Header logo is ei


2007


no image
Center-surround filters emerge from optimizing predictivity in a free-viewing task

Kienzle, W., Wichmann, F., Schölkopf, B., Franz, M.

Proceedings of the Computational and Systems Neuroscience Meeting 2007 (COSYNE), 4, pages: 207, February 2007 (poster)

PDF Web [BibTex]

2007

PDF Web [BibTex]


no image
Nonlinear Receptive Field Analysis: Making Kernel Methods Interpretable

Kienzle, W., Macke, J., Wichmann, F., Schölkopf, B., Franz, M.

Computational and Systems Neuroscience Meeting 2007 (COSYNE 2007), 4, pages: 16, February 2007 (poster)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Unsupervised learning of a steerable basis for invariant image representations

Bethge, M., Gerwinn, S., Macke, J.

In Human Vision and Electronic Imaging XII, pages: 1-12, (Editors: Rogowitz, B. E.), SPIE, Bellingham, WA, USA, SPIE Human Vision and Electronic Imaging Conference, February 2007 (inproceedings)

Abstract
There are two aspects to unsupervised learning of invariant representations of images: First, we can reduce the dimensionality of the representation by finding an optimal trade-off between temporal stability and informativeness. We show that the answer to this optimization problem is generally not unique so that there is still considerable freedom in choosing a suitable basis. Which of the many optimal representations should be selected? Here, we focus on this second aspect, and seek to find representations that are invariant under geometrical transformations occuring in sequences of natural images. We utilize ideas of steerability and Lie groups, which have been developed in the context of filter design. In particular, we show how an anti-symmetric version of canonical correlation analysis can be used to learn a full-rank image basis which is steerable with respect to rotations. We provide a geometric interpretation of this algorithm by showing that it finds the two-dimensional eigensubspaces of the avera ge bivector. For data which exhibits a variety of transformations, we develop a bivector clustering algorithm, which we use to learn a basis of generalized quadrature pairs (i.e. complex cells) from sequences of natural images.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Estimating Population Receptive Fields in Space and Time

Macke, J., Zeck, G., Bethge, M.

Computational and Systems Neuroscience Meeting 2007 (COSYNE 2007), 4, pages: 44, February 2007 (poster)

PDF Web [BibTex]

PDF Web [BibTex]


no image
New Margin- and Evidence-Based Approaches for EEG Signal Classification

Hill, N., Farquhar, J.

Invited talk at the FaSor Jahressymposium, February 2007 (talk)

PDF [BibTex]

PDF [BibTex]


no image
A Subspace Kernel for Nonlinear Feature Extraction

Wu, M., Farquhar, J.

In IJCAI-07, pages: 1125-1130, (Editors: Veloso, M. M.), AAAI Press, Menlo Park, CA, USA, International Joint Conference on Artificial Intelligence, January 2007 (inproceedings)

Abstract
Kernel based nonlinear Feature Extraction (KFE) or dimensionality reduction is a widely used pre-processing step in pattern classification and data mining tasks. Given a positive definite kernel function, it is well known that the input data are implicitly mapped to a feature space with usually very high dimensionality. The goal of KFE is to find a low dimensional subspace of this feature space, which retains most of the information needed for classification or data analysis. In this paper, we propose a subspace kernel based on which the feature extraction problem is transformed to a kernel parameter learning problem. The key observation is that when projecting data into a low dimensional subspace of the feature space, the parameters that are used for describing this subspace can be regarded as the parameters of the kernel function between the projected data. Therefore current kernel parameter learning methods can be adapted to optimize this parameterized kernel function. Experimental results are provided to validate the effectiveness of the proposed approach.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Graph kernels for disease outcome prediction from protein-protein interaction networks

Borgwardt, KM., Vishwanathan, SVN., Schraudolph, N., Kriegel, H-P.

In pages: 4-15, (Editors: Altman, R.B. A.K. Dunker, L. Hunter, T. Murray, T.E. Klein), World Scientific, Hackensack, NJ, USA, Pacific Symposium on Biocomputing (PSB), January 2007 (inproceedings)

Abstract
It is widely believed that comparing discrepancies in the protein-protein interaction (PPI) networks of individuals will become an important tool in understanding and preventing diseases. Currently PPI networks for individuals are not available, but gene expression data is becoming easier to obtain and allows us to represent individuals by a co-integrated gene expression/protein interaction network. Two major problems hamper the application of graph kernels – state-of-the-art methods for whole-graph comparison – to compare PPI networks. First, these methods do not scale to graphs of the size of a PPI network. Second, missing edges in these interaction networks are biologically relevant for detecting discrepancies, yet, these methods do not take this into account. In this article we present graph kernels for biological network comparison that are fast to compute and take into account missing interactions. We evaluate their practical performance on two datasets of co-integrated gene expression/PPI networks.

PDF [BibTex]

PDF [BibTex]


no image
Independent Factor Reinforcement Learning for Portfolio Management

Li, J., Zhang, K., Chan, L.

In Proceedings of the 8th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2007), pages: 1020-1031, (Editors: H Yin and P Tiño and E Corchado and W Byrne and X Yao), Springer, Berlin, Germany, 8th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL), 2007 (inproceedings)

Web [BibTex]

Web [BibTex]


no image
Kernel-Based Nonlinear Independent Component Analysis

Zhang, K., Chan, L.

In Independent Component Analysis and Signal Separation, 7th International Conference, ICA 2007, pages: 301-308, (Editors: M E Davies and C J James and S A Abdallah and M D Plumbley), Springer, 7th International Conference on Independent Component Analysis and Signal Separation (ICA), 2007, Lecture Notes in Computer Science, Vol. 4666 (inproceedings)

Web DOI [BibTex]

Web DOI [BibTex]


no image
Towards Machine Learning of Motor Skills

Peters, J., Schaal, S., Schölkopf, B.

In Proceedings of Autonome Mobile Systeme (AMS), pages: 138-144, (Editors: K Berns and T Luksch), 2007, clmc (inproceedings)

Abstract
Autonomous robots that can adapt to novel situations has been a long standing vision of robotics, artificial intelligence, and cognitive sciences. Early approaches to this goal during the heydays of artificial intelligence research in the late 1980s, however, made it clear that an approach purely based on reasoning or human insights would not be able to model all the perceptuomotor tasks that a robot should fulfill. Instead, new hope was put in the growing wake of machine learning that promised fully adaptive control algorithms which learn both by observation and trial-and-error. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics, and usually scaling was only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general approach to motor skill learning in order to get one step closer towards human-like performance. For doing so, we study two ma jor components for such an approach, i.e., firstly, a theoretically well-founded general approach to representing the required control structures for task representation and execution and, secondly, appropriate learning algorithms which can be applied in this setting.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Reinforcement Learning for Optimal Control of Arm Movements

Theodorou, E., Peters, J., Schaal, S.

In Abstracts of the 37st Meeting of the Society of Neuroscience., Neuroscience, 2007, clmc (inproceedings)

Abstract
Every day motor behavior consists of a plethora of challenging motor skills from discrete movements such as reaching and throwing to rhythmic movements such as walking, drumming and running. How this plethora of motor skills can be learned remains an open question. In particular, is there any unifying computa-tional framework that could model the learning process of this variety of motor behaviors and at the same time be biologically plausible? In this work we aim to give an answer to these questions by providing a computational framework that unifies the learning mechanism of both rhythmic and discrete movements under optimization criteria, i.e., in a non-supervised trial-and-error fashion. Our suggested framework is based on Reinforcement Learning, which is mostly considered as too costly to be a plausible mechanism for learning com-plex limb movement. However, recent work on reinforcement learning with pol-icy gradients combined with parameterized movement primitives allows novel and more efficient algorithms. By using the representational power of such mo-tor primitives we show how rhythmic motor behaviors such as walking, squash-ing and drumming as well as discrete behaviors like reaching and grasping can be learned with biologically plausible algorithms. Using extensive simulations and by using different reward functions we provide results that support the hy-pothesis that Reinforcement Learning could be a viable candidate for motor learning of human motor behavior when other learning methods like supervised learning are not feasible.

[BibTex]

[BibTex]


no image
Reinforcement learning by reward-weighted regression for operational space control

Peters, J., Schaal, S.

In Proceedings of the 24th Annual International Conference on Machine Learning, pages: 745-750, ICML, 2007, clmc (inproceedings)

Abstract
Many robot control problems of practical importance, including operational space control, can be reformulated as immediate reward reinforcement learning problems. However, few of the known optimization or reinforcement learning algorithms can be used in online learning control for robots, as they are either prohibitively slow, do not scale to interesting domains of complex robots, or require trying out policies generated by random search, which are infeasible for a physical system. Using a generalization of the EM-base reinforcement learning framework suggested by Dayan & Hinton, we reduce the problem of learning with immediate rewards to a reward-weighted regression problem with an adaptive, integrated reward transformation for faster convergence. The resulting algorithm is efficient, learns smoothly without dangerous jumps in solution space, and works well in applications of complex high degree-of-freedom robots.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Policy gradient methods for machine learning

Peters, J., Theodorou, E., Schaal, S.

In Proceedings of the 14th INFORMS Conference of the Applied Probability Society, pages: 97-98, Eindhoven, Netherlands, July 9-11, 2007, 2007, clmc (inproceedings)

Abstract
We present an in-depth survey of policy gradient methods as they are used in the machine learning community for optimizing parameterized, stochastic control policies in Markovian systems with respect to the expected reward. Despite having been developed separately in the reinforcement learning literature, policy gradient methods employ likelihood ratio gradient estimators as also suggested in the stochastic simulation optimization community. It is well-known that this approach to policy gradient estimation traditionally suffers from three drawbacks, i.e., large variance, a strong dependence on baseline functions and a inefficient gradient descent. In this talk, we will present a series of recent results which tackles each of these problems. The variance of the gradient estimation can be reduced significantly through recently introduced techniques such as optimal baselines, compatible function approximations and all-action gradients. However, as even the analytically obtainable policy gradients perform unnaturally slow, it required the step from ÔvanillaÕ policy gradient methods towards natural policy gradients in order to overcome the inefficiency of the gradient descent. This development resulted into the Natural Actor-Critic architecture which can be shown to be very efficient in application to motor primitive learning for robotics.

[BibTex]

[BibTex]


no image
Policy Learning for Motor Skills

Peters, J., Schaal, S.

In Proceedings of 14th International Conference on Neural Information Processing (ICONIP), pages: 233-242, (Editors: Ishikawa, M. , K. Doya, H. Miyamoto, T. Yamakawa), 2007, clmc (inproceedings)

Abstract
Policy learning which allows autonomous robots to adapt to novel situations has been a long standing vision of robotics, artificial intelligence, and cognitive sciences. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics, and usually scaling was only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general approach policy learning with the goal of an application to motor skill refinement in order to get one step closer towards human-like performance. For doing so, we study two major components for such an approach, i.e., firstly, we study policy learning algorithms which can be applied in the general setting of motor skill learning, and, secondly, we study a theoretically well-founded general approach to representing the required control structures for task representation and execution.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Reinforcement learning for operational space control

Peters, J., Schaal, S.

In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, pages: 2111-2116, IEEE Computer Society, ICRA, 2007, clmc (inproceedings)

Abstract
While operational space control is of essential importance for robotics and well-understood from an analytical point of view, it can be prohibitively hard to achieve accurate control in face of modeling errors, which are inevitable in complex robots, e.g., humanoid robots. In such cases, learning control methods can offer an interesting alternative to analytical control algorithms. However, the resulting supervised learning problem is ill-defined as it requires to learn an inverse mapping of a usually redundant system, which is well known to suffer from the property of non-convexity of the solution space, i.e., the learning system could generate motor commands that try to steer the robot into physically impossible configurations. The important insight that many operational space control algorithms can be reformulated as optimal control problems, however, allows addressing this inverse learning problem in the framework of reinforcement learning. However, few of the known optimization or reinforcement learning algorithms can be used in online learning control for robots, as they are either prohibitively slow, do not scale to interesting domains of complex robots, or require trying out policies generated by random search, which are infeasible for a physical system. Using a generalization of the EM-based reinforcement learning framework suggested by Dayan & Hinton, we reduce the problem of learning with immediate rewards to a reward-weighted regression problem with an adaptive, integrated reward transformation for faster convergence. The resulting algorithm is efficient, learns smoothly without dangerous jumps in solution space, and works well in applications of complex high degree-of-freedom robots.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Using reward-weighted regression for reinforcement learning of task space control

Peters, J., Schaal, S.

In Proceedings of the 2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning, pages: 262-267, Honolulu, Hawaii, April 1-5, 2007, 2007, clmc (inproceedings)

Abstract
In this paper, we evaluate different versions from the three main kinds of model-free policy gradient methods, i.e., finite difference gradients, `vanilla' policy gradients and natural policy gradients. Each of these methods is first presented in its simple form and subsequently refined and optimized. By carrying out numerous experiments on the cart pole regulator benchmark we aim to provide a useful baseline for future research on parameterized policy search algorithms. Portable C++ code is provided for both plant and algorithms; thus, the results in this paper can be reevaluated, reused and new algorithms can be inserted with ease.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Evaluation of Policy Gradient Methods and Variants on the Cart-Pole Benchmark

Riedmiller, M., Peters, J., Schaal, S.

In Proceedings of the 2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning, pages: 254-261, ADPRL, 2007, clmc (inproceedings)

Abstract
In this paper, we evaluate different versions from the three main kinds of model-free policy gradient methods, i.e., finite difference gradients, `vanilla' policy gradients and natural policy gradients. Each of these methods is first presented in its simple form and subsequently refined and optimized. By carrying out numerous experiments on the cart pole regulator benchmark we aim to provide a useful baseline for future research on parameterized policy search algorithms. Portable C++ code is provided for both plant and algorithms; thus, the results in this paper can be reevaluated, reused and new algorithms can be inserted with ease.

PDF [BibTex]

PDF [BibTex]

1998


no image
Navigation mit Schnappschüssen

Franz, M., Schölkopf, B., Mallot, H., Bülthoff, H., Zell, A.

In Mustererkennung 1998, pages: 421-428, (Editors: P Levi and R-J Ahlers and F May and M Schanz), Springer, Berlin, Germany, 20th DAGM-Symposium, October 1998 (inproceedings)

Abstract
Es wird ein biologisch inspirierter Algorithmus vorgestellt, mit dem sich ein Ort wiederfinden l{\"a}sst, an dem vorher eine 360-Grad-Ansicht der Umgebung aufgenommen wurde. Die Zielrichtung wird aus der Verschiebung der Bildposition der umgebenden Landmarken im Vergleich zum Schnappschuss berechnet. Die Konvergenzeigenschaften des Algorithmus werden mathematisch untersucht und auf mobilen Robotern getestet.

PDF Web [BibTex]

1998

PDF Web [BibTex]


no image
Prior knowledge in support vector kernels

Schölkopf, B., Simard, P., Smola, A., Vapnik, V.

In Advances in Neural Information Processing Systems 10, pages: 640-646 , (Editors: M Jordan and M Kearns and S Solla ), MIT Press, Cambridge, MA, USA, Eleventh Annual Conference on Neural Information Processing (NIPS), June 1998 (inproceedings)

PDF Web [BibTex]

PDF Web [BibTex]


no image
From regularization operators to support vector kernels

Smola, A., Schölkopf, B.

In Advances in Neural Information Processing Systems 10, pages: 343-349, (Editors: M Jordan and M Kearns and S Solla), MIT Press, Cambridge, MA, USA, 11th Annual Conference on Neural Information Processing (NIPS), June 1998 (inproceedings)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Qualitative Modeling for Data Miner’s Requirements

Shin, H., Jhee, W.

In Proc. of the Korean Management Information Systems, pages: 65-73, Conference on the Korean Management Information Systems, April 1998 (inproceedings)

[BibTex]

[BibTex]


no image
Masking by plaid patterns: effects of presentation time and mask contrast

Wichmann, F., Henning, G.

pages: 115, 1. T{\"u}binger Wahrnehmungskonferenz (TWK 98), February 1998 (poster)

Abstract
Most current models of early spatial vision comprise of sets of orientation- and spatial-frequency selective filters with our without limited non-linear interactions amongst different subsets of the filters. The performance of human observers and of such models for human spatial vision were compared in experiments using maskers with two spatial frequencies (plaid masks). The detectability of horizontally orientated sinusoidal signals at 3.02 c/deg was measured in standard 2AFC-tasks in the presence of plaid patterns with two-components at the same spatial frequency as the signal but at different orientations (+/- 15, 30, 45, and 75 deg from the signal) and with varying contrasts (1.0, 6.25 and 25.0% contrast). In addition, the temporal envelope of the stimulus presentation was either a rectangular pulse of 19.7 msec duration, or a temporal Hanning window of 1497 msec.Threshold elevation varied with plaid component orientation, peaked +/- 30 deg from the signal where nearly a log unit threshold elevation for the 25.0% contrast plaid was observed. For plaids with 1.0% contrast we observed significant facilitation even with plaids whose components were 75 deg from that of the signal. Elevation factors were somewhat lower for the short stimulus presentation time but were still significant (up to a factor of 5 or 6). Despite of the simple nature of the stimuli employed in this study-sinusoidal signal and plaid masks comprised of only two sinusoids-none of the current models of early spatial vision can fully account for all the data gathered.

Web [BibTex]

Web [BibTex]


no image
Fast approximation of support vector kernel expansions, and an interpretation of clustering as approximation in feature spaces.

Schölkopf, B., Knirsch, P., Smola, A., Burges, C.

In Mustererkennung 1998, pages: 125-132, Informatik aktuell, (Editors: P Levi and M Schanz and R-J Ahlers and F May), Springer, Berlin, Germany, 20th DAGM-Symposium, 1998 (inproceedings)

Abstract
Kernel-based learning methods provide their solutions as expansions in terms of a kernel. We consider the problem of reducing the computational complexity of evaluating these expansions by approximating them using fewer terms. As a by-product, we point out a connection between clustering and approximation in reproducing kernel Hilbert spaces generated by a particular class of kernels.

Web [BibTex]

Web [BibTex]


no image
Kernel PCA pattern reconstruction via approximate pre-images.

Schölkopf, B., Mika, S., Smola, A., Rätsch, G., Müller, K.

In 8th International Conference on Artificial Neural Networks, pages: 147-152, Perspectives in Neural Computing, (Editors: L Niklasson and M Boden and T Ziemke), Springer, Berlin, Germany, 8th International Conference on Artificial Neural Networks, 1998 (inproceedings)

[BibTex]

[BibTex]


no image
A bootstrap method for testing hypotheses concerning psychometric functions

Hill, N., Wichmann, F.

1998 (poster)

Abstract
Whenever psychometric functions are used to evaluate human performance on some task, it is valuable to examine not only the threshold and slope values estimated from the original data, but also the expected variability in those measures. This allows psychometric functions obtained in two experimental conditions to be compared statistically. We present a method for estimating the variability of thresholds and slopes of psychometric functions. This involves a maximum-likelihood fit to the data using a three-parameter mathematical function, followed by Monte Carlo simulation using the first fit as a generating function for the simulations. The variability of the function's parameters can then be estimated (as shown by Maloney, 1990), as can the variability of the threshold value (Foster & Bischof, 1997). We will show how a simple development of this procedure can be used to test the significance of differences between (a) the thresholds, and (b) the slopes of two psychometric functions. Further, our method can be used to assess the assumptions underlying the original fit, by examining how goodness-of-fit differs in simulation from its original value. In this way data sets can be identified as being either too noisy to be generated by a binomial observer, or significantly "too good to be true." All software is written in MATLAB and is therefore compatible across platforms, with the option of accelerating performance using MATLAB's plug-in binaries, or "MEX" files.

[BibTex]


no image
Support Vector methods in learning and feature extraction

Schölkopf, B., Smola, A., Müller, K., Burges, C., Vapnik, V.

Ninth Australian Conference on Neural Networks, pages: 72-78, (Editors: T. Downs, M. Frean and M. Gallagher), 1998 (talk)

[BibTex]

[BibTex]


no image
Convex Cost Functions for Support Vector Regression

Smola, A., Schölkopf, B., Müller, K.

In 8th International Conference on Artificial Neural Networks, pages: 99-104, Perspectives in Neural Computing, (Editors: L Niklasson and M Boden and T Ziemke), Springer, Berlin, Germany, 8th International Conference on Artificial Neural Networks, 1998 (inproceedings)

[BibTex]

[BibTex]


no image
Nonlinearities and the pedestal effect

Wichmann, F., Henning, G., Ploghaus, A.

Perception, 27, pages: S86, 1998 (poster)

Abstract
Psychophysical and physiological evidence suggests that luminance patterns are independently analysed in "channels" responding to different bands of spatial frequency. There are, however, interactions among stimuli falling well outside the usual estimates of channels' bandwidths (Henning, Hertz, and Broadbent, (1975). Vision Res., 15, 887-899). We examined whether the masking results of Henning et al. are consistent with independent channels. We postulated, before the channels, a point non-linearity which would introduce distortion products that might produce the observed interactions between stimuli two octaves apart in spatial frequency. Standard 2-AFC masking experiments determined whether possible distortion products of a 4.185 c/deg masking sinusoid revealed their presence through effects on the detection of a sinusoidal signal at the frequency of the second harmonic of the masker-8.37 c/deg. The signal and masker were horizontally orientated and the signal was in-phase, out-of-phase, or in quadrature with the putative second-order distortion product of the masker. Significant interactions between signal and masker were observed: for a wide range of masker contrasts, signal detection was facilitated by the masking stimulus. However, the shapes of the functions relating detection performance to masker contrast, as well as the effects of relative phase, were inconsistent with the notion that distortion products were responsible for the interactions observed.

[BibTex]

[BibTex]


no image
Support vector regression with automatic accuracy control.

Schölkopf, B., Bartlett, P., Smola, A., Williamson, R.

In ICANN'98, pages: 111-116, Perspectives in Neural Computing, (Editors: L Niklasson and M Boden and T Ziemke), Springer, Berlin, Germany, International Conference on Artificial Neural Networks (ICANN'98), 1998 (inproceedings)

[BibTex]

[BibTex]


no image
General cost functions for support vector regression.

Smola, A., Schölkopf, B., Müller, K.

In Ninth Australian Conference on Neural Networks, pages: 79-83, (Editors: T Downs and M Frean and M Gallagher), 9th Australian Conference on Neural Networks (ACNN'98), 1998 (inproceedings)

[BibTex]

[BibTex]


no image
Asymptotically optimal choice of varepsilon-loss for support vector machines.

Smola, A., Murata, N., Schölkopf, B., Müller, K.

In 8th International Conference on Artificial Neural Networks, pages: 105-110, Perspectives in Neural Computing, (Editors: L Niklasson and M Boden and T Ziemke), Springer, Berlin, Germany, 8th International Conference on Artificial Neural Networks, 1998 (inproceedings)

[BibTex]

[BibTex]

1997


no image
The view-graph approach to visual navigation and spatial memory

Mallot, H., Franz, M., Schölkopf, B., Bülthoff, H.

In Artificial Neural Networks: ICANN ’97, pages: 751-756, (Editors: W Gerstner and A Germond and M Hasler and J-D Nicoud), Springer, Berlin, Germany, 7th International Conference on Artificial Neural Networks, October 1997 (inproceedings)

Abstract
This paper describes a purely visual navigation scheme based on two elementary mechanisms (piloting and guidance) and a graph structure combining individual navigation steps controlled by these mechanisms. In robot experiments in real environments, both mechanisms have been tested, piloting in an open environment and guidance in a maze with restricted movement opportunities. The results indicate that navigation and path planning can be brought about with these simple mechanisms. We argue that the graph of local views (snapshots) is a general and biologically plausible means of representing space and integrating the various mechanisms of map behaviour.

PDF PDF DOI [BibTex]

1997

PDF PDF DOI [BibTex]


no image
Predicting time series with support vector machines

Müller, K., Smola, A., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V.

In Artificial Neural Networks: ICANN’97, pages: 999-1004, (Editors: Schölkopf, B. , C.J.C. Burges, A.J. Smola), Springer, Berlin, Germany, 7th International Conference on Artificial Neural Networks , October 1997 (inproceedings)

Abstract
Support Vector Machines are used for time series prediction and compared to radial basis function networks. We make use of two different cost functions for Support Vectors: training with (i) an e insensitive loss and (ii) Huber's robust loss function and discuss how to choose the regularization parameters in these models. Two applications are considered: data from (a) a noisy (normal and uniform noise) Mackey Glass equation and (b) the Santa Fe competition (set D). In both cases Support Vector Machines show an excellent performance. In case (b) the Support Vector approach improves the best known result on the benchmark by a factor of 29%.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Predicting time series with support vectur machines

Müller, K., Smola, A., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V.

In Artificial neural networks: ICANN ’97, pages: 999-1004, (Editors: W Gerstner and A Germond and M Hasler and J-D Nicoud), Springer, Berlin, Germany, 7th International Conference on Artificial Neural Networks , October 1997 (inproceedings)

Abstract
Support Vector Machines are used for time series prediction and compared to radial basis function networks. We make use of two different cost functions for Support Vectors: training with (i) an e insensitive loss and (ii) Huber's robust loss function and discuss how to choose the regularization parameters in these models. Two applications are considered: data from (a) a noisy (normal and uniform noise) Mackey Glass equation and (b) the Santa Fe competition (set D). In both cases Support Vector Machines show an excellent performance. In case (b) the Support Vector approach improves the best known result on the benchmark by a factor of 29%.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Kernel principal component analysis

Schölkopf, B., Smola, A., Müller, K.

In Artificial neural networks: ICANN ’97, LNCS, vol. 1327, pages: 583-588, (Editors: W Gerstner and A Germond and M Hasler and J-D Nicoud), Springer, Berlin, Germany, 7th International Conference on Artificial Neural Networks, October 1997 (inproceedings)

Abstract
A new method for performing a nonlinear form of Principal Component Analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all possible d-pixel products in images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Homing by parameterized scene matching

Franz, M., Schölkopf, B., Bülthoff, H.

In Proceedings of the 4th European Conference on Artificial Life, (Eds.) P. Husbands, I. Harvey. MIT Press, Cambridge 1997, pages: 236-245, (Editors: P Husbands and I Harvey), MIT Press, Cambridge, MA, USA, 4th European Conference on Artificial Life (ECAL97), July 1997 (inproceedings)

Abstract
In visual homing tasks, animals as well as robots can compute their movements from the current view and a snapshot taken at a home position. Solving this problem exactly would require knowledge about the distances to visible landmarks, information, which is not directly available to passive vision systems. We propose a homing scheme that dispenses with accurate distance information by using parameterized disparity fields. These are obtained from an approximation that incorporates prior knowledge about perspective distortions of the visual environment. A mathematical analysis proves that the approximation does not prevent the scheme from approaching the goal with arbitrary accuracy. Mobile robot experiments are used to demonstrate the practical feasibility of the approach.

PDF [BibTex]

PDF [BibTex]


no image
Improving the accuracy and speed of support vector learning machines

Burges, C., Schölkopf, B.

In Advances in Neural Information Processing Systems 9, pages: 375-381, (Editors: M Mozer and MJ Jordan and T Petsche), MIT Press, Cambridge, MA, USA, Tenth Annual Conference on Neural Information Processing Systems (NIPS), May 1997 (inproceedings)

Abstract
Support Vector Learning Machines (SVM) are finding application in pattern recognition, regression estimation, and operator inversion for illposed problems . Against this very general backdrop any methods for improving the generalization performance, or for improving the speed in test phase of SVMs are of increasing interest. In this paper we combine two such techniques on a pattern recognition problem The method for improving generalization performance the "virtual support vector" method does so by incorporating known invariances of the problem This method achieves a drop in the error rate on 10.000 NIST test digit images of 1,4 % to 1 %. The method for improving the speed (the "reduced set" method) does so by approximating the support vector decision surface. We apply this method to achieve a factor of fifty speedup in test phase over the virtual support vector machine The combined approach yields a machine which is both 22 times faster than the original machine, and which has better generalization performance achieving 1,1 % error . The virtual support vector method is applicable to any SVM problem with known invariances The reduced set method is applicable to any support vector machine .

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning view graphs for robot navigation

Franz, M., Schölkopf, B., Georg, P., Mallot, H., Bülthoff, H.

In Proceedings of the 1st Intl. Conf. on Autonomous Agents, pages: 138-147, (Editors: Johnson, W.L.), ACM Press, New York, NY, USA, First International Conference on Autonomous Agents (AGENTS '97), Febuary 1997 (inproceedings)

Abstract
We present a purely vision-based scheme for learning a parsimonious representation of an open environment. Using simple exploration behaviours, our system constructs a graph of appropriately chosen views. To navigate between views connected in the graph, we employ a homing strategy inspired by findings of insect ethology. Simulations and robot experiments demonstrate the feasibility of the proposed approach.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Masking by plaid patterns is not explained by adaptation, simple contrast gain-control or distortion products

Wichmann, F., Tollin, D.

Investigative Ophthamology and Visual Science, 38 (4), pages: S631, 1997 (poster)

[BibTex]

[BibTex]


no image
Masking by plaid patterns: spatial frequency tuning and contrast dependency

Wichmann, F., Tollin, D.

OSA Conference Program, pages: 97, 1997 (poster)

Abstract
The detectability of horizontally orientated sinusoidal signals at different spatial-frequencies was measured in standard 2AFC - tasks in the presence of two-component plaid patterns of different orientation and contrast. The shape of the resulting masking surface provides insight into, and constrains models of, the underlying masking mechanisms.

[BibTex]

[BibTex]


no image
Support vector learning

Schölkopf, B.

pages: 173, Oldenbourg, München, Germany, 1997, Zugl.: Berlin, Techn. Univ., Diss., 1997 (book)

PDF GZIP [BibTex]

PDF GZIP [BibTex]