., Peters, J.

IEEE Transactions on Neural Networks and Learning Systems, 23(9):1417-1425, May 2012 (article)

Abstract
Abstract—Task-space control of redundant robot systems based on analytical models is known to be susceptive to modeling errors. Here, data driven model learning methods may present an interesting alternative approach. However, learning models for task-space tracking control from sampled data is an illposed problem. In particular, the same input data point can yield many different output values, which can form a non-convex solution space. Because the problem is ill-posed, models cannot be learned from such data using common regression methods. While learning of task-space control mappings is globally illposed, it has been shown in recent work that it is locally a well-defined problem. In this paper, we use this insight to formulate a local, kernel-based learning approach for online model learning for task-space tracking control. We propose a parametrization for the local model which makes an application in task-space tracking control of redundant robots possible. The model parametrization further allows us to apply the kerneltrick and, therefore, enables a formulation within the kernel learning framework. For evaluations, we show the ability of the method for online model learning for task-space tracking control of redundant robots.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
glm-ie: The Generalised Linear Models Inference and Estimation Toolbox

Nickisch, H.

Journal of Machine Learning Research, 13, pages: 1699-1703, May 2012 (article)

Abstract
The glm-ie toolbox contains scalable estimation routines for GLMs (generalised linear models) and SLMs (sparse linear models) as well as an implementation of a scalable convex variational Bayesian inference relaxation. We designed the glm-ie package to be simple, generic and easily expansible. Most of the code is written in Matlab including some The code is fully compatible to both Matlab 7.x and GNU Octave 3.3.x. Abstract Probabilistic classification, sparse linear modelling and logistic regression are covered in a common algorithmical framework.

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Information-geometric approach to inferring causal directions

Janzing, D., Mooij, J., Zhang, K., Lemeire, J., Zscheischler, J., Daniušis, P., Steudel, B., Schölkopf, B.

Artificial Intelligence, 182-183, pages: 1-31, May 2012 (article)

Abstract
While conventional approaches to causal inference are mainly based on conditional (in)dependences, recent methods also account for the shape of (conditional) distributions. The idea is that the causal hypothesis “X causes Y” imposes that the marginal distribution PX and the conditional distribution PY|X represent independent mechanisms of nature. Recently it has been postulated that the shortest description of the joint distribution PX,Y should therefore be given by separate descriptions of PX and PY|X. Since description length in the sense of Kolmogorov complexity is uncomputable, practical implementations rely on other notions of independence. Here we define independence via orthogonality in information space. This way, we can explicitly describe the kind of dependence that occurs between PY and PX|Y making the causal hypothesis “Y causes X” implausible. Remarkably, this asymmetry between cause and effect becomes particularly simple if X and Y are deterministically related. We present an inference method that works in this case. We also discuss some theoretical results for the non-deterministic case although it is not clear how to employ them for a more general inference method.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Sparse regularized regression identifies behaviorally-relevant stimulus features from psychophysical data

Schönfelder, V., Wichmann, F.

Journal of the Acoustical Society of America, 131(5):3953-3969, May 2012 (article)

Abstract
As a prerequisite to quantitative psychophysical models of sensory processing it is necessary to learn to what extent decisions in behavioral tasks depend on specific stimulus features, the perceptual cues. Based on relative linear combination weights, this study demonstrates how stimulus-response data can be analyzed in this regard relying on an L1-regularized multiple logistic regression, a modern statistical procedure developed in machine learning. This method prevents complex models from over-fitting to noisy data. In addition, it enforces “sparse” solutions, a computational approximation to the postulate that a good model should contain the minimal set of predictors necessary to explain the data. In simulations, behavioral data from a classical auditory tone-in-noise detection task were generated. The proposed method is shown to precisely identify observer cues from a large set of covarying, interdependent stimulus features—a setting where standard correlational and regression methods fail. The proposed method succeeds for a wide range of signal-to-noise ratios and for deterministic as well as probabilistic observers. Furthermore, the detailed decision rules of the simulated observers were reconstructed from the estimated linear model weights allowing predictions of responses on the basis of individual stimuli.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Learning Tracking Control with Forward Models

Bócsi, B., Hennig, P., Csató, L., Peters, J.

In pages: 259 -264, IEEE International Conference on Robotics and Automation (ICRA), May 2012 (inproceedings)

Abstract
Performing task-space tracking control on redundant robot manipulators is a difficult problem. When the physical model of the robot is too complex or not available, standard methods fail and machine learning algorithms can have advantages. We propose an adaptive learning algorithm for tracking control of underactuated or non-rigid robots where the physical model of the robot is unavailable. The control method is based on the fact that forward models are relatively straightforward to learn and local inversions can be obtained via local optimization. We use sparse online Gaussian process inference to obtain a flexible probabilistic forward model and second order optimization to find the inverse mapping. Physical experiments indicate that this approach can outperform state-of-the-art tracking control algorithms in this context.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A Kernel-based Approach to Direct Action Perception

Kroemer, O., Ugur, E., Oztop, E., Peters, J.

In International Conference on Robotics and Automation (ICRA 2012), pages: 2605-2610, IEEE, IEEE International Conference on Robotics and Automation (ICRA), May 2012 (inproceedings)

Abstract
The direct perception of actions allows a robot to predict the afforded actions of observed novel objects. In addition to learning which actions are afforded, the robot must also learn to adapt its actions according to the object being manipulated. In this paper, we present a non-parametric approach to representing the affordance-bearing subparts of objects. This representation forms the basis of a kernel function for computing the similarity between different subparts. Using this kernel function, the robot can learn the required mappings to perform direct action perception. The proposed approach was successfully implemented on a real robot, which could then quickly learn to generalize grasping and pouring actions to novel objects.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Feature Selection via Dependence Maximization

Song, L., Smola, A., Gretton, A., Bedo, J., Borgwardt, K.

Journal of Machine Learning Research, 13, pages: 1393-1434, May 2012 (article)

Abstract
We introduce a framework of feature selection based on dependence maximization between the selected features and the labels of an estimation problem, using the Hilbert-Schmidt Independence Criterion. The key idea is that good features should be highly dependent on the labels. Our approach leads to a greedy procedure for feature selection. We show that a number of existing feature selectors are special cases of this framework. Experiments on both artificial and real-world data show that our feature selector works well in practice.

PDF [BibTex]

PDF [BibTex]


no image
Accelerating Nearest Neighbor Search on Manycore Systems

Cayton, L.

In Parallel Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International, pages: 402-413, IPDPS, May 2012 (inproceedings)

Abstract
We develop methods for accelerating metric similarity search that are effective on modern hardware. Our algorithms factor into easily parallelizable components, making them simple to deploy and efficient on multicore CPUs and GPUs. Despite the simple structure of our algorithms, their search performance is provably sublinear in the size of the database, with a factor dependent only on its intrinsic dimensionality. We demonstrate that our methods provide substantial speedups on a range of datasets and hardware platforms. In particular, we present results on a 48-core server machine, on graphics hardware, and on a multicore desktop.

Web DOI [BibTex]

Web DOI [BibTex]