Header logo is ei


2012


no image
Mining correlated loci at a genome-wide scale

Velkov, V.

Eberhard Karls Universität Tübingen, Germany, 2012 (mastersthesis)

[BibTex]

2012

[BibTex]


no image
A mixed model approach for joint genetic analysis of alternatively spliced transcript isoforms using RNA-Seq data

Rakitsch, B., Lippert, C., Topa, H., Borgwardt, KM., Honkela, A., Stegle, O.

In 2012 (inproceedings) Submitted

Web [BibTex]

Web [BibTex]


no image
The PET Performance Measurements of A Next Generation Dedicated Small Animal PET/MR Scanner

Liu, C., Hossain, M., Bezrukov, I., Wehrl, H., Kolb, A., Judenhofer, M., Pichler, B.

World Molecular Imaging Congress (WMIC), 2012 (poster)

[BibTex]

[BibTex]


no image
Evaluation of marginal likelihoods via the density of states

Habeck, M.

In Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2012) , 22, pages: 486-494, (Editors: N Lawrence and M Girolami), JMLR: W&CP 22, AISTATS, 2012 (inproceedings)

Abstract
Bayesian model comparison involves the evaluation of the marginal likelihood, the expectation of the likelihood under the prior distribution. Typically, this high-dimensional integral over all model parameters is approximated using Markov chain Monte Carlo methods. Thermodynamic integration is a popular method to estimate the marginal likelihood by using samples from annealed posteriors. Here we show that there exists a robust and flexible alternative. The new method estimates the density of states, which counts the number of states associated with a particular value of the likelihood. If the density of states is known, computation of the marginal likelihood reduces to a one- dimensional integral. We outline a maximum likelihood procedure to estimate the density of states from annealed posterior samples. We apply our method to various likelihoods and show that it is superior to thermodynamic integration in that it is more flexible with regard to the annealing schedule and the family of bridging distributions. Finally, we discuss the relation of our method with Skilling's nested sampling.

PDF [BibTex]

PDF [BibTex]


no image
Distributed multisensory signals acquisition and analysis in dyadic interactions

Tawari, A., Tran, C., Doshi, A., Zander, TO.

In Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems Extended Abstracts, pages: 2261-2266, (Editors: JA Konstan and EH Chi and K Höök), ACM, New York, NY, USA, CHI, 2012 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Measuring Cognitive Load by means of EEG-data - how detailed is the picture we can get?

Scharinger, C., Cierniak, G., Walter, C., Zander, TO., Gerjets, P.

In Meeting of the EARLI SIG 22 Neuroscience and Education, 2012 (inproceedings)

[BibTex]

[BibTex]


no image
Optimal kernel choice for large-scale two-sample tests

Gretton, A., Sriperumbudur, B., Sejdinovic, D., Strathmann, H., Balakrishnan, S., Pontil, M., Fukumizu, K.

In Advances in Neural Information Processing Systems 25, pages: 1214-1222, (Editors: P Bartlett and FCN Pereira and CJC. Burges and L Bottou and KQ Weinberger), Curran Associates Inc., 26th Annual Conference on Neural Information Processing Systems (NIPS), 2012 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Measurement and calibration of noise bias in weak lensing galaxy shape estimation

Kacprzak, T., Zuntz, J., Rowe, B., Bridle, S., Refregier, A., Amara, A., Voigt, L., Hirsch, M.

Monthly Notices of the Royal Astronomical Society, 427(4):2711-2722, Oxford University Press, 2012 (article)

DOI [BibTex]

DOI [BibTex]


no image
Image analysis for cosmology: results from the GREAT10 Galaxy Challenge

Kitching, T. D., Balan, S. T., Bridle, S., Cantale, N., Courbin, F., Eifler, T., Gentile, M., Gill, M. S. S., Harmeling, S., Heymans, C., others,

Monthly Notices of the Royal Astronomical Society, 423(4):3163-3208, Oxford University Press, 2012 (article)

DOI [BibTex]

DOI [BibTex]


no image
On the Hardness of Domain Adaptation and the Utility of Unlabeled Target Samples

Ben-David, S., Urner, R.

In Algorithmic Learning Theory - 23rd International Conference, 7568, pages: 139-153, Lecture Notes in Computer Science, (Editors: Bshouty, NH. and Stoltz, G and Vayatis, N and Zeugmann, T), Springer Berlin Heidelberg, ALT, 2012 (inproceedings)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Domain Adaptation–Can Quantity compensate for Quality?

Ben-David, S., Shalev-Shwartz, S., Urner, R.

In International Symposium on Artificial Intelligence and Mathematics, ISAIM, 2012 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Learning from Weak Teachers

Urner, R., Ben-David, S., Shamir, O.

In Proceedings of the 15th International Conference on Artificial Intelligence and Statistics, 22, pages: 1252-1260, (Editors: Lawrence, N. and Girolami, M.), JMLR, AISTATS, 2012 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
First SN Discoveries from the Dark Energy Survey

Abbott, T., Abdalla, F., Achitouv, I., Ahn, E., Aldering, G., Allam, S., Alonso, D., Amara, A., Annis, J., Antonik, M., others,

The Astronomer's Telegram, 4668, pages: 1, 2012 (article)

[BibTex]

[BibTex]


no image
A sensorimotor paradigm for Bayesian model selection

Genewein, T, Braun, DA

Frontiers in Human Neuroscience, 6(291):1-16, October 2012 (article)

Abstract
Sensorimotor control is thought to rely on predictive internal models in order to cope efficiently with uncertain environments. Recently, it has been shown that humans not only learn different internal models for different tasks, but that they also extract common structure between tasks. This raises the question of how the motor system selects between different structures or models, when each model can be associated with a range of different task-specific parameters. Here we design a sensorimotor task that requires subjects to compensate visuomotor shifts in a three-dimensional virtual reality setup, where one of the dimensions can be mapped to a model variable and the other dimension to the parameter variable. By introducing probe trials that are neutral in the parameter dimension, we can directly test for model selection. We found that model selection procedures based on Bayesian statistics provided a better explanation for subjects’ choice behavior than simple non-probabilistic heuristics. Our experimental design lends itself to the general study of model selection in a sensorimotor context as it allows to separately query model and parameter variables from subjects.

DOI [BibTex]

DOI [BibTex]


no image
Adaptive Coding of Actions and Observations

Ortega, PA, Braun, DA

pages: 1-4, NIPS Workshop on Information in Perception and Action, December 2012 (conference)

Abstract
The application of expected utility theory to construct adaptive agents is both computationally intractable and statistically questionable. To overcome these difficulties, agents need the ability to delay the choice of the optimal policy to a later stage when they have learned more about the environment. How should agents do this optimally? An information-theoretic answer to this question is given by the Bayesian control rule—the solution to the adaptive coding problem when there are not only observations but also actions. This paper reviews the central ideas behind the Bayesian control rule.

link (url) [BibTex]

link (url) [BibTex]


no image
Risk-Sensitivity in Bayesian Sensorimotor Integration

Grau-Moya, J, Ortega, PA, Braun, DA

PLoS Computational Biology, 8(9):1-7, sep 2012 (article)

Abstract
Information processing in the nervous system during sensorimotor tasks with inherent uncertainty has been shown to be consistent with Bayesian integration. Bayes optimal decision-makers are, however, risk-neutral in the sense that they weigh all possibilities based on prior expectation and sensory evidence when they choose the action with highest expected value. In contrast, risk-sensitive decision-makers are sensitive to model uncertainty and bias their decision-making processes when they do inference over unobserved variables. In particular, they allow deviations from their probabilistic model in cases where this model makes imprecise predictions. Here we test for risk-sensitivity in a sensorimotor integration task where subjects exhibit Bayesian information integration when they infer the position of a target from noisy sensory feedback. When introducing a cost associated with subjects' response, we found that subjects exhibited a characteristic bias towards low cost responses when their uncertainty was high. This result is in accordance with risk-sensitive decision-making processes that allow for deviations from Bayes optimal decision-making in the face of uncertainty. Our results suggest that both Bayesian integration and risk-sensitivity are important factors to understand sensorimotor integration in a quantitative fashion.

DOI [BibTex]

DOI [BibTex]


no image
Free Energy and the Generalized Optimality Equations for Sequential Decision Making

Ortega, PA, Braun, DA

pages: 1-10, 10th European Workshop on Reinforcement Learning (EWRL), July 2012 (conference)

Abstract
The free energy functional has recently been proposed as a variational principle for bounded rational decision-making, since it instantiates a natural trade-off between utility gains and information processing costs that can be axiomatically derived. Here we apply the free energy principle to general decision trees that include both adversarial and stochastic environments. We derive generalized sequential optimality equations that not only include the Bellman optimality equations as a limit case, but also lead to well-known decision-rules such as Expectimax, Minimax and Expectiminimax. We show how these decision-rules can be derived from a single free energy principle that assigns a resource parameter to each node in the decision tree. These resource parameters express a concrete computational cost that can be measured as the amount of samples that are needed from the distribution that belongs to each node. The free energy principle therefore provides the normative basis for generalized optimality equations that account for both adversarial and stochastic environments.

link (url) [BibTex]

link (url) [BibTex]

2005


no image
Spectral clustering and transductive inference for graph data

Zhou, D.

NIPS Workshop on Kernel Methods and Structured Domains, December 2005 (talk)

PDF Web [BibTex]

2005

PDF Web [BibTex]


no image
Kernel Methods for Measuring Independence

Gretton, A., Herbrich, R., Smola, A., Bousquet, O., Schölkopf, B.

Journal of Machine Learning Research, 6, pages: 2075-2129, December 2005 (article)

Abstract
We introduce two new functionals, the constrained covariance and the kernel mutual information, to measure the degree of independence of random variables. These quantities are both based on the covariance between functions of the random variables in reproducing kernel Hilbert spaces (RKHSs). We prove that when the RKHSs are universal, both functionals are zero if and only if the random variables are pairwise independent. We also show that the kernel mutual information is an upper bound near independence on the Parzen window estimate of the mutual information. Analogous results apply for two correlation-based dependence functionals introduced earlier: we show the kernel canonical correlation and the kernel generalised variance to be independence measures for universal kernels, and prove the latter to be an upper bound on the mutual information near independence. The performance of the kernel dependence functionals in measuring independence is verified in the context of independent component analysis.

PDF PostScript PDF [BibTex]

PDF PostScript PDF [BibTex]


no image
Kernel ICA for Large Scale Problems

Jegelka, S., Gretton, A., Achlioptas, D.

In pages: -, NIPS Workshop on Large Scale Kernel Machines, December 2005 (inproceedings)

Web [BibTex]

Web [BibTex]


no image
Infinite dimensional exponential families by reproducing kernel Hilbert spaces

Fukumizu, K.

In IGAIA 2005, pages: 324-333, 2nd International Symposium on Information Geometry and its Applications, December 2005 (inproceedings)

Abstract
The purpose of this paper is to propose a method of constructing exponential families of Hilbert manifold, on which estimation theory can be built. Although there have been works on infinite dimensional exponential families of Banach manifolds (Pistone and Sempi, 1995; Gibilisco and Pistone, 1998; Pistone and Rogantin, 1999), they are not appropriate to discuss statistical estimation with finite number of samples; the likelihood function with finite samples is not continuous on the manifold. In this paper we use a reproducing kernel Hilbert space as a functional space for constructing an exponential manifold. A reproducing kernel Hilbert space is dened as a Hilbert space of functions such that evaluation of a function at an arbitrary point is a continuous functional on the Hilbert space. Since we can discuss the value of a function with this space, it is very natural to use a manifold associated with a reproducing kernel Hilbert space as a basis of estimation theory. We focus on the maximum likelihood estimation (MLE) with the exponential manifold of a reproducing kernel Hilbert space. As in many non-parametric estimation methods, straightforward extension of MLE to an infinite dimensional exponential manifold suffers the problem of ill-posedness caused by the fact that the estimator should be chosen from the infinite dimensional space with only finite number of constraints given by the data. To solve this problem, a pseudo-maximum likelihood method is proposed by restricting the infinite dimensional manifold to a series of finite dimensional submanifolds, which enlarge as the number of samples increases. Some asymptotic results in the limit of infinite samples are shown, including the consistency of the pseudo-MLE.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Some thoughts about Gaussian Processes

Chapelle, O.

NIPS Workshop on Open Problems in Gaussian Processes for Machine Learning, December 2005 (talk)

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Unifying View of Sparse Approximate Gaussian Process Regression

Quinonero Candela, J., Rasmussen, C.

Journal of Machine Learning Research, 6, pages: 1935-1959, December 2005 (article)

Abstract
We provide a new unifying view, including all existing proper probabilistic sparse approximations for Gaussian process regression. Our approach relies on expressing the effective prior which the methods are using. This allows new insights to be gained, and highlights the relationship between existing methods. It also allows for a clear theoretically justified ranking of the closeness of the known approximations to the corresponding full GPs. Finally we point directly to designs of new better sparse approximations, combining the best of the existing strategies, within attractive computational constraints.

PDF [BibTex]

PDF [BibTex]


no image
Method and device for detection of splice form and alternative splice forms in DNA or RNA sequences

Rätsch, G., Sonnenburg, S., Müller, K., Schölkopf, B.

European Patent Application, International No PCT/EP2005/005783, December 2005 (patent)

[BibTex]

[BibTex]


no image
Popper, Falsification and the VC-dimension

Corfield, D., Schölkopf, B., Vapnik, V.

(145), Max Planck Institute for Biological Cybernetics, November 2005 (techreport)

PDF [BibTex]

PDF [BibTex]


no image
Shortest-path kernels on graphs

Borgwardt, KM., Kriegel, H-P.

In pages: 74-81, IEEE Computer Society, Los Alamitos, CA, USA, Fifth International Conference on Data Mining (ICDM), November 2005 (inproceedings)

Abstract
Data mining algorithms are facing the challenge to deal with an increasing number of complex objects. For graph data, a whole toolbox of data mining algorithms becomes available by defining a kernel function on instances of graphs. Graph kernels based on walks, subtrees and cycles in graphs have been proposed so far. As a general problem, these kernels are either computationally expensive or limited in their expressiveness. We try to overcome this problem by defining expressive graph kernels which are based on paths. As the computation of all paths and longest paths in a graph is NP-hard, we propose graph kernels based on shortest paths. These kernels are computable in polynomial time, retain expressivity and are still positive definite. In experiments on classification of graph models of proteins, our shortest-path kernels show significantly higher classification accuracy than walk-based kernels.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Extension to Kernel Dependency Estimation with Applications to Robotics

BakIr, G.

Biologische Kybernetik, Technische Universität Berlin, Berlin, November 2005 (phdthesis)

Abstract
Kernel Dependency Estimation(KDE) is a novel technique which was designed to learn mappings between sets without making assumptions on the type of the involved input and output data. It learns the mapping in two stages. In a first step, it tries to estimate coordinates of a feature space representation of elements of the set by solving a high dimensional multivariate regression problem in feature space. Following this, it tries to reconstruct the original representation given the estimated coordinates. This thesis introduces various algorithmic extensions to both stages in KDE. One of the contributions of this thesis is to propose a novel linear regression algorithm that explores low-dimensional subspaces during learning. Furthermore various existing strategies for reconstructing patterns from feature maps involved in KDE are discussed and novel pre-image techniques are introduced. In particular, pre-image techniques for data-types that are of discrete nature such as graphs and strings are investigated. KDE is then explored in the context of robot pose imitation where the input is a an image with a human operator and the output is the robot articulated variables. Thus, using KDE, robot pose imitation is formulated as a regression problem.

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Kernel methods for dependence testing in LFP-MUA

Gretton, A., Belitski, A., Murayama, Y., Schölkopf, B., Logothetis, N.

35(689.17), 35th Annual Meeting of the Society for Neuroscience (Neuroscience), November 2005 (poster)

Abstract
A fundamental problem in neuroscience is determining whether or not particular neural signals are dependent. The correlation is the most straightforward basis for such tests, but considerable work also focuses on the mutual information (MI), which is capable of revealing dependence of higher orders that the correlation cannot detect. That said, there are other measures of dependence that share with the MI an ability to detect dependence of any order, but which can be easier to compute in practice. We focus in particular on tests based on the functional covariance, which derive from work originally accomplished in 1959 by Renyi. Conceptually, our dependence tests work by computing the covariance between (infinite dimensional) vectors of nonlinear mappings of the observations being tested, and then determining whether this covariance is zero - we call this measure the constrained covariance (COCO). When these vectors are members of universal reproducing kernel Hilbert spaces, we can prove this covariance to be zero only when the variables being tested are independent. The greatest advantage of these tests, compared with the mutual information, is their simplicity – when comparing two signals, we need only take the largest eigenvalue (or the trace) of a product of two matrices of nonlinearities, where these matrices are generally much smaller than the number of observations (and are very simple to construct). We compare the mutual information, the COCO, and the correlation in the context of finding changes in dependence between the LFP and MUA signals in the primary visual cortex of the anaesthetized macaque, during the presentation of dynamic natural stimuli. We demonstrate that the MI and COCO reveal dependence which is not detected by the correlation alone (which we prove by artificially removing all correlation between the signals, and then testing their dependence with COCO and the MI); and that COCO and the MI give results consistent with each other on our data.

Web [BibTex]

Web [BibTex]


no image
Training Support Vector Machines with Multiple Equality Constraints

Kienzle, W., Schölkopf, B.

In Proceedings of the 16th European Conference on Machine Learning, Lecture Notes in Computer Science, Vol. 3720, pages: 182-193, (Editors: JG Carbonell and J Siekmann), Springer, Berlin, Germany, ECML, November 2005 (inproceedings)

Abstract
In this paper we present a primal-dual decomposition algorithm for support vector machine training. As with existing methods that use very small working sets (such as Sequential Minimal Optimization (SMO), Successive Over-Relaxation (SOR) or the Kernel Adatron (KA)), our method scales well, is straightforward to implement, and does not require an external QP solver. Unlike SMO, SOR and KA, the method is applicable to a large number of SVM formulations regardless of the number of equality constraints involved. The effectiveness of our algorithm is demonstrated on a more difficult SVM variant in this respect, namely semi-parametric support vector regression.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Geometrical aspects of statistical learning theory

Hein, M.

Biologische Kybernetik, Darmstadt, Darmstadt, November 2005 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
Measuring Statistical Dependence with Hilbert-Schmidt Norms

Gretton, A., Bousquet, O., Smola, A., Schoelkopf, B.

In Algorithmic Learning Theory, Lecture Notes in Computer Science, Vol. 3734, pages: 63-78, (Editors: S Jain and H-U Simon and E Tomita), Springer, Berlin, Germany, 16th International Conference ALT, October 2005 (inproceedings)

Abstract
We propose an independence criterion based on the eigenspectrum of covariance operators in reproducing kernel Hilbert spaces (RKHSs), consisting of an empirical estimate of the Hilbert-Schmidt norm of the cross-covariance operator (we term this a Hilbert-Schmidt Independence Criterion, or HSIC). This approach has several advantages, compared with previous kernel-based independence criteria. First, the empirical estimate is simpler than any other kernel dependence test, and requires no user-defined regularisation. Second, there is a clearly defined population quantity which the empirical estimate approaches in the large sample limit, with exponential convergence guaranteed between the two: this ensures that independence tests based on {methodname} do not suffer from slow learning rates. Finally, we show in the context of independent component analysis (ICA) that the performance of HSIC is competitive with that of previously published kernel-based criteria, and of other recently published ICA methods.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Maximal Margin Classification for Metric Spaces

Hein, M., Bousquet, O., Schölkopf, B.

Journal of Computer and System Sciences, 71(3):333-359, October 2005 (article)

Abstract
In order to apply the maximum margin method in arbitrary metric spaces, we suggest to embed the metric space into a Banach or Hilbert space and to perform linear classification in this space. We propose several embeddings and recall that an isometric embedding in a Banach space is always possible while an isometric embedding in a Hilbert space is only possible for certain metric spaces. As a result, we obtain a general maximum margin classification algorithm for arbitrary metric spaces (whose solution is approximated by an algorithm of Graepel. Interestingly enough, the embedding approach, when applied to a metric which can be embedded into a Hilbert space, yields the SVM algorithm, which emphasizes the fact that its solution depends on the metric and not on the kernel. Furthermore we give upper bounds of the capacity of the function classes corresponding to both embeddings in terms of Rademacher averages. Finally we compare the capacities of these function classes directly.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
An Analysis of the Anti-Learning Phenomenon for the Class Symmetric Polyhedron

Kowalczyk, A., Chapelle, O.

In Algorithmic Learning Theory: 16th International Conference, pages: 78-92, Algorithmic Learning Theory, October 2005 (inproceedings)

Abstract
This paper deals with an unusual phenomenon where most machine learning algorithms yield good performance on the training set but systematically worse than random performance on the test set. This has been observed so far for some natural data sets and demonstrated for some synthetic data sets when the classification rule is learned from a small set of training samples drawn from some high dimensional space. The initial analysis presented in this paper shows that anti-learning is a property of data sets and is quite distinct from overfitting of a training data. Moreover, the analysis leads to a specification of some machine learning procedures which can overcome anti-learning and generate ma- chines able to classify training and test data consistently.

PDF [BibTex]

PDF [BibTex]


no image
Selective integration of multiple biological data for supervised network inference

Kato, T., Tsuda, K., Asai, K.

Bioinformatics, 21(10):2488 , October 2005 (article)

PDF [BibTex]

PDF [BibTex]


no image
Assessing Approximate Inference for Binary Gaussian Process Classification

Kuss, M., Rasmussen, C.

Journal of Machine Learning Research, 6, pages: 1679 , October 2005 (article)

Abstract
Gaussian process priors can be used to define flexible, probabilistic classification models. Unfortunately exact Bayesian inference is analytically intractable and various approximation techniques have been proposed. In this work we review and compare Laplace‘s method and Expectation Propagation for approximate Bayesian inference in the binary Gaussian process classification model. We present a comprehensive comparison of the approximations, their predictive performance and marginal likelihood estimates to results obtained by MCMC sampling. We explain theoretically and corroborate empirically the advantages of Expectation Propagation compared to Laplace‘s method.

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Implicit Surfaces For Modelling Human Heads

Steinke, F.

Biologische Kybernetik, Eberhard-Karls-Universität, Tübingen, September 2005 (diplomathesis)

[BibTex]

[BibTex]


no image
A new methodology for robot controller design

Peters, J., Peters, J., Mistry, M., Udwadia, F.

In Proceedings of the 5th ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC‘05), 5, pages: 1067-1076 , ASME, New York, NY, USA, 5th ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC-MSNDC), September 2005 (inproceedings)

Abstract
Gauss' principle of least constraint and its generalizations have provided a useful insights for the development of tracking controllers for mechanical systems [1]. Using this concept, we present a novel methodology for the design of a specific class of robot controllers. With our new framework, we demonstrate that well-known and also several novel nonlinear robot control laws can be derived from this generic framework, and show experimental verifications on a Sarcos Master Arm robot for some of these controllers. We believe that the suggested approach unifies and simplifies the design of optimal nonlinear control laws for robots obeying rigid body dynamics equations, both with or without external constraints, holonomic or nonholonomic constraints, with over-actuation or underactuation, as well as open-chain and closed-chain kinematics.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Clustering on the Unit Hypersphere using von Mises-Fisher Distributions

Banerjee, A., Dhillon, I., Ghosh, J., Sra, S.

Journal of Machine Learning Research, 6, pages: 1345-1382, September 2005 (article)

Abstract
Several large scale data mining applications, such as text categorization and gene expression analysis, involve high-dimensional data that is also inherently directional in nature. Often such data is L2 normalized so that it lies on the surface of a unit hypersphere. Popular models such as (mixtures of) multi-variate Gaussians are inadequate for characterizing such data. This paper proposes a generative mixture-model approach to clustering directional data based on the von Mises-Fisher (vMF) distribution, which arises naturally for data distributed on the unit hypersphere. In particular, we derive and analyze two variants of the Expectation Maximization (EM) framework for estimating the mean and concentration parameters of this mixture. Numerical estimation of the concentration parameters is non-trivial in high dimensions since it involves functional inversion of ratios of Bessel functions. We also formulate two clustering algorithms corresponding to the variants of EM that we derive. Our approach provides a theoretical basis for the use of cosine similarity that has been widely employed by the information retrieval community, and obtains the spherical kmeans algorithm (kmeans with cosine similarity) as a special case of both variants. Empirical results on clustering of high-dimensional text and gene-expression data based on a mixture of vMF distributions show that the ability to estimate the concentration parameter for each vMF component, which is not present in existing approaches, yields superior results, especially for difficult clustering tasks in high-dimensional spaces.

PDF [BibTex]

PDF [BibTex]


no image
Support Vector Machines for 3D Shape Processing

Steinke, F., Schölkopf, B., Blanz, V.

Computer Graphics Forum, 24(3, EUROGRAPHICS 2005):285-294, September 2005 (article)

Abstract
We propose statistical learning methods for approximating implicit surfaces and computing dense 3D deformation fields. Our approach is based on Support Vector (SV) Machines, which are state of the art in machine learning. It is straightforward to implement and computationally competitive; its parameters can be automatically set using standard machine learning methods. The surface approximation is based on a modified Support Vector regression. We present applications to 3D head reconstruction, including automatic removal of outliers and hole filling. In a second step, we build on our SV representation to compute dense 3D deformation fields between two objects. The fields are computed using a generalized SVMachine enforcing correspondence between the previously learned implicit SV object representations, as well as correspondences between feature points if such points are available. We apply the method to the morphing of 3D heads and other objects.

PDF [BibTex]

PDF [BibTex]


no image
Rapid animal detection in natural scenes: Critical features are local

Wichmann, F., Rosas, P., Gegenfurtner, K.

Journal of Vision, 5(8):376, Fifth Annual Meeting of the Vision Sciences Society (VSS), September 2005 (poster)

Abstract
Thorpe et al (Nature 381, 1996) first showed how rapidly human observers are able to classify natural images as to whether they contain an animal or not. Whilst the basic result has been replicated using different response paradigms (yes-no versus forced-choice), modalities (eye movements versus button presses) as well as while measuring neurophysiological correlates (ERPs), it is still unclear which image features support this rapid categorisation. Recently Torralba and Oliva (Network: Computation in Neural Systems, 14, 2003) suggested that simple global image statistics can be used to predict seemingly complex decisions about the absence and/or presence of objects in natural scences. They show that the information contained in a small number (N=16) of spectral principal components (SPC)—principal component analysis (PCA) applied to the normalised power spectra of the images—is sufficient to achieve approximately 80% correct animal detection in natural scenes. Our goal was to test whether human observers make use of the power spectrum when rapidly classifying natural scenes. We measured our subjects' ability to detect animals in natural scenes as a function of presentation time (13 to 167 msec); images were immediately followed by a noise mask. In one condition we used the original images, in the other images whose power spectra were equalised (each power spectrum was set to the mean power spectrum over our ensemble of 1476 images). Thresholds for 75% correct animal detection were in the region of 20–30 msec for all observers, independent of the power spectrum of the images: this result makes it very unlikely that human observers make use of the global power spectrum. Taken together with the results of Gegenfurtner, Braun & Wichmann (Journal of Vision [abstract], 2003), showing the robustness of animal detection to global phase noise, we conclude that humans use local features, like edges and contours, in rapid animal detection.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Correlation of EEG spectral entropy with regional cerebral blood flow during sevoflurane and propofol anaesthesia

Maksimow, A., Kaisti, K., Aalto, S., Mäenpää, M., Jääskeläinen, S., Hinkka, S., Martens, SMM., Särkelä, M., Viertiö-Oja, H., Scheinin, H.

Anaesthesia, 60(9):862-869, September 2005 (article)

Abstract
ENTROPY index monitoring, based on spectral entropy of the electroencephalogram, is a promising new method to measure the depth of anaesthesia. We examined the association between spectral entropy and regional cerebral blood flow in healthy subjects anaesthetised with 2%, 3% and 4% end-expiratory concentrations of sevoflurane and 7.6, 12.5 and 19.0 microg.ml(-1) plasma drug concentrations of propofol. Spectral entropy from the frequency band 0.8-32 Hz was calculated and cerebral blood flow assessed using positron emission tomography and [(15)O]-labelled water at baseline and at each anaesthesia level. Both drugs induced significant reductions in spectral entropy and cortical and global cerebral blood flow. Midfrontal-central spectral entropy was associated with individual frontal and whole brain blood flow values across all conditions, suggesting that this novel measure of anaesthetic depth can depict global changes in neuronal activity induced by the drugs. The cortical areas of the most significant associations were remarkably similar for both drugs.

DOI [BibTex]

DOI [BibTex]


no image
Fast Protein Classification with Multiple Networks

Tsuda, K., Shin, H., Schölkopf, B.

Bioinformatics, 21(Suppl. 2):59-65, September 2005 (article)

Abstract
Support vector machines (SVM) have been successfully used to classify proteins into functional categories. Recently, to integrate multiple data sources, a semidefinite programming (SDP) based SVM method was introduced Lanckriet et al (2004). In SDP/SVM, multiple kernel matrices corresponding to each of data sources are combined with weights obtained by solving an SDP. However, when trying to apply SDP/SVM to large problems, the computational cost can become prohibitive, since both converting the data to a kernel matrix for the SVM and solving the SDP are time and memory demanding. Another application-specific drawback arises when some of the data sources are protein networks. A common method of converting the network to a kernel matrix is the diffusion kernel method, which has time complexity of O(n^3), and produces a dense matrix of size n x n. We propose an efficient method of protein classification using multiple protein networks. Available protein networks, such as a physical interaction network or a metabolic network, can be directly incorporated. Vectorial data can also be incorporated after conversion into a network by means of neighbor point connection. Similarly to the SDP/SVM method, the combination weights are obtained by convex optimization. Due to the sparsity of network edges, the computation time is nearly linear in the number of edges of the combined network. Additionally, the combination weights provide information useful for discarding noisy or irrelevant networks. Experiments on function prediction of 3588 yeast proteins show promising results: the computation time is enormously reduced, while the accuracy is still comparable to the SDP/SVM method.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Analyzing microarray data using quantitative association rules

Georgii, E., Richter, L., Rückert, U., Kramer, S.

Bioinformatics, 21(Suppl. 2):123-129, September 2005 (article)

Abstract
Motivation: We tackle the problem of finding regularities in microarray data. Various data mining tools, such as clustering, classification, Bayesian networks and association rules, have been applied so far to gain insight into gene-expression data. Association rule mining techniques used so far work on discretizations of the data and cannot account for cumulative effects. In this paper, we investigate the use of quantitative association rules that can operate directly on numeric data and represent cumulative effects of variables. Technically speaking, this type of quantitative association rules based on half-spaces can find non-axis-parallel regularities. Results: We performed a variety of experiments testing the utility of quantitative association rules for microarray data. First of all, the results should be statistically significant and robust against fluctuations in the data. Next, the approach should be scalable in the number of variables, which is important for such high-dimensional data. Finally, the rules should make sense biologically and be sufficiently different from rules found in regular association rule mining working with discretizations. In all of these dimensions, the proposed approach performed satisfactorily. Therefore, quantitative association rules based on half-spaces should be considered as a tool for the analysis of microarray gene-expression data.

Web DOI [BibTex]

Web DOI [BibTex]


no image
EEG-Based Mental Task Classification: Linear and Nonlinear Classification of Movement Imagery

Athena Akrami, A.

In EMBS, 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), September 1-4,, Shanghai, China (Accepted), September 2005 (inproceedings) Accepted

Abstract
Abstract—Use of EEG signals as a channel of communication between men and machines represents one of the current challenges in signal theory research. The principal element of such a communication system, known as a “Brain-Computer Interface,” is the interpretation of the EEG signals related to the characteristic parameters of brain electrical activity. Our goal in this work was extracting quantitative changes in the EEG due to movement imagination. Subject‘s EEG was recorded while he performed left or right hand movement imagination. Different feature sets extracted from EEG were used as inputs into linear, Neural Network and HMM classifiers for the purpose of imagery movement mental task classification. The results indicate that applying linear classifier to 5 frequency features of asymmetry signal produced from channel C3 and C4 can provide a very high classification accuracy percentage as a simple classifier with small number of features comparing to other feature sets.

[BibTex]

[BibTex]


no image
Iterative Kernel Principal Component Analysis for Image Modeling

Kim, K., Franz, M., Schölkopf, B.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(9):1351-1366, September 2005 (article)

Abstract
In recent years, Kernel Principal Component Analysis (KPCA) has been suggested for various image processing tasks requiring an image model such as, e.g., denoising or compression. The original form of KPCA, however, can be only applied to strongly restricted image classes due to the limited number of training examples that can be processed. We therefore propose a new iterative method for performing KPCA, the Kernel Hebbian Algorithm which iteratively estimates the Kernel Principal Components with only linear order memory complexity. In our experiments, we compute models for complex image classes such as faces and natural images which require a large number of training examples. The resulting image models are tested in single-frame super-resolution and denoising applications. The KPCA model is not specifically tailored to these tasks; in fact, the same model can be used in super-resolution with variable input resolution, or denoising with unknown noise characteristics. In spite of this, both super-resolution a nd denoising performance are comparable to existing methods.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Learning an Interest Operator from Eye Movements

Kienzle, W., Franz, M., Wichmann, F., Schölkopf, B.

International Workshop on Bioinspired Information Processing (BIP 2005), 2005, pages: 1, September 2005 (poster)

PDF Web [BibTex]

PDF Web [BibTex]