Header logo is ei


2001


no image
Structure and Functionality of a Designed p53 Dimer.

Davison, TS., Nie, X., Ma, W., Lin, Y., Kay, C., Benchimol, S., Arrowsmith, C.

Journal of Molecular Biology, 307(2):605-617, March 2001 (article)

Abstract
P53 is a homotetrameric tumor suppressor protein involved in transcriptional control of genes that regulate cell proliferation and death. In order to probe the role that oligomerization plays in this capacity, we have previously designed and characterized a series of p53 proteins with altered oligomeric states through hydrophilc substitution of residues Met340 or Leu344 in the normally tetrameric oligomerization domain. Although such mutations have little effect on the overall secondary structural content of the oligomerization domain, both solubility and the resistance to thermal denaturation are substantially reduced relative to that of the wild-type domain. Here, we report the design and characterization of a double-mutant p53 with alterations of residues at positions Met340 and Leu344. The double-mutations Met340Glu/Leu344Lys and Met340Gln/Leu344Arg resulted in distinct dimeric forms of the protein. Furthermore, we have verified by NMR structure determination that the double-mutant Met340Gln/Leu344Arg is essentially a "half-tetramer". Analysis of the in vivo activities of full-length p53 oligomeric mutants reveals that while cell-cycle arrest requires tetrameric p53, transcriptional transactivation activity of monomers and dimers retain roughly background and half of the wild-type activity, respectively.

Web [BibTex]

2001

Web [BibTex]


no image
An Introduction to Kernel-Based Learning Algorithms

Müller, K., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.

IEEE Transactions on Neural Networks, 12(2):181-201, March 2001 (article)

Abstract
This paper provides an introduction to support vector machines, kernel Fisher discriminant analysis, and kernel principal component analysis, as examples for successful kernel-based learning methods. We first give a short background about Vapnik-Chervonenkis theory and kernel feature spaces and then proceed to kernel based learning in supervised and unsupervised scenarios including practical and algorithmic considerations. We illustrate the usefulness of kernel algorithms by discussing applications such as optical character recognition and DNA analysis

DOI [BibTex]

DOI [BibTex]


no image
Estimating the support of a high-dimensional distribution.

Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.

Neural Computation, 13(7):1443-1471, March 2001 (article)

Abstract
Suppose you are given some data set drawn from an underlying probability distribution P and you want to estimate a “simple” subset S of input space such that the probability that a test point drawn from P lies outside of S equals some a priori specified value between 0 and 1. We propose a method to approach this problem by trying to estimate a function f that is positive on S and negative on the complement. The functional form of f is given by a kernel expansion in terms of a potentially small subset of the training data; it is regularized by controlling the length of the weight vector in an associated feature space. The expansion coefficients are found by solving a quadratic programming problem, which we do by carrying out sequential optimization over pairs of input patterns. We also provide a theoretical analysis of the statistical performance of our algorithm. The algorithm is a natural extension of the support vector algorithm to the case of unlabeled data.

Web DOI [BibTex]

Web DOI [BibTex]


no image
The psychometric function: II. Bootstrap-based confidence intervals and sampling

Wichmann, F., Hill, N.

Perception and Psychophysics, 63 (8), pages: 1314-1329, 2001 (article)

PDF [BibTex]

PDF [BibTex]


no image
The psychometric function: I. Fitting, sampling and goodness-of-fit

Wichmann, F., Hill, N.

Perception and Psychophysics, 63 (8), pages: 1293-1313, 2001 (article)

Abstract
The psychometric function relates an observer'sperformance to an independent variable, usually some physical quantity of a stimulus in a psychophysical task. This paper, together with its companion paper (Wichmann & Hill, 2001), describes an integrated approach to (1) fitting psychometric functions, (2) assessing the goodness of fit, and (3) providing confidence intervals for the function'sparameters and other estimates derived from them, for the purposes of hypothesis testing. The present paper deals with the first two topics, describing a constrained maximum-likelihood method of parameter estimation and developing several goodness-of-fit tests. Using Monte Carlo simulations, we deal with two specific difficulties that arise when fitting functions to psychophysical data. First, we note that human observers are prone to stimulus-independent errors (or lapses ). We show that failure to account for this can lead to serious biases in estimates of the psychometric function'sparameters and illustrate how the problem may be overcome. Second, we note that psychophysical data sets are usually rather small by the standards required by most of the commonly applied statistical tests. We demonstrate the potential errors of applying traditional X^2 methods to psychophysical data and advocate use of Monte Carlo resampling techniques that do not rely on asymptotic theory. We have made available the software to implement our methods

PDF [BibTex]

PDF [BibTex]


no image
The control structure of artificial creatures

Zhou, D., Dai, R.

Artificial Life and Robotics, 5(3), 2001, invited article (article)

Web [BibTex]

Web [BibTex]


no image
Markovian domain fingerprinting: statistical segmentation of protein sequences

Bejerano, G., Seldin, Y., Margalit, H., Tishby, N.

Bioinformatics, 17(10):927-934, 2001 (article)

PDF Web [BibTex]

PDF Web [BibTex]

2000


no image
Knowledge Discovery in Databases: An Information Retrieval Perspective

Ong, CS.

Malaysian Journal of Computer Science, 13(2):54-63, December 2000 (article)

Abstract
The current trend of increasing capabilities in data generation and collection has resulted in an urgent need for data mining applications, also called knowledge discovery in databases. This paper identifies and examines the issues involved in extracting useful grains of knowledge from large amounts of data. It describes a framework to categorise data mining systems. The author also gives an overview of the issues pertaining to data pre processing, as well as various information gathering methodologies and techniques. The paper covers some popular tools such as classification, clustering, and generalisation. A summary of statistical and machine learning techniques used currently is also provided.

PDF [BibTex]

2000

PDF [BibTex]


no image
A Simple Iterative Approach to Parameter Optimization

Zien, A., Zimmer, R., Lengauer, T.

Journal of Computational Biology, 7(3,4):483-501, November 2000 (article)

Abstract
Various bioinformatics problems require optimizing several different properties simultaneously. For example, in the protein threading problem, a scoring function combines the values for different parameters of possible sequence-to-structure alignments into a single score to allow for unambiguous optimization. In this context, an essential question is how each property should be weighted. As the native structures are known for some sequences, a partial ordering on optimal alignments to other structures, e.g., derived from structural comparisons, may be used to adjust the weights. To resolve the arising interdependence of weights and computed solutions, we propose a heuristic approach: iterating the computation of solutions (here, threading alignments) given the weights and the estimation of optimal weights of the scoring function given these solutions via systematic calibration methods. For our application (i.e., threading), this iterative approach results in structurally meaningful weights that significantly improve performance on both the training and the test data sets. In addition, the optimized parameters show significant improvements on the recognition rate for a grossly enlarged comprehensive benchmark, a modified recognition protocol as well as modified alignment types (local instead of global and profiles instead of single sequences). These results show the general validity of the optimized weights for the given threading program and the associated scoring contributions.

Web [BibTex]

Web [BibTex]


no image
Identification of Drug Target Proteins

Zien, A., Küffner, R., Mevissen, T., Zimmer, R., Lengauer, T.

ERCIM News, 43, pages: 16-17, October 2000 (article)

Web [BibTex]

Web [BibTex]


no image
Engineering Support Vector Machine Kernels That Recognize Translation Initiation Sites

Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lengauer, T., Müller, K.

Bioinformatics, 16(9):799-807, September 2000 (article)

Abstract
Motivation: In order to extract protein sequences from nucleotide sequences, it is an important step to recognize points at which regions start that code for proteins. These points are called translation initiation sites (TIS). Results: The task of finding TIS can be modeled as a classification problem. We demonstrate the applicability of support vector machines for this task, and show how to incorporate prior biological knowledge by engineering an appropriate kernel function. With the described techniques the recognition performance can be improved by 26% over leading existing approaches. We provide evidence that existing related methods (e.g. ESTScan) could profit from advanced TIS recognition.

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Meanfield Approach to the Thermodynamics of a Protein-Solvent System with Application to the Oligomerization of the Tumour Suppressor p53.

Noolandi, J., Davison, TS., Vokel, A., Nie, F., Kay, C., Arrowsmith, C.

Proceedings of the National Academy of Sciences of the United States of America, 97(18):9955-9960, August 2000 (article)

Web [BibTex]

Web [BibTex]


no image
New Support Vector Algorithms

Schölkopf, B., Smola, A., Williamson, R., Bartlett, P.

Neural Computation, 12(5):1207-1245, May 2000 (article)

Abstract
We propose a new class of support vector algorithms for regression and classification. In these algorithms, a parameter {nu} lets one effectively control the number of support vectors. While this can be useful in its own right, the parameterization has the additional benefit of enabling us to eliminate one of the other free parameters of the algorithm: the accuracy parameter {epsilon} in the regression case, and the regularization constant C in the classification case. We describe the algorithms, give some theoretical results concerning the meaning and the choice of {nu}, and report experimental results.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Bounds on Error Expectation for Support Vector Machines

Vapnik, V., Chapelle, O.

Neural Computation, 12(9):2013-2036, 2000 (article)

Abstract
We introduce the concept of span of support vectors (SV) and show that the generalization ability of support vector machines (SVM) depends on this new geometrical concept. We prove that the value of the span is always smaller (and can be much smaller) than the diameter of the smallest sphere containing th e support vectors, used in previous bounds. We also demonstate experimentally that the prediction of the test error given by the span is very accurate and has direct application in model selection (choice of the optimal parameters of the SVM)

GZIP [BibTex]

GZIP [BibTex]