Header logo is ei


2015


no image
Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer

Besserve, M., Lowe, S. C., Logothetis, N. K., Schölkopf, B., Panzeri, S.

PLOS Biology, 13(9):e1002257, September 2015 (article)

DOI Project Page [BibTex]

2015


no image
Model-Free Probabilistic Movement Primitives for Physical Interaction

Paraschos, A., Rueckert, E., Peters, J., Neumann, G.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 2860-2866, IROS, September 2015 (inproceedings)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Combined Pose-Wrench and State Machine Representation for Modeling Robotic Assembly Skills

Wahrburg, A., Zeiss, S., Matthias, B., Peters, J., Ding, H.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 852-857, IROS, September 2015 (inproceedings)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Probabilistic Progress Prediction and Sequencing of Concurrent Movement Primitives

Manschitz, S., Kober, J., Gienger, M., Peters, J.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 449-455, IROS, September 2015 (inproceedings)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Reinforcement Learning vs Human Programming in Tetherball Robot Games

Parisi, S., Abdulsamad, H., Paraschos, A., Daniel, C., Peters, J.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 6428-6434, IROS, September 2015 (inproceedings)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Motor Skills from Partially Observed Movements Executed at Different Speeds

Ewerton, M., Maeda, G., Peters, J., Neumann, G.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 456-463, IROS, September 2015 (inproceedings)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Semi-Supervised Interpolation in an Anticausal Learning Scenario

Janzing, D., Schölkopf, B.

Journal of Machine Learning Research, 16, pages: 1923-1948, September 2015 (article)

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl posterior
Automatic LQR Tuning Based on Gaussian Process Optimization: Early Experimental Results

Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.

Machine Learning in Planning and Control of Robot Motion Workshop at the IEEE/RSJ International Conference on Intelligent Robots and Systems, September 2015 (conference)

Abstract
This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree-of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Preliminary results of a low-dimensional tuning problem highlight the method’s potential for automatic controller tuning on robotic platforms.

PDF Project Page Project Page [BibTex]

PDF Project Page Project Page [BibTex]


no image
Is Breathing Rate a Confounding Variable in Brain-Computer Interfaces (BCIs) Based on EEG Spectral Power?

Ibarra Chaoul, A., Grosse-Wentrup, M.

Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages: 1079-1082, EMBC, August 2015 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Testing the role of luminance edges in White’s illusion with contour adaptation

Betz, T., Shapley, R. M., Wichmann, F. A., Maertens, M.

Journal of Vision, 15(11):1-16, August 2015 (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Retrospective motion correction of magnitude-input MR images

Loktyushin, A., Schuler, C., Scheffler, K., Schölkopf, B.

International Conference on Machine Learning (ICML) 2015, Workshop on Machine Learning meets Medical Imaging, 9487, pages: 3-12, Lecture Notes in Computer Science, (Editors: K. K. Bhatia and H. Lombaert), Springer, First International Workshop, MLMMI, July 2015 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Kernel methods in medical imaging

Charpiat, G., Hofmann, M., Schölkopf, B.

In Handbook of Biomedical Imaging, pages: 63-81, 4, (Editors: Paragios, N., Duncan, J. and Ayache, N.), Springer, Berlin, Germany, June 2015 (inbook)

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Retrospective rigid motion correction of undersampled MRI data

Loktyushin, A., Babayeva, M., Gallichan, D., Krueger, G., Scheffler, K., Kober, T.

23rd Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine, ISMRM, June 2015 (poster)

[BibTex]

[BibTex]


no image
Improving Quantitative Susceptibility and R2* Mapping by Applying Retrospective Motion Correction

Feng, X., Loktyushin, A., Deistung, A., Reichenbach, J. R.

23rd Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine, ISMRM, June 2015 (poster)

[BibTex]

[BibTex]


Thumb xl teaser
Permutohedral Lattice CNNs

Kiefel, M., Jampani, V., Gehler, P. V.

In ICLR Workshop Track, ICLR, May 2015 (inproceedings)

Abstract
This paper presents a convolutional layer that is able to process sparse input features. As an example, for image recognition problems this allows an efficient filtering of signals that do not lie on a dense grid (like pixel position), but of more general features (such as color values). The presented algorithm makes use of the permutohedral lattice data structure. The permutohedral lattice was introduced to efficiently implement a bilateral filter, a commonly used image processing operation. Its use allows for a generalization of the convolution type found in current (spatial) convolutional network architectures.

pdf link (url) Project Page [BibTex]


no image
Blind Retrospective Motion Correction of MR Images

Loktyushin, A.

University of Tübingen, Germany, May 2015 (phdthesis)

[BibTex]

[BibTex]


no image
Independence of cause and mechanism in brain networks

Besserve, M.

DALI workshop on Networks: Processes and Causality, April 2015 (talk)

[BibTex]

[BibTex]


no image
Blind multirigid retrospective motion correction of MR images

Loktyushin, A., Nickisch, H., Pohmann, R., Schölkopf, B.

Magnetic Resonance in Medicine, 73(4):1457-1468, April 2015 (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
A quantum advantage for inferring causal structure

Ried, K., Agnew, M., Vermeyden, L., Janzing, D., Spekkens, R. W., Resch, K. J.

Nature Physics, 11(5):414-420, March 2015 (article)

Abstract
The problem of inferring causal relations from observed correlations is relevant to a wide variety of scientific disciplines. Yet given the correlations between just two classical variables, it is impossible to determine whether they arose from a causal influence of one on the other or a common cause influencing both. Only a randomized trial can settle the issue. Here we consider the problem of causal inference for quantum variables. We show that the analogue of a randomized trial, causal tomography, yields a complete solution. We also show that, in contrast to the classical case, one can sometimes infer the causal structure from observations alone. We implement a quantum-optical experiment wherein we control the causal relation between two optical modes, and two measurement schemes—with and without randomization—that extract this relation from the observed correlations. Our results show that entanglement and quantum coherence provide an advantage for causal inference.

DOI [BibTex]

DOI [BibTex]


no image
Positive definite matrices and the S-divergence

Sra, S.

Proceedings of the American Mathematical Society, 2015, Published electronically: October 22, 2015 (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Likelihood and Consilience: On Forster’s Counterexamples to the Likelihood Theory of Evidence

Zhang, J., Zhang, K.

Philosophy of Science, Supplementary Volume 2015, 82(5):930-940, 2015 (article)

DOI [BibTex]

DOI [BibTex]


no image
Increasing the sensitivity of Kepler to Earth-like exoplanets

Foreman-Mackey, D., Hogg, D., Schölkopf, B., Wang, D.

Workshop: 225th American Astronomical Society Meeting 2015 , pages: 105.01D, 2015 (poster)

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Structural Intervention Distance (SID) for Evaluating Causal Graphs

Peters, J., Bühlmann, P.

Neural Computation , 27(3):771-799, 2015 (article)

DOI [BibTex]

DOI [BibTex]


no image
Information-Theoretic Implications of Classical and Quantum Causal Structures

Chaves, R., Majenz, C., Luft, L., Maciel, T., Janzing, D., Schölkopf, B., Gross, D.

18th Conference on Quantum Information Processing (QIP), 2015 (talk)

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis progression

Küffner, R., Zach, N., Norel, R., Hawe, J., Schoenfeld, D., Wang, L., Li, G., Fang, L., Mackey, L., Hardiman, O., Cudkowicz, M., Sherman, A., Ertaylan, G., Grosse-Wentrup, M., Hothorn, T., van Ligtenberg, J., Macke, J., Meyer, T., Schölkopf, B., Tran, L., Vaughan, R., Stolovitzky, G., Leitner, M.

Nature Biotechnology, 33, pages: 51-57, 2015 (article)

DOI [BibTex]

DOI [BibTex]


no image
Inference of Cause and Effect with Unsupervised Inverse Regression

Sgouritsa, E., Janzing, D., Hennig, P., Schölkopf, B.

In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics, 38, pages: 847-855, JMLR Workshop and Conference Proceedings, (Editors: Lebanon, G. and Vishwanathan, S.V.N.), JMLR.org, AISTATS, 2015 (inproceedings)

Web PDF Project Page [BibTex]

Web PDF Project Page [BibTex]


no image
Distinguishing Cause from Effect Based on Exogeneity

Zhang, K., Zhang, J., Schölkopf, B.

In Fifteenth Conference on Theoretical Aspects of Rationality and Knowledge, pages: 261-271, (Editors: Ramanujam, R.), TARK, 2015 (inproceedings)

[BibTex]

[BibTex]


no image
Towards denoising XMCD movies of fast magnetization dynamics using extended Kalman filter

Kopp, M., Harmeling, S., Schütz, G., Schölkopf, B., Fähnle, M.

Ultramicroscopy, 148, pages: 115-122, 2015 (article)

Abstract
The Kalman filter is a well-established approach to get information on the time-dependent state of a system from noisy observations. It was developed in the context of the Apollo project to see the deviation of the true trajectory of a rocket from the desired trajectory. Afterwards it was applied to many different systems with small numbers of components of the respective state vector (typically about 10). In all cases the equation of motion for the state vector was known exactly. The fast dissipative magnetization dynamics is often investigated by x-ray magnetic circular dichroism movies (XMCD movies), which are often very noisy. In this situation the number of components of the state vector is extremely large (about 105), and the equation of motion for the dissipative magnetization dynamics (especially the values of the material parameters of this equation) is not well known. In the present paper it is shown by theoretical considerations that – nevertheless – there is no principle problem for the use of the Kalman filter to denoise XMCD movies of fast dissipative magnetization dynamics.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Developing biorobotics for veterinary research into cat movements

Mariti, C., Muscolo, G., Peters, J., Puig, D., Recchiuto, C., Sighieri, C., Solanas, A., von Stryk, O.

Journal of Veterinary Behavior: Clinical Applications and Research, 10(3):248-254, 2015 (article)

DOI [BibTex]

DOI [BibTex]


no image
Identification of Time-Dependent Causal Model: A Gaussian Process Treatment

Huang, B., Zhang, K., Schölkopf, B.

In 24th International Joint Conference on Artificial Intelligence, Machine Learning Track, pages: 3561-3568, (Editors: Yang, Q. and Wooldridge, M.), AAAI Press, Palo Alto, California USA, IJCAI15, 2015 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Spatial statistics and attentional dynamics in scene viewing

Engbert, R., Trukenbrod, H., Barthelmé, S., Wichmann, F.

Journal of Vision, 15(1):1-17, 2015 (article)

Web PDF link (url) DOI Project Page [BibTex]

Web PDF link (url) DOI Project Page [BibTex]


no image
The Randomized Causation Coefficient

Lopez-Paz, D., Muandet, K., Recht, B.

Journal of Machine Learning, 16, pages: 2901-2907, 2015 (article)

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Multi-Source Domain Adaptation: A Causal View

Zhang, K., Gong, M., Schölkopf, B.

In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pages: 3150-3157, AAAI Press, AAAI, 2015 (inproceedings)

Web PDF link (url) [BibTex]

Web PDF link (url) [BibTex]


no image
Learning of Non-Parametric Control Policies with High-Dimensional State Features

van Hoof, H., Peters, J., Neumann, G.

In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics, 38, pages: 995–1003, (Editors: Lebanon, G. and Vishwanathan, S.V.N. ), JMLR, AISTATS, 2015 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Artificial intelligence: Learning to see and act

Schölkopf, B.

Nature, News & Views, 518(7540):486-487, 2015 (article)

DOI [BibTex]

DOI [BibTex]


no image
Context affects lightness at the level of surfaces

Maertens, M., Wichmann, F., Shapley, R.

Journal of Vision, 15(1):1-15, 2015 (article)

Web PDF link (url) DOI [BibTex]

Web PDF link (url) DOI [BibTex]


no image
Towards a Learning Theory of Cause-Effect Inference

Lopez-Paz, D., Muandet, K., Schölkopf, B., Tolstikhin, I.

In Proceedings of the 32nd International Conference on Machine Learning, 37, pages: 1452–1461, JMLR Workshop and Conference Proceedings, (Editors: F. Bach and D. Blei), JMLR, ICML, 2015 (inproceedings)

Web Project Page [BibTex]

Web Project Page [BibTex]


no image
Calibrating the pixel-level Kepler imaging data with a causal data-driven model

Wang, D., Foreman-Mackey, D., Hogg, D., Schölkopf, B.

Workshop: 225th American Astronomical Society Meeting 2015 , pages: 258.08, 2015 (poster)

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Genome-wide analysis of local chromatin packing in Arabidopsis thaliana

Wang, C., Liu, C., Roqueiro, D., Grimm, D., Schwab, R., Becker, C., Lanz, C., Weigel, D.

Genome Research, 25(2):246-256, 2015 (article)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
BundleMAP: Anatomically Localized Features from dMRI for Detection of Disease

Khatami, M., Schmidt-Wilcke, T., Sundgren, P., Abbasloo, A., Schölkopf, B., Schultz, T.

In 6th International Workshop on Machine Learning in Medical Imaging, 9352, pages: 52-60, Lecture Notes in Computer Science, (Editors: L. Zhou, L. Wang, Q. Wang and Y. Shi), Springer, MLMI, 2015 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Hierarchical Label Queries with Data-Dependent Partitions

Kpotufe, S., Urner, R., Ben-David, S.

In Proceedings of the 28th Conference on Learning Theory, 40, pages: 1176-1189, (Editors: Grünwald, P. and Hazan, E. and Kale, S. ), JMLR, COLT, 2015 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Semi-Autonomous 3rd-Hand Robot

Lopes, M., Peters, J., Piater, J., Toussaint, M., Baisero, A., Busch, B., Erkent, O., Kroemer, O., Lioutikov, R., Maeda, G., Mollard, Y., Munzer, T., Shukla, D.

In Workshop on Cognitive Robotics in Future Manufacturing Scenarios, European Robotics Forum, 2015 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Assessment of brain tissue damage in the Sub-Acute Stroke Region by Multiparametric Imaging using [89-Zr]-Desferal-EPO-PET/MRI

Castaneda, S. G., Katiyar, P., Russo, F., Disselhorst, J. A., Calaminus, C., Poli, S., Maurer, A., Ziemann, U., Pichler, B. J.

World Molecular Imaging Conference, 2015 (talk)

[BibTex]

[BibTex]


no image
Statistical and Machine Learning Methods for Neuroimaging: Examples, Challenges, and Extensions to Diffusion Imaging Data

O’Donnell, L. J., Schultz, T.

In Visualization and Processing of Higher Order Descriptors for Multi-Valued Data, pages: 299-319, (Editors: Hotz, I. and Schultz, T.), Springer, 2015 (inbook)

Project Page [BibTex]

Project Page [BibTex]


no image
A Cognitive Brain-Computer Interface for Patients with Amyotrophic Lateral Sclerosis

Hohmann, M.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

[BibTex]

[BibTex]


no image
Discovering Temporal Causal Relations from Subsampled Data

Gong, M., Zhang, K., Schölkopf, B., Tao, D., Geiger, P.

In Proceedings of the 32nd International Conference on Machine Learning, 37, pages: 1898–1906, JMLR Workshop and Conference Proceedings, (Editors: F. Bach and D. Blei), JMLR, ICML, 2015 (inproceedings)

PDF link (url) [BibTex]

PDF link (url) [BibTex]