2312 results (BibTeX)

1996


Nonlinear Component Analysis as a Kernel Eigenvalue Problem

Schölkopf, B., Smola, A., Müller, K.

(44), Max Planck Institute for Biological Cybernetics Tübingen, December 1996, This technical report has also been published elsewhere (techreport)

Abstract
We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map; for instance the space of all possible 5-pixel products in 16 x 16 images. We give the derivation of the method, along with a discussion of other techniques which can be made nonlinear with the kernel approach; and present first experimental results on nonlinear feature extraction for pattern recognition.

[BibTex]

1996

[BibTex]

1995


Suppression and creation of chaos in a periodically forced Lorenz system.

Franz, MO. Zhang, MH.

Physical Review, E 52, pages: 3558-3565, 1995 (article)

Abstract
Periodic forcing is introduced into the Lorenz model to study the effects of time-dependent forcing on the behavior of the system. Such a nonautonomous system stays dissipative and has a bounded attracting set which all trajectories finally enter. The possible kinds of attracting sets are restricted to periodic orbits and strange attractors. A large-scale survey of parameter space shows that periodic forcing has mainly three effects in the Lorenz system depending on the forcing frequency: (i) Fixed points are replaced by oscillations around them; (ii) resonant periodic orbits are created both in the stable and the chaotic region; (iii) chaos is created in the stable region near the resonance frequency and in periodic windows. A comparison to other studies shows that part of this behavior has been observed in simulations of higher truncations and real world experiments. Since very small modulations can already have a considerable effect, this suggests that periodic processes such as annual or diurnal cycles should not be omitted even in simple climate models.

[BibTex]

1995

[BibTex]


A New Method for Constructing Artificial Neural Networks

Vapnik, V., Burges, C., Schölkopf, B.

AT & T Bell Laboratories, 1995 (techreport)

[BibTex]

[BibTex]


Image segmentation from motion: just the loss of high-spatial-frequency content ?

Wichmann, F., Henning, G.

Perception, 24, pages: S19, 1995 (poster)

Abstract
The human contrast sensitivity function (CSF) is bandpass for stimuli of low temporal frequency but, for moving stimuli, results in a low-pass CSF with large high spatial-frequency losses. Thus the high spatial-frequency content of images moving on the retina cannot be seen; motion perception could be facilitated by, or even be based on, the selective loss of high spatial-frequency content. 2-AFC image segmentation experiments were conducted with segmentation based on motion or on form. In the latter condition, the form difference mirrored that produced by moving stimuli. This was accomplished by generating stimulus elements which were spectrally either broadband or low-pass. For the motion used, the spectral difference between static broadband and static low-pass elements matched the spectral difference between moving and static broadband elements. On the hypothesis that segmentation from motion is based on the detection of regions devoid of high spatial-frequencies, both tasks should be similarly difficult for human observers. However, neither image segmentation (nor, incidentally, motion detection) was sensitive to the high spatial-frequency content of the stimuli. Thus changes in perceptual form produced by moving stimuli appear not to be used as a cue for image segmentation.

[BibTex]


View-based cognitive map learning by an autonomous robot

Mallot, H., Bülthoff, H., Georg, P., Schölkopf, B., Yasuhara, K.

In Proceedings International Conference on Artificial Neural Networks, vol. 2, pages: 381-386, (Editors: Fogelman-Soulié, F.), EC2, Paris, France, Conférence Internationale sur les Réseaux de Neurones Artificiels (ICANN '95), October 1995 (inproceedings)

Abstract
This paper presents a view-based approach to map learning and navigation in mazes. By means of graph theory we have shown that the view-graph is a sufficient representation for map behaviour such as path planning. A neural network for unsupervised learning of the view-graph from sequences of views is constructed. We use a modified Kohonen (1988) learning rule that transforms temporal sequence (rather than featural similarity) into connectedness. In the main part of the paper, we present a robot implementation of the scheme. The results show that the proposed network is able to support map behaviour in simple environments.

PDF [BibTex]

PDF [BibTex]


Extracting support data for a given task

Schölkopf, B., Burges, C., Vapnik, V.

In First International Conference on Knowledge Discovery & Data Mining (KDD-95), pages: 252-257, (Editors: UM Fayyad and R Uthurusamy), AAAI Press, Menlo Park, CA, USA, August 1995 (inproceedings)

Abstract
We report a novel possibility for extracting a small subset of a data base which contains all the information necessary to solve a given classification task: using the Support Vector Algorithm to train three different types of handwritten digit classifiers, we observed that these types of classifiers construct their decision surface from strongly overlapping small (k: 4%) subsets of the data base. This finding opens up the possibiiity of compressing data bases significantly by disposing of the data which is not important for the solution of a given task. In addition, we show that the theory allows us to predict the classifier that will have the best generalization ability, based solely on performance on the training set and characteristics of the learning machines. This finding is important for cases where the amount of available data is limited.

PDF [BibTex]

PDF [BibTex]


View-Based Cognitive Mapping and Path Planning

Schölkopf, B., Mallot, H.

Adaptive Behavior, 3(3):311-348, January 1995 (article)

Abstract
This article presents a scheme for learning a cognitive map of a maze from a sequence of views and movement decisions. The scheme is based on an intermediate representation called the view graph, whose nodes correspond to the views whereas the labeled edges represent the movements leading from one view to another. By means of a graph theoretical reconstruction method, the view graph is shown to carry complete information on the topological and directional structure of the maze. Path planning can be carried out directly in the view graph without actually performing this reconstruction. A neural network is presented that learns the view graph during a random exploration of the maze. It is based on an unsupervised competitive learning rule translating temporal sequence (rather than similarity) of views into connectedness in the network. The network uses its knowledge of the topological and directional structure of the maze to generate expectations about which views are likely to be encountered next, improving the view-recognition performance. Numerical simulations illustrate the network's ability for path planning and the recognition of views degraded by random noise. The results are compared to findings of behavioral neuroscience.

Web DOI [BibTex]

Web DOI [BibTex]

1994


Raman and Infrared-Spectra of Solid Chloroflouromethane

Schlueter, S., Davison, T., Anderson, A.

Journal of Raman Spectroscopy, 25, pages: 429-433, 1994 (article)

Abstract
Raman and infrared spectra of solid CH2CIF (Freon 31) were recorded in both the lattice and internal mode regions for samples at temperatures between 12 and 125 K. No evidence of any solid-state phase transition was found, but some thin-film samples deposited at low temperatures appear to exist in a metastable phase. Spectra of the stable phase are compatible with a non-centrosymmetric unit cell containing four molecules. Lattice peaks are assigned on the basis of geometrical and intensity arguments.

Web [BibTex]

1994

Web [BibTex]


View-based cognitive mapping and path planning

Schölkopf, B., Mallot, H.

(7), Max Planck Institute for Biological Cybernetics Tübingen, November 1994, This technical report has also been published elsewhere (techreport)

Abstract
We present a scheme for learning a cognitive map of a maze from a sequence of views and movement decisions. The scheme is based on an intermediate representation called the view graph. We show that this representation carries sufficient information to reconstruct the topological and directional structure of the maze. Moreover, we present a neural network that learns the view graph during a random exploration of the maze. We use a unsupervised competitive learning rule which translates temporal sequence (rather than similarity) of views into connectedness in the network. The network uses its knowledge of the topological and directional structure of the maze to generate expectations about which views are likely to be perceived next, improving the view recognition performance. We provide an additional mechanism which uses the map to find paths between arbitrary points of the previously explored environment. The results are compared to findings of behavioural neuroscience.

[BibTex]

[BibTex]


Pruning from Adaptive Regularization

Hansen, LK. Rasmussen, CE.

Neural Computation, 6(6):1222-1231, 1994 (article)

Abstract
Inspired by the recent upsurge of interest in Bayesian methods we consider adaptive regularization. A generalization based scheme for adaptation of regularization parameters is introduced and compared to Bayesian regularization.We show that pruning arises naturally within both adaptive regularization schemes. As model example we have chosen the simplest possible: estimating the mean of a random variable with known variance. Marked similarities are found between the two methods in that they both involve a "noise limit", below which they regularize with infinite weight decay, i.e., they prune.However, pruning is not always beneficial. We show explicitly that both methods in some cases may increase the generalization error. This corresponds to situations where the underlying assumptions of the regularizer are poorly matched to the environment.

PDF PostScript [BibTex]

PDF PostScript [BibTex]

1993


Presynaptic and Postsynaptic Competition in models for the Development of Neuromuscular Connections

Rasmussen, CE. Willshaw, DJ.

Biological Cybernetics, 68, pages: 409-419, 1993 (article)

Abstract
The development of the nervous system involves in many cases interactions on a local scale rather than the execution of a fully specified genetic blueprint. The problem is to discover the nature of these interactions and the factors on which they depend. The withdrawal of polyinnervation in developing muscle is an example where such competitive interactions play an important role. We examine the possible types of competition in formal models that have plausible biological implementations. By relating the behaviour of the models to the anatomical and physiological findings we show that a model that incorporates two types of competition is superior to others. Analysis suggests that the phenomenon of intrinsic withdrawal is a side effect of the competitive mechanisms rather than a separate non-competitive feature. Full scale computer simulations have been used to confirm the capabilities of this model.

PostScript [BibTex]

1993

PostScript [BibTex]


Cartesian Dynamics of Simple Molecules: X Linear Quadratomics (C∞v Symmetry).

Anderson, A., Davison, T., Nagi, N., Schlueter, S.

Spectroscopy Letters, 26, pages: 509-522, 1993 (article)

[BibTex]

[BibTex]