Header logo is ei


2012


no image
Mining correlated loci at a genome-wide scale

Velkov, V.

Eberhard Karls Universität Tübingen, Germany, 2012 (mastersthesis)

[BibTex]

2012

[BibTex]


no image
A mixed model approach for joint genetic analysis of alternatively spliced transcript isoforms using RNA-Seq data

Rakitsch, B., Lippert, C., Topa, H., Borgwardt, KM., Honkela, A., Stegle, O.

In 2012 (inproceedings) Submitted

Web [BibTex]

Web [BibTex]


no image
The PET Performance Measurements of A Next Generation Dedicated Small Animal PET/MR Scanner

Liu, C., Hossain, M., Bezrukov, I., Wehrl, H., Kolb, A., Judenhofer, M., Pichler, B.

World Molecular Imaging Congress (WMIC), 2012 (poster)

[BibTex]

[BibTex]


no image
Evaluation of marginal likelihoods via the density of states

Habeck, M.

In Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2012) , 22, pages: 486-494, (Editors: N Lawrence and M Girolami), JMLR: W&CP 22, AISTATS, 2012 (inproceedings)

Abstract
Bayesian model comparison involves the evaluation of the marginal likelihood, the expectation of the likelihood under the prior distribution. Typically, this high-dimensional integral over all model parameters is approximated using Markov chain Monte Carlo methods. Thermodynamic integration is a popular method to estimate the marginal likelihood by using samples from annealed posteriors. Here we show that there exists a robust and flexible alternative. The new method estimates the density of states, which counts the number of states associated with a particular value of the likelihood. If the density of states is known, computation of the marginal likelihood reduces to a one- dimensional integral. We outline a maximum likelihood procedure to estimate the density of states from annealed posterior samples. We apply our method to various likelihoods and show that it is superior to thermodynamic integration in that it is more flexible with regard to the annealing schedule and the family of bridging distributions. Finally, we discuss the relation of our method with Skilling's nested sampling.

PDF [BibTex]

PDF [BibTex]


no image
Distributed multisensory signals acquisition and analysis in dyadic interactions

Tawari, A., Tran, C., Doshi, A., Zander, TO.

In Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems Extended Abstracts, pages: 2261-2266, (Editors: JA Konstan and EH Chi and K Höök), ACM, New York, NY, USA, CHI, 2012 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Measuring Cognitive Load by means of EEG-data - how detailed is the picture we can get?

Scharinger, C., Cierniak, G., Walter, C., Zander, TO., Gerjets, P.

In Meeting of the EARLI SIG 22 Neuroscience and Education, 2012 (inproceedings)

[BibTex]

[BibTex]


no image
Optimal kernel choice for large-scale two-sample tests

Gretton, A., Sriperumbudur, B., Sejdinovic, D., Strathmann, H., Balakrishnan, S., Pontil, M., Fukumizu, K.

In Advances in Neural Information Processing Systems 25, pages: 1214-1222, (Editors: P Bartlett and FCN Pereira and CJC. Burges and L Bottou and KQ Weinberger), Curran Associates Inc., 26th Annual Conference on Neural Information Processing Systems (NIPS), 2012 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Measurement and calibration of noise bias in weak lensing galaxy shape estimation

Kacprzak, T., Zuntz, J., Rowe, B., Bridle, S., Refregier, A., Amara, A., Voigt, L., Hirsch, M.

Monthly Notices of the Royal Astronomical Society, 427(4):2711-2722, Oxford University Press, 2012 (article)

DOI [BibTex]

DOI [BibTex]


no image
Image analysis for cosmology: results from the GREAT10 Galaxy Challenge

Kitching, T. D., Balan, S. T., Bridle, S., Cantale, N., Courbin, F., Eifler, T., Gentile, M., Gill, M. S. S., Harmeling, S., Heymans, C., others,

Monthly Notices of the Royal Astronomical Society, 423(4):3163-3208, Oxford University Press, 2012 (article)

DOI [BibTex]

DOI [BibTex]


no image
On the Hardness of Domain Adaptation and the Utility of Unlabeled Target Samples

Ben-David, S., Urner, R.

In Algorithmic Learning Theory - 23rd International Conference, 7568, pages: 139-153, Lecture Notes in Computer Science, (Editors: Bshouty, NH. and Stoltz, G and Vayatis, N and Zeugmann, T), Springer Berlin Heidelberg, ALT, 2012 (inproceedings)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Domain Adaptation–Can Quantity compensate for Quality?

Ben-David, S., Shalev-Shwartz, S., Urner, R.

In International Symposium on Artificial Intelligence and Mathematics, ISAIM, 2012 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Learning from Weak Teachers

Urner, R., Ben-David, S., Shamir, O.

In Proceedings of the 15th International Conference on Artificial Intelligence and Statistics, 22, pages: 1252-1260, (Editors: Lawrence, N. and Girolami, M.), JMLR, AISTATS, 2012 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
First SN Discoveries from the Dark Energy Survey

Abbott, T., Abdalla, F., Achitouv, I., Ahn, E., Aldering, G., Allam, S., Alonso, D., Amara, A., Annis, J., Antonik, M., others,

The Astronomer's Telegram, 4668, pages: 1, 2012 (article)

[BibTex]

[BibTex]


no image
A sensorimotor paradigm for Bayesian model selection

Genewein, T, Braun, DA

Frontiers in Human Neuroscience, 6(291):1-16, October 2012 (article)

Abstract
Sensorimotor control is thought to rely on predictive internal models in order to cope efficiently with uncertain environments. Recently, it has been shown that humans not only learn different internal models for different tasks, but that they also extract common structure between tasks. This raises the question of how the motor system selects between different structures or models, when each model can be associated with a range of different task-specific parameters. Here we design a sensorimotor task that requires subjects to compensate visuomotor shifts in a three-dimensional virtual reality setup, where one of the dimensions can be mapped to a model variable and the other dimension to the parameter variable. By introducing probe trials that are neutral in the parameter dimension, we can directly test for model selection. We found that model selection procedures based on Bayesian statistics provided a better explanation for subjects’ choice behavior than simple non-probabilistic heuristics. Our experimental design lends itself to the general study of model selection in a sensorimotor context as it allows to separately query model and parameter variables from subjects.

DOI [BibTex]

DOI [BibTex]


no image
Adaptive Coding of Actions and Observations

Ortega, PA, Braun, DA

pages: 1-4, NIPS Workshop on Information in Perception and Action, December 2012 (conference)

Abstract
The application of expected utility theory to construct adaptive agents is both computationally intractable and statistically questionable. To overcome these difficulties, agents need the ability to delay the choice of the optimal policy to a later stage when they have learned more about the environment. How should agents do this optimally? An information-theoretic answer to this question is given by the Bayesian control rule—the solution to the adaptive coding problem when there are not only observations but also actions. This paper reviews the central ideas behind the Bayesian control rule.

link (url) [BibTex]

link (url) [BibTex]


no image
Risk-Sensitivity in Bayesian Sensorimotor Integration

Grau-Moya, J, Ortega, PA, Braun, DA

PLoS Computational Biology, 8(9):1-7, sep 2012 (article)

Abstract
Information processing in the nervous system during sensorimotor tasks with inherent uncertainty has been shown to be consistent with Bayesian integration. Bayes optimal decision-makers are, however, risk-neutral in the sense that they weigh all possibilities based on prior expectation and sensory evidence when they choose the action with highest expected value. In contrast, risk-sensitive decision-makers are sensitive to model uncertainty and bias their decision-making processes when they do inference over unobserved variables. In particular, they allow deviations from their probabilistic model in cases where this model makes imprecise predictions. Here we test for risk-sensitivity in a sensorimotor integration task where subjects exhibit Bayesian information integration when they infer the position of a target from noisy sensory feedback. When introducing a cost associated with subjects' response, we found that subjects exhibited a characteristic bias towards low cost responses when their uncertainty was high. This result is in accordance with risk-sensitive decision-making processes that allow for deviations from Bayes optimal decision-making in the face of uncertainty. Our results suggest that both Bayesian integration and risk-sensitivity are important factors to understand sensorimotor integration in a quantitative fashion.

DOI [BibTex]

DOI [BibTex]


no image
Free Energy and the Generalized Optimality Equations for Sequential Decision Making

Ortega, PA, Braun, DA

pages: 1-10, 10th European Workshop on Reinforcement Learning (EWRL), July 2012 (conference)

Abstract
The free energy functional has recently been proposed as a variational principle for bounded rational decision-making, since it instantiates a natural trade-off between utility gains and information processing costs that can be axiomatically derived. Here we apply the free energy principle to general decision trees that include both adversarial and stochastic environments. We derive generalized sequential optimality equations that not only include the Bellman optimality equations as a limit case, but also lead to well-known decision-rules such as Expectimax, Minimax and Expectiminimax. We show how these decision-rules can be derived from a single free energy principle that assigns a resource parameter to each node in the decision tree. These resource parameters express a concrete computational cost that can be measured as the amount of samples that are needed from the distribution that belongs to each node. The free energy principle therefore provides the normative basis for generalized optimality equations that account for both adversarial and stochastic environments.

link (url) [BibTex]

link (url) [BibTex]

2006


no image
Global Biclustering of Microarray Data

Wolf, T., Brors, B., Hofmann, T., Georgii, E.

In ICDMW 2006, pages: 125-129, (Editors: Tsumoto, S. , C. W. Clifton, N. Zhong, X. Wu, J. Liu, B. W. Wah, Y.-M. Cheung), IEEE Computer Society, Los Alamitos, CA, USA, Sixth IEEE International Conference on Data Mining, December 2006 (inproceedings)

Abstract
We consider the problem of simultaneously clustering genes and conditions of a gene expression data matrix. A bicluster is defined as a subset of genes that show similar behavior within a subset of conditions. Finding biclusters can be useful for revealing groups of genes involved in the same molecular process as well as groups of conditions where this process takes place. Previous work either deals with local, bicluster-based criteria or assumes a very specific structure of the data matrix (e.g. checkerboard or block-diagonal) [11]. In contrast, our goal is to find a set of flexibly arranged biclusters which is optimal in regard to a global objective function. As this is a NP-hard combinatorial problem, we describe several techniques to obtain approximate solutions. We benchmarked our approach successfully on the Alizadeh B-cell lymphoma data set [1].

Web DOI [BibTex]

2006

Web DOI [BibTex]


no image
Conformal Multi-Instance Kernels

Blaschko, M., Hofmann, T.

In NIPS 2006 Workshop on Learning to Compare Examples, pages: 1-6, NIPS Workshop on Learning to Compare Examples, December 2006 (inproceedings)

Abstract
In the multiple instance learning setting, each observation is a bag of feature vectors of which one or more vectors indicates membership in a class. The primary task is to identify if any vectors in the bag indicate class membership while ignoring vectors that do not. We describe here a kernel-based technique that defines a parametric family of kernels via conformal transformations and jointly learns a discriminant function over bags together with the optimal parameter settings of the kernel. Learning a conformal transformation effectively amounts to weighting regions in the feature space according to their contribution to classification accuracy; regions that are discriminative will be weighted higher than regions that are not. This allows the classifier to focus on regions contributing to classification accuracy while ignoring regions that correspond to vectors found both in positive and in negative bags. We show how parameters of this transformation can be learned for support vector machines by posing the problem as a multiple kernel learning problem. The resulting multiple instance classifier gives competitive accuracy for several multi-instance benchmark datasets from different domains.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Some observations on the pedestal effect or dipper function

Henning, B., Wichmann, F.

Journal of Vision, 6(13):50, 2006 Fall Vision Meeting of the Optical Society of America, December 2006 (poster)

Abstract
The pedestal effect is the large improvement in the detectabilty of a sinusoidal “signal” grating observed when the signal is added to a masking or “pedestal” grating of the same spatial frequency, orientation, and phase. We measured the pedestal effect in both broadband and notched noise - noise from which a 1.5-octave band centred on the signal frequency had been removed. Although the pedestal effect persists in broadband noise, it almost disappears in the notched noise. Furthermore, the pedestal effect is substantial when either high- or low-pass masking noise is used. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies different from that of the signal and pedestal. The spatial-frequency components of the notched noise above and below the spatial frequency of the signal and pedestal prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and pedestal. Thus the pedestal or dipper effect measured without notched noise is not a characteristic of individual spatial-frequency tuned channels.

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Kernel Method for the Two-Sample-Problem

Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.

20th Annual Conference on Neural Information Processing Systems (NIPS), December 2006 (talk)

Abstract
We propose two statistical tests to determine if two samples are from different distributions. Our test statistic is in both cases the distance between the means of the two samples mapped into a reproducing kernel Hilbert space (RKHS). The first test is based on a large deviation bound for the test statistic, while the second is based on the asymptotic distribution of this statistic. We show that the test statistic can be computed in $O(m^2)$ time. We apply our approach to a variety of problems, including attribute matching for databases using the Hungarian marriage method, where our test performs strongly. We also demonstrate excellent performance when comparing distributions over graphs, for which no alternative tests currently exist.

PDF [BibTex]

PDF [BibTex]


no image
Ab-initio gene finding using machine learning

Schweikert, G., Zeller, G., Zien, A., Ong, C., de Bona, F., Sonnenburg, S., Phillips, P., Rätsch, G.

NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

Web [BibTex]

Web [BibTex]


no image
Reinforcement Learning by Reward-Weighted Regression

Peters, J.

NIPS Workshop: Towards a New Reinforcement Learning? , December 2006 (talk)

Web [BibTex]

Web [BibTex]


no image
Graph boosting for molecular QSAR analysis

Saigo, H., Kadowaki, T., Kudo, T., Tsuda, K.

NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

Abstract
We propose a new boosting method that systematically combines graph mining and mathematical programming-based machine learning. Informative and interpretable subgraph features are greedily found by a series of graph mining calls. Due to our mathematical programming formulation, subgraph features and pre-calculated real-valued features are seemlessly integrated. We tested our algorithm on a quantitative structure-activity relationship (QSAR) problem, which is basically a regression problem when given a set of chemical compounds. In benchmark experiments, the prediction accuracy of our method favorably compared with the best results reported on each dataset.

Web [BibTex]

Web [BibTex]


no image
A New Projected Quasi-Newton Approach for the Nonnegative Least Squares Problem

Kim, D., Sra, S., Dhillon, I.

(TR-06-54), Univ. of Texas, Austin, December 2006 (techreport)

PDF [BibTex]

PDF [BibTex]


no image
Inferring Causal Directions by Evaluating the Complexity of Conditional Distributions

Sun, X., Janzing, D., Schölkopf, B.

NIPS Workshop on Causality and Feature Selection, December 2006 (talk)

Abstract
We propose a new approach to infer the causal structure that has generated the observed statistical dependences among n random variables. The idea is that the factorization of the joint measure of cause and effect into P(cause)P(effect|cause) leads typically to simpler conditionals than non-causal factorizations. To evaluate the complexity of the conditionals we have tried two methods. First, we have compared them to those which maximize the conditional entropy subject to the observed first and second moments since we consider the latter as the simplest conditionals. Second, we have fitted the data with conditional probability measures being exponents of functions in an RKHS space and defined the complexity by a Hilbert-space semi-norm. Such a complexity measure has several properties that are useful for our purpose. We describe some encouraging results with both methods applied to real-world data. Moreover, we have combined constraint-based approaches to causal discovery (i.e., methods using only information on conditional statistical dependences) with our method in order to distinguish between causal hypotheses which are equivalent with respect to the imposed independences. Furthermore, we compare the performance to Bayesian approaches to causal inference.

Web [BibTex]


no image
Information-theoretic Metric Learning

Davis, J., Kulis, B., Sra, S., Dhillon, I.

In NIPS 2006 Workshop on Learning to Compare Examples, pages: 1-5, NIPS Workshop on Learning to Compare Examples, December 2006 (inproceedings)

Abstract
We formulate the metric learning problem as that of minimizing the differential relative entropy between two multivariate Gaussians under constraints on the Mahalanobis distance function. Via a surprising equivalence, we show that this problem can be solved as a low-rank kernel learning problem. Specifically, we minimize the Burg divergence of a low-rank kernel to an input kernel, subject to pairwise distance constraints. Our approach has several advantages over existing methods. First, we present a natural information-theoretic formulation for the problem. Second, the algorithm utilizes the methods developed by Kulis et al. [6], which do not involve any eigenvector computation; in particular, the running time of our method is faster than most existing techniques. Third, the formulation offers insights into connections between metric learning and kernel learning.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Pattern Mining in Frequent Dynamic Subgraphs

Borgwardt, KM., Kriegel, H-P., Wackersreuther, P.

In pages: 818-822, (Editors: Clifton, C.W.), IEEE Computer Society, Los Alamitos, CA, USA, Sixth International Conference on Data Mining (ICDM), December 2006 (inproceedings)

Abstract
Graph-structured data is becoming increasingly abundant in many application domains. Graph mining aims at finding interesting patterns within this data that represent novel knowledge. While current data mining deals with static graphs that do not change over time, coming years will see the advent of an increasing number of time series of graphs. In this article, we investigate how pattern mining on static graphs can be extended to time series of graphs. In particular, we are considering dynamic graphs with edge insertions and edge deletions over time. We define frequency in this setting and provide algorithmic solutions for finding frequent dynamic subgraph patterns. Existing subgraph mining algorithms can be easily integrated into our framework to make them handle dynamic graphs. Experimental results on real-world data confirm the practical feasibility of our approach.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Structure validation of the Josephin domain of ataxin-3: Conclusive evidence for an open conformation

Nicastro, G., Habeck, M., Masino, L., Svergun, DI., Pastore, A.

Journal of Biomolecular NMR, 36(4):267-277, December 2006 (article)

Abstract
The availability of new and fast tools in structure determination has led to a more than exponential growth of the number of structures solved per year. It is therefore increasingly essential to assess the accuracy of the new structures by reliable approaches able to assist validation. Here, we discuss a specific example in which the use of different complementary techniques, which include Bayesian methods and small angle scattering, resulted essential for validating the two currently available structures of the Josephin domain of ataxin-3, a protein involved in the ubiquitin/proteasome pathway and responsible for neurodegenerative spinocerebellar ataxia of type 3. Taken together, our results demonstrate that only one of the two structures is compatible with the experimental information. Based on the high precision of our refined structure, we show that Josephin contains an open cleft which could be directly implicated in the interaction with polyubiquitin chains and other partners.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Probabilistic inference for solving (PO)MDPs

Toussaint, M., Harmeling, S., Storkey, A.

(934), School of Informatics, University of Edinburgh, December 2006 (techreport)

PDF [BibTex]

PDF [BibTex]


no image
A Unifying View of Wiener and Volterra Theory and Polynomial Kernel Regression

Franz, M., Schölkopf, B.

Neural Computation, 18(12):3097-3118, December 2006 (article)

Abstract
Volterra and Wiener series are perhaps the best understood nonlinear system representations in signal processing. Although both approaches have enjoyed a certain popularity in the past, their application has been limited to rather low-dimensional and weakly nonlinear systems due to the exponential growth of the number of terms that have to be estimated. We show that Volterra and Wiener series can be represented implicitly as elements of a reproducing kernel Hilbert space by utilizing polynomial kernels. The estimation complexity of the implicit representation is linear in the input dimensionality and independent of the degree of nonlinearity. Experiments show performance advantages in terms of convergence, interpretability, and system sizes that can be handled.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Minimal Logical Constraint Covering Sets

Sinz, F., Schölkopf, B.

(155), Max Planck Institute for Biological Cybernetics, Tübingen, December 2006 (techreport)

Abstract
We propose a general framework for computing minimal set covers under class of certain logical constraints. The underlying idea is to transform the problem into a mathematical programm under linear constraints. In this sense it can be seen as a natural extension of the vector quantization algorithm proposed by Tipping and Schoelkopf. We show which class of logical constraints can be cast and relaxed into linear constraints and give an algorithm for the transformation.

PDF [BibTex]

PDF [BibTex]


no image
Learning Optimal EEG Features Across Time, Frequency and Space

Farquhar, J., Hill, J., Schölkopf, B.

NIPS Workshop on Current Trends in Brain-Computer Interfacing, December 2006 (talk)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Acquiring web page information without commitment to downloading the web page

Heilbron, L., Platt, J. C., Schölkopf, B., Simard, P. Y.

United States Patent, No 7155489, December 2006 (patent)

[BibTex]

[BibTex]


no image
Semi-Supervised Learning

Zien, A.

Advanced Methods in Sequence Analysis Lectures, November 2006 (talk)

Web [BibTex]

Web [BibTex]


no image
3DString: a feature string kernel for 3D object classification on voxelized data

Assfalg, J., Borgwardt, KM., Kriegel, H-P.

In pages: 198-207, (Editors: Yu, P.S. , V.J. Tsotras, E.A. Fox, B. Liu), ACM Press, New York, NY, USA, 15th ACM International Conference on Information and Knowledge Management (CIKM), November 2006 (inproceedings)

Abstract
Classification of 3D objects remains an important task in many areas of data management such as engineering, medicine or biology. As a common preprocessing step in current approaches to classification of voxelized 3D objects, voxel representations are transformed into a feature vector description.In this article, we introduce an approach of transforming 3D objects into feature strings which represent the distribution of voxels over the voxel grid. Attractively, this feature string extraction can be performed in linear runtime with respect to the number of voxels. We define a similarity measure on these feature strings that counts common k-mers in two input strings, which is referred to as the spectrum kernel in the field of kernel methods. We prove that on our feature strings, this similarity measure can be computed in time linear to the number of different characters in these strings. This linear runtime behavior makes our kernel attractive even for large datasets that occur in many application domains. Furthermore, we explain that our similarity measure induces a metric which allows to combine it with an M-tree for handling of large volumes of data. Classification experiments on two published benchmark datasets show that our novel approach is competitive with the best state-of-the-art methods for 3D object classification.

DOI [BibTex]

DOI [BibTex]


no image
Prediction of Protein Function from Networks

Shin, H., Tsuda, K.

In Semi-Supervised Learning, pages: 361-376, Adaptive Computation and Machine Learning, (Editors: Chapelle, O. , B. Schölkopf, A. Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)

Abstract
In computational biology, it is common to represent domain knowledge using graphs. Frequently there exist multiple graphs for the same set of nodes, representing information from different sources, and no single graph is sufficient to predict class labels of unlabelled nodes reliably. One way to enhance reliability is to integrate multiple graphs, since individual graphs are partly independent and partly complementary to each other for prediction. In this chapter, we describe an algorithm to assign weights to multiple graphs within graph-based semi-supervised learning. Both predicting class labels and searching for weights for combining multiple graphs are formulated into one convex optimization problem. The graph-combining method is applied to functional class prediction of yeast proteins.When compared with individual graphs, the combined graph with optimized weights performs significantly better than any single graph.When compared with the semidefinite programming-based support vector machine (SDP/SVM), it shows comparable accuracy in a remarkably short time. Compared with a combined graph with equal-valued weights, our method could select important graphs without loss of accuracy, which implies the desirable property of integration with selectivity.

Web [BibTex]

Web [BibTex]


no image
Adapting Spatial Filter Methods for Nonstationary BCIs

Tomioka, R., Hill, J., Blankertz, B., Aihara, K.

In IBIS 2006, pages: 65-70, 2006 Workshop on Information-Based Induction Sciences, November 2006 (inproceedings)

Abstract
A major challenge in applying machine learning methods to Brain-Computer Interfaces (BCIs) is to overcome the possible nonstationarity in the data from the datablock the method is trained on and that the method is applied to. Assuming the joint distributions of the whitened signal and the class label to be identical in two blocks, where the whitening is done in each block independently, we propose a simple adaptation formula that is applicable to a broad class of spatial filtering methods including ICA, CSP, and logistic regression classifiers. We characterize the class of linear transformations for which the above assumption holds. Experimental results on 60 BCI datasets show improved classification accuracy compared to (a) fixed spatial filter approach (no adaptation) and (b) fixed spatial pattern approach (proposed by Hill et al., 2006 [1]).

PDF [BibTex]

PDF [BibTex]


no image
Discrete Regularization

Zhou, D., Schölkopf, B.

In Semi-supervised Learning, pages: 237-250, Adaptive computation and machine learning, (Editors: O Chapelle and B Schölkopf and A Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)

Abstract
Many real-world machine learning problems are situated on finite discrete sets, including dimensionality reduction, clustering, and transductive inference. A variety of approaches for learning from finite sets has been proposed from different motivations and for different problems. In most of those approaches, a finite set is modeled as a graph, in which the edges encode pairwise relationships among the objects in the set. Consequently many concepts and methods from graph theory are adopted. In particular, the graph Laplacian is widely used. In this chapter we present a systemic framework for learning from a finite set represented as a graph. We develop discrete analogues of a number of differential operators, and then construct a discrete analogue of classical regularization theory based on those discrete differential operators. The graph Laplacian based approaches are special cases of this general discrete regularization framework. An important thing implied in this framework is that we have a wide choices of regularization on graph in addition to the widely-used graph Laplacian based one.

PDF Web [BibTex]

PDF Web [BibTex]


no image
New Methods for the P300 Visual Speller

Biessmann, F.

(1), (Editors: Hill, J. ), Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2006 (techreport)

PDF [BibTex]

PDF [BibTex]


no image
Statistical Analysis of Slow Crack Growth Experiments

Pfingsten, T., Glien, K.

Journal of the European Ceramic Society, 26(15):3061-3065, November 2006 (article)

Abstract
A common approach for the determination of Slow Crack Growth (SCG) parameters are the static and dynamic loading method. Since materials with small Weibull module show a large variability in strength, a correct statistical analysis of the data is indispensable. In this work we propose the use of the Maximum Likelihood method and a Baysian analysis, which, in contrast to the standard procedures, take into account that failure strengths are Weibull distributed. The analysis provides estimates for the SCG parameters, the Weibull module, and the corresponding confidence intervals and overcomes the necessity of manual differentiation between inert and fatigue strength data. We compare the methods to a Least Squares approach, which can be considered the standard procedure. The results for dynamic loading data from the glass sealing of MEMS devices show that the assumptions inherent to the standard approach lead to significantly different estimates.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
An Improved Adaptive Power Line Interference Canceller for Electrocardiography

Martens, SMM., Mischi, M., Oei, SG., Bergmans, JWM.

IEEE Transactions on Biomedical Engineering, 53(11):2220-2231, November 2006 (article)

Abstract
Power line interference may severely corrupt a biomedical recording. Notch filters and adaptive cancellers have been suggested to suppress this interference. We propose an improved adaptive canceller for the reduction of the fundamental power line interference component and harmonics in electrocardiogram (ECG) recordings. The method tracks the amplitude, phase, and frequency of all the interference components for power line frequency deviations up to about 4 Hz. A comparison is made between the performance of our method, former adaptive cancellers, and a narrow and a wide notch filter in suppressing the fundamental power line interference component. For this purpose a real ECG signal is corrupted by an artificial power line interference signal. The cleaned signal after applying all methods is compared with the original ECG signal. Our improved adaptive canceller shows a signal-to-power-line-interference ratio for the fundamental component up to 30 dB higher than that produced by the other methods. Moreover, our method is also effective for the suppression of the harmonics of the power line interference.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Donagi-Markman cubic for Hitchin systems

Balduzzi, D.

Mathematical Research Letters, 13(6):923-933, November 2006 (article)

Abstract
The Donagi-Markman cubic is the differential of the period map for algebraic completely integrable systems. Here we prove a formula for the cubic in the case of Hitchin’s system for arbitrary semisimple g. This was originally stated (without proof) by Pantev for sln.

Web [BibTex]

Web [BibTex]


no image
Optimizing Spatial Filters for BCI: Margin- and Evidence-Maximization Approaches

Farquhar, J., Hill, N., Schölkopf, B.

Challenging Brain-Computer Interfaces: MAIA Workshop 2006, pages: 1, November 2006 (poster)

Abstract
We present easy-to-use alternatives to the often-used two-stage Common Spatial Pattern + classifier approach for spatial filtering and classification of Event-Related Desychnronization signals in BCI. We report two algorithms that aim to optimize the spatial filters according to a criterion more directly related to the ability of the algorithms to generalize to unseen data. Both are based upon the idea of treating the spatial filter coefficients as hyperparameters of a kernel or covariance function. We then optimize these hyper-parameters directly along side the normal classifier parameters with respect to our chosen learning objective function. The two objectives considered are margin maximization as used in Support-Vector Machines and the evidence maximization framework used in Gaussian Processes. Our experiments assessed generalization error as a function of the number of training points used, on 9 BCI competition data sets and 5 offline motor imagery data sets measured in Tubingen. Both our approaches sho w consistent improvements relative to the commonly used CSP+linear classifier combination. Strikingly, the improvement is most significant in the higher noise cases, when either few trails are used for training, or with the most poorly performing subjects. This a reversal of the usual "rich get richer" effect in the development of CSP extensions, which tend to perform best when the signal is strong enough to accurately find their additional parameters. This makes our approach particularly suitable for clinical application where high levels of noise are to be expected.

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
A Machine Learning Approach for Determining the PET Attenuation Map from Magnetic Resonance Images

Hofmann, M., Steinke, F., Judenhofer, M., Claussen, C., Schölkopf, B., Pichler, B.

IEEE Medical Imaging Conference, November 2006 (talk)

Abstract
A promising new combination in multimodality imaging is MR-PET, where the high soft tissue contrast of Magnetic Resonance Imaging (MRI) and the functional information of Positron Emission Tomography (PET) are combined. Although many technical problems have recently been solved, it is still an open problem to determine the attenuation map from the available MR scan, as the MR intensities are not directly related to the attenuation values. One standard approach is an atlas registration where the atlas MR image is aligned with the patient MR thus also yielding an attenuation image for the patient. We also propose another approach, which to our knowledge has not been tried before: Using Support Vector Machines we predict the attenuation value directly from the local image information. We train this well-established machine learning algorithm using small image patches. Although both approaches sometimes yielded acceptable results, they also showed their specific shortcomings: The registration often fails with large deformations whereas the prediction approach is problematic when the local image structure is not characteristic enough. However, the failures often do not coincide and integration of both information sources is promising. We therefore developed a combination method extending Support Vector Machines to use not only local image structure but also atlas registered coordinates. We demonstrate the strength of this combination approach on a number of examples.

[BibTex]

[BibTex]


no image
Mining frequent stem patterns from unaligned RNA sequences

Hamada, M., Tsuda, K., Kudo, T., Kin, T., Asai, K.

Bioinformatics, 22(20):2480-2487, October 2006 (article)

Abstract
Motivation: In detection of non-coding RNAs, it is often necessary to identify the secondary structure motifs from a set of putative RNA sequences. Most of the existing algorithms aim to provide the best motif or few good motifs, but biologists often need to inspect all the possible motifs thoroughly. Results: Our method RNAmine employs a graph theoretic representation of RNA sequences, and detects all the possible motifs exhaustively using a graph mining algorithm. The motif detection problem boils down to finding frequently appearing patterns in a set of directed and labeled graphs. In the tasks of common secondary structure prediction and local motif detection from long sequences, our method performed favorably both in accuracy and in efficiency with the state-of-the-art methods such as CMFinder.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]