Header logo is ei


2012


no image
Adaptive Classifier Selection in Large-Scale Hierarchical Classification

Partalas, I., Babbar, R., Gaussier, E., Amblard, C.

In Neural Information Processing - 19th International Conference, Lecture Notes in Computer Science, Vol. 7665, pages: 612-619, (Editors: T Huang and Z Zeng and C Li and CS Leung), Springer, ICONIP, 2012 (inproceedings)

Web [BibTex]

2012

Web [BibTex]


no image
Probabilistic Modeling of Human Movements for Intention Inference

Wang, Z., Deisenroth, M., Ben Amor, H., Vogt, D., Schölkopf, B., Peters, J.

In Proceedings of Robotics: Science and Systems VIII, pages: 8, R:SS, 2012 (inproceedings)

Abstract
Inference of human intention may be an essential step towards understanding human actions [21] and is hence important for realizing efficient human-robot interaction. In this paper, we propose the Intention-Driven Dynamics Model (IDDM), a latent variable model for inferring unknown human intentions. We train the model based on observed human behaviors/actions and we introduce an approximate inference algorithm to efficiently infer the human’s intention from an ongoing action. We verify the feasibility of the IDDM in two scenarios, i.e., target inference in robot table tennis and action recognition for interactive humanoid robots. In both tasks, the IDDM achieves substantial improvements over state-of-the-art regression and classification.

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Solving Nonlinear Continuous State-Action-Observation POMDPs for Mechanical Systems with Gaussian Noise

Deisenroth, M., Peters, J.

In The 10th European Workshop on Reinforcement Learning (EWRL), 2012 (inproceedings)

[BibTex]

[BibTex]


no image
On Causal and Anticausal Learning

Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J.

In Proceedings of the 29th International Conference on Machine Learning, pages: 1255-1262, (Editors: J Langford and J Pineau), Omnipress, New York, NY, USA, ICML, 2012 (inproceedings)

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Learning from distributions via support measure machines

Muandet, K., Fukumizu, K., Dinuzzo, F., Schölkopf, B.

In Advances in Neural Information Processing Systems 25, pages: 10-18, (Editors: P Bartlett, FCN Pereira, CJC. Burges, L Bottou, and KQ Weinberger), Curran Associates Inc., 26th Annual Conference on Neural Information Processing Systems (NIPS), 2012 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Scalable nonconvex inexact proximal splitting

Sra, S.

In Advances of Neural Information Processing Systems 25, pages: 539-547, (Editors: P Bartlett and FCN Pereira and CJC. Burges and L Bottou and KQ Weinberger), Curran Associates Inc., 26th Annual Conference on Neural Information Processing Systems (NIPS), 2012 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
A min-cut solution to mapping phenotypes to networks of genetic markers

Azencott, C., Grimm, D., Kawahara, Y., Borgwardt, K.

In 17th Annual International Conference on Research in Computational Molecular Biology (RECOMB), 2012 (inproceedings) Submitted

[BibTex]

[BibTex]


no image
Efficiently mapping phenotypes to networks of genetic loci

Azencott, C., Grimm, D., Kawahara, Y., Borgwardt, K.

In NIPS Workshop on Machine Learning in Computational Biology (MLCB), 2012 (inproceedings) Submitted

[BibTex]

[BibTex]


no image
Modelling transition dynamics in MDPs with RKHS embeddings

Grünewälder, S., Lever, G., Baldassarre, L., Pontil, M., Gretton, A.

In Proceedings of the 29th International Conference on Machine Learning, pages: 535-542, (Editors: J Langford and J Pineau), Omnipress, New York, NY, USA, ICML, 2012 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Clustering: Science or Art?

von Luxburg, U., Williamson, R., Guyon, I.

In JMLR Workshop and Conference Proceedings, Volume 27, pages: 65-79, Workshop on Unsupervised Learning and Transfer Learning, 2012 (inproceedings)

Abstract
We examine whether the quality of di erent clustering algorithms can be compared by a general, scienti cally sound procedure which is independent of particular clustering algorithms. We argue that the major obstacle is the diculty in evaluating a clustering algorithm without taking into account the context: why does the user cluster his data in the rst place, and what does he want to do with the clustering afterwards? We argue that clustering should not be treated as an application-independent mathematical problem, but should always be studied in the context of its end-use. Di erent techniques to evaluate clustering algorithms have to be developed for di erent uses of clustering. To simplify this procedure we argue that it will be useful to build a \taxonomy of clustering problems" to identify clustering applications which can be treated in a uni ed way and that such an e ort will be more fruitful than attempting the impossible | developing \optimal" domain-independent clustering algorithms or even classifying clustering algorithms in terms of how they work.

PDF [BibTex]

PDF [BibTex]


no image
A Brain-Robot Interface for Studying Motor Learning after Stroke

Meyer, T., Peters, J., Brötz, D., Zander, T., Schölkopf, B., Soekadar, S., Grosse-Wentrup, M.

In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 4078 - 4083 , IEEE, Piscataway, NJ, USA, IROS, 2012 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Generalization of Human Grasping for Multi-Fingered Robot Hands

Ben Amor, H., Kroemer, O., Hillenbrand, U., Neumann, G., Peters, J.

In IEEE/RSJ International Conference on Intelligent Robots and Systems , pages: 2043-2050, IROS, 2012 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Learning Concurrent Motor Skills in Versatile Solution Spaces

Daniel, C., Neumann, G., Peters, J.

In IEEE/RSJ International Conference on Intelligent Robots and Systems , pages: 3591-3597, IROS, 2012 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Learning to Select and Generalize Striking Movements in Robot Table Tennis

Mülling, K., Kober, J., Kroemer, O., Peters, J.

In AAAI Fall Symposium on Robots Learning Interactively from Human Teachers, 2012 (inproceedings)

[BibTex]

[BibTex]


no image
Computational vascular morphometry for the assessment of pulmonary vascular disease based on scale-space particles

Estépar, R., Ross, J., Krissian, K., Schultz, T., Washko, G., Kindlmann, G.

In pages: 1479-1482, IEEE, 9th International Symposium on Biomedical Imaging (ISBI) , 2012 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Hilbert space embedding for Dirichlet Process mixtures

Muandet, K.

In NIPS Workshop on confluence between kernel methods and graphical models, 2012 (inproceedings)

arXiv [BibTex]

arXiv [BibTex]


no image
Causal discovery with scale-mixture model for spatiotemporal variance dependencies

Chen, Z., Zhang, K., Chan, L.

In Advances in Neural Information Processing Systems 25, pages: 1736-1744, (Editors: P Bartlett and FCN Pereira and CJC. Burges and L Bottou and KQ Weinberger), Curran Associates Inc., 26th Annual Conference on Neural Information Processing Systems (NIPS), 2012 (inproceedings)

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Bridging Offline and Online Social Graph Dynamics

Gomez Rodriguez, M., Rogati, M.

In 21st ACM Conference on Information and Knowledge Management, pages: 2447-2450, (Editors: Chen, X., Lebanon, G., Wang, H. and Zaki, M. J.), ACM, CIKM, 2012 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
A new metric on the manifold of kernel matrices with application to matrix geometric means

Sra, S.

In Advances in Neural Information Processing Systems 25, pages: 144-152, (Editors: P Bartlett and FCN Pereira and CJC. Burges and L Bottou and KQ Weinberger), Curran Associates Inc., 26th Annual Conference on Neural Information Processing Systems (NIPS), 2012 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Conditional mean embeddings as regressors

Grünewälder, S., Lever, G., Baldassarre, L., Patterson, S., Gretton, A., Pontil, M.

In Proceedings of the 29th International Conference on Machine Learning, pages: 1823-1830, (Editors: J Langford and J Pineau), Omnipress, New York, NY, USA, ICML, 2012 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Shortest path distance in random k-nearest neighbor graphs

Alamgir, M., von Luxburg, U.

In Proceedings of the 29th International Conference on Machine Learning, International Machine Learning Society, International Conference on Machine Learning (ICML), 2012 (inproceedings)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Toward Fast Policy Search for Learning Legged Locomotion

Deisenroth, M., Calandra, R., Seyfarth, A., Peters, J.

In IEEE/RSJ International Conference on Intelligent Robots and Systems , pages: 1787-1792, IROS, 2012 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Robot Skill Learning

Peters, J., Kober, J., Mülling, K., Nguyen-Tuong, D., Kroemer, O.

In 20th European Conference on Artificial Intelligence , pages: 40-45, ECAI, 2012 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Towards a learning-theoretic analysis of spike-timing dependent plasticity

Balduzzi, D., Besserve, M.

In Advances in Neural Information Processing Systems 25, pages: 2465-2473, (Editors: P Bartlett and FCN Pereira and CJC. Burges and L Bottou and KQ Weinberger), Curran Associates Inc., 26th Annual Conference on Neural Information Processing Systems (NIPS), 2012 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Recording and Playback of Camera Shake: Benchmarking Blind Deconvolution with a Real-World Database

Köhler, R., Hirsch, M., Mohler, B., Schölkopf, B., Harmeling, S.

In Computer Vision - ECCV 2012, LNCS Vol. 7578, pages: 27-40, (Editors: A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid), Springer, Berlin, Germany, 12th European Conference on Computer Vision, ECCV , 2012 (inproceedings)

Abstract
Motion blur due to camera shake is one of the predominant sources of degradation in handheld photography. Single image blind deconvolution (BD) or motion deblurring aims at restoring a sharp latent image from the blurred recorded picture without knowing the camera motion that took place during the exposure. BD is a long-standing problem, but has attracted much attention recently, cumulating in several algorithms able to restore photos degraded by real camera motion in high quality. In this paper, we present a benchmark dataset for motion deblurring that allows quantitative performance evaluation and comparison of recent approaches featuring non-uniform blur models. To this end, we record and analyse real camera motion, which is played back on a robot platform such that we can record a sequence of sharp images sampling the six dimensional camera motion trajectory. The goal of deblurring is to recover one of these sharp images, and our dataset contains all information to assess how closely various algorithms approximate that goal. In a comprehensive comparison, we evaluate state-of-the-art single image BD algorithms incorporating uniform and non-uniform blur models.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Towards identifying and validating cognitive correlates in a passive Brain-Computer Interface for detecting Loss of Control

Zander, TO., Pape, AA.

In Proceedings of the 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, EMBC, 2012 (inproceedings)

[BibTex]

[BibTex]


no image
Neural correlates of workload and puzzlement during loss of control

Pape, AA., Gerjets, P., Zander, TO.

In Meeting of the EARLI SIG 22 Neuroscience and Education, 2012 (inproceedings)

[BibTex]

[BibTex]


no image
Hypothesis testing using pairwise distances and associated kernels

Sejdinovic, D., Gretton, A., Sriperumbudur, B., Fukumizu, K.

In Proceedings of the 29th International Conference on Machine Learning, pages: 1111-1118, (Editors: J Langford and J Pineau), Omnipress, New York, NY, USA, ICML, 2012 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Efficient Training of Graph-Regularized Multitask SVMs

Widmer, C., Kloft, M., Görnitz, N., Rätsch, G.

In Machine Learning and Knowledge Discovery in Databases - European Conference, ECML/PKDD 2012, LNCS Vol. 7523, pages: 633-647, (Editors: PA Flach and T De Bie and N Cristianini), Springer, Berlin, Germany, ECML, 2012 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Hilbert Space Embeddings of POMDPs

Nishiyama, Y., Boularias, A., Gretton, A., Fukumizu, K.

In Conference on Uncertainty in Artificial Intelligence (UAI), 2012 (inproceedings)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning Throwing and Catching Skills

Kober, J., Mülling, K., Peters, J.

In IEEE/RSJ International Conference on Intelligent Robots and Systems , pages: 5167-5168, IROS, 2012 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Maximally Informative Interaction Learning for Scene Exploration

van Hoof, H., Kroemer, O., Ben Amor, H., Peters, J.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 5152-5158, IROS, 2012 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Investigating the Neural Basis of Brain-Computer Interface (BCI)-based Stroke Rehabilitation

Meyer, T., Peters, J., Zander, T., Brötz, D., Soekadar, S., Schölkopf, B., Grosse-Wentrup, M.

In International Conference on NeuroRehabilitation (ICNR) , pages: 617-621, (Editors: JL Pons, D Torricelli, and M Pajaro), Springer, Berlin, Germany, ICNR, 2012 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
A Nonparametric Conjugate Prior Distribution for the Maximizing Argument of a Noisy Function

Ortega, P., Grau-Moya, J., Genewein, T., Balduzzi, D., Braun, D.

In Advances in Neural Information Processing Systems 25, pages: 3014-3022, (Editors: P Bartlett and FCN Pereira and CJC. Burges and L Bottou and KQ Weinberger), Curran Associates Inc., 26th Annual Conference on Neural Information Processing Systems (NIPS), 2012 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Algorithms for Learning Markov Field Policies

Boularias, A., Kroemer, O., Peters, J.

In Advances in Neural Information Processing Systems 25, pages: 2186-2194, (Editors: P Bartlett and FCN Pereira and CJC. Burges and L Bottou and KQ Weinberger), Curran Associates Inc., 26th Annual Conference on Neural Information Processing Systems (NIPS), 2012 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Semi-Supervised Domain Adaptation with Copulas

Lopez-Paz, D., Hernandez-Lobato, J., Schölkopf, B.

In Advances in Neural Information Processing Systems 25, pages: 674-682, (Editors: P Bartlett, FCN Pereira, CJC. Burges, L Bottou, and KQ Weinberger), Curran Associates Inc., 26th Annual Conference on Neural Information Processing Systems (NIPS), 2012 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Gradient Weights help Nonparametric Regressors

Kpotufe, S., Boularias, A.

In Advances in Neural Information Processing Systems 25, pages: 2870-2878, (Editors: P Bartlett and FCN Pereira and CJC. Burges and L Bottou and KQ Weinberger), 26th Annual Conference on Neural Information Processing Systems (NIPS), 2012 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
A Blind Deconvolution Approach for Pseudo CT Prediction from MR Image Pairs

Hirsch, M., Hofmann, M., Mantlik, F., Pichler, B., Schölkopf, B., Habeck, M.

In 19th IEEE International Conference on Image Processing (ICIP) , pages: 2953 -2956, IEEE, ICIP, 2012 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
A mixed model approach for joint genetic analysis of alternatively spliced transcript isoforms using RNA-Seq data

Rakitsch, B., Lippert, C., Topa, H., Borgwardt, KM., Honkela, A., Stegle, O.

In 2012 (inproceedings) Submitted

Web [BibTex]

Web [BibTex]


no image
Evaluation of marginal likelihoods via the density of states

Habeck, M.

In Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2012) , 22, pages: 486-494, (Editors: N Lawrence and M Girolami), JMLR: W&CP 22, AISTATS, 2012 (inproceedings)

Abstract
Bayesian model comparison involves the evaluation of the marginal likelihood, the expectation of the likelihood under the prior distribution. Typically, this high-dimensional integral over all model parameters is approximated using Markov chain Monte Carlo methods. Thermodynamic integration is a popular method to estimate the marginal likelihood by using samples from annealed posteriors. Here we show that there exists a robust and flexible alternative. The new method estimates the density of states, which counts the number of states associated with a particular value of the likelihood. If the density of states is known, computation of the marginal likelihood reduces to a one- dimensional integral. We outline a maximum likelihood procedure to estimate the density of states from annealed posterior samples. We apply our method to various likelihoods and show that it is superior to thermodynamic integration in that it is more flexible with regard to the annealing schedule and the family of bridging distributions. Finally, we discuss the relation of our method with Skilling's nested sampling.

PDF [BibTex]

PDF [BibTex]


no image
Distributed multisensory signals acquisition and analysis in dyadic interactions

Tawari, A., Tran, C., Doshi, A., Zander, TO.

In Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems Extended Abstracts, pages: 2261-2266, (Editors: JA Konstan and EH Chi and K Höök), ACM, New York, NY, USA, CHI, 2012 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Measuring Cognitive Load by means of EEG-data - how detailed is the picture we can get?

Scharinger, C., Cierniak, G., Walter, C., Zander, TO., Gerjets, P.

In Meeting of the EARLI SIG 22 Neuroscience and Education, 2012 (inproceedings)

[BibTex]

[BibTex]


no image
Optimal kernel choice for large-scale two-sample tests

Gretton, A., Sriperumbudur, B., Sejdinovic, D., Strathmann, H., Balakrishnan, S., Pontil, M., Fukumizu, K.

In Advances in Neural Information Processing Systems 25, pages: 1214-1222, (Editors: P Bartlett and FCN Pereira and CJC. Burges and L Bottou and KQ Weinberger), Curran Associates Inc., 26th Annual Conference on Neural Information Processing Systems (NIPS), 2012 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
On the Hardness of Domain Adaptation and the Utility of Unlabeled Target Samples

Ben-David, S., Urner, R.

In Algorithmic Learning Theory - 23rd International Conference, 7568, pages: 139-153, Lecture Notes in Computer Science, (Editors: Bshouty, NH. and Stoltz, G and Vayatis, N and Zeugmann, T), Springer Berlin Heidelberg, ALT, 2012 (inproceedings)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Domain Adaptation–Can Quantity compensate for Quality?

Ben-David, S., Shalev-Shwartz, S., Urner, R.

In International Symposium on Artificial Intelligence and Mathematics, ISAIM, 2012 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Learning from Weak Teachers

Urner, R., Ben-David, S., Shamir, O.

In Proceedings of the 15th International Conference on Artificial Intelligence and Statistics, 22, pages: 1252-1260, (Editors: Lawrence, N. and Girolami, M.), JMLR, AISTATS, 2012 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Adaptive Coding of Actions and Observations

Ortega, PA, Braun, DA

pages: 1-4, NIPS Workshop on Information in Perception and Action, December 2012 (conference)

Abstract
The application of expected utility theory to construct adaptive agents is both computationally intractable and statistically questionable. To overcome these difficulties, agents need the ability to delay the choice of the optimal policy to a later stage when they have learned more about the environment. How should agents do this optimally? An information-theoretic answer to this question is given by the Bayesian control rule—the solution to the adaptive coding problem when there are not only observations but also actions. This paper reviews the central ideas behind the Bayesian control rule.

link (url) [BibTex]

link (url) [BibTex]


no image
Free Energy and the Generalized Optimality Equations for Sequential Decision Making

Ortega, PA, Braun, DA

pages: 1-10, 10th European Workshop on Reinforcement Learning (EWRL), July 2012 (conference)

Abstract
The free energy functional has recently been proposed as a variational principle for bounded rational decision-making, since it instantiates a natural trade-off between utility gains and information processing costs that can be axiomatically derived. Here we apply the free energy principle to general decision trees that include both adversarial and stochastic environments. We derive generalized sequential optimality equations that not only include the Bellman optimality equations as a limit case, but also lead to well-known decision-rules such as Expectimax, Minimax and Expectiminimax. We show how these decision-rules can be derived from a single free energy principle that assigns a resource parameter to each node in the decision tree. These resource parameters express a concrete computational cost that can be measured as the amount of samples that are needed from the distribution that belongs to each node. The free energy principle therefore provides the normative basis for generalized optimality equations that account for both adversarial and stochastic environments.

link (url) [BibTex]

link (url) [BibTex]

2007


no image
Towards compliant humanoids: an experimental assessment of suitable task space position/orientation controllers

Nakanishi, J., Mistry, M., Peters, J., Schaal, S.

In IROS 2007, 2007, pages: 2520-2527, (Editors: Grant, E. , T. C. Henderson), IEEE Service Center, Piscataway, NJ, USA, IEEE/RSJ International Conference on Intelligent Robots and Systems, November 2007 (inproceedings)

Abstract
Compliant control will be a prerequisite for humanoid robotics if these robots are supposed to work safely and robustly in human and/or dynamic environments. One view of compliant control is that a robot should control a minimal number of degrees-of-freedom (DOFs) directly, i.e., those relevant DOFs for the task, and keep the remaining DOFs maximally compliant, usually in the null space of the task. This view naturally leads to task space control. However, surprisingly few implementations of task space control can be found in actual humanoid robots. This paper makes a first step towards assessing the usefulness of task space controllers for humanoids by investigating which choices of controllers are available and what inherent control characteristics they have—this treatment will concern position and orientation control, where the latter is based on a quaternion formulation. Empirical evaluations on an anthropomorphic Sarcos master arm illustrate the robustness of the different controllers as well as the eas e of implementing and tuning them. Our extensive empirical results demonstrate that simpler task space controllers, e.g., classical resolved motion rate control or resolved acceleration control can be quite advantageous in face of inevitable modeling errors in model-based control, and that well chosen formulations are easy to implement and quite robust, such that they are useful for humanoids.

PDF Web DOI [BibTex]

2007

PDF Web DOI [BibTex]


no image
Sistema avanzato per la classificazione delle aree agricole in immagini ad elevata risoluzione geometrica: applicazione al territorio del Trentino

Arnoldi, E., Bruzzone, L., Carlin, L., Pedron, L., Persello, C.

In pages: 1-6, 11. Conferenza Nazionale ASITA, November 2007 (inproceedings)

PDF Web [BibTex]

PDF Web [BibTex]