Header logo is ei


2006


no image
Machine Learning and Applications in Biology

Shin, H.

6th Course in Bioinformatics for Molecular Biologist, March 2006 (talk)

Abstract
The emergence of the fields of computational biology and bioinformatics has alleviated the burden of solving many biological problems, saving the time and cost required for experiments and also providing predictions that guide new experiments. Within computational biology, machine learning algorithms have played a central role in dealing with the flood of biological data. The goal of this tutorial is to raise awareness and comprehension of machine learning so that biologists can properly match the task at hand to the corresponding analytical approach. We start by categorizing biological problem settings and introduce the general machine learning schemes that fit best to each or these categories. We then explore representative models in further detail, from traditional statistical models to recent kernel models, presenting several up-to-date research projects in bioinfomatics to exemplify how biological questions can benefit from a machine learning approach. Finally, we discuss how cooperation between biologists and machine learners might be made smoother.

PDF [BibTex]

2006

PDF [BibTex]


no image
Kernel extrapolation

Vishwanathan, SVN., Borgwardt, KM., Guttman, O., Smola, AJ.

Neurocomputing, 69(7-9):721-729, March 2006 (article)

Abstract
We present a framework for efficient extrapolation of reduced rank approximations, graph kernels, and locally linear embeddings (LLE) to unseen data. We also present a principled method to combine many of these kernels and then extrapolate them. Central to our method is a theorem for matrix approximation, and an extension of the representer theorem to handle multiple joint regularization constraints. Experiments in protein classification demonstrate the feasibility of our approach.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Statistical Properties of Kernel Principal Component Analysis

Blanchard, G., Bousquet, O., Zwald, L.

Machine Learning, 66(2-3):259-294, March 2006 (article)

Abstract
We study the properties of the eigenvalues of Gram matrices in a non-asymptotic setting. Using local Rademacher averages, we provide data-dependent and tight bounds for their convergence towards eigenvalues of the corresponding kernel operator. We perform these computations in a functional analytic framework which allows to deal implicitly with reproducing kernel Hilbert spaces of infinite dimension. This can have applications to various kernel algorithms, such as Support Vector Machines (SVM). We focus on Kernel Principal Component Analysis (KPCA) and, using such techniques, we obtain sharp excess risk bounds for the reconstruction error. In these bounds, the dependence on the decay of the spectrum and on the closeness of successive eigenvalues is made explicit.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Network-based de-noising improves prediction from microarray data

Kato, T., Murata, Y., Miura, K., Asai, K., Horton, P., Tsuda, K., Fujibuchi, W.

BMC Bioinformatics, 7(Suppl. 1):S4-S4, March 2006 (article)

Abstract
Prediction of human cell response to anti-cancer drugs (compounds) from microarray data is a challenging problem, due to the noise properties of microarrays as well as the high variance of living cell responses to drugs. Hence there is a strong need for more practical and robust methods than standard methods for real-value prediction. We devised an extended version of the off-subspace noise-reduction (de-noising) method to incorporate heterogeneous network data such as sequence similarity or protein-protein interactions into a single framework. Using that method, we first de-noise the gene expression data for training and test data and also the drug-response data for training data. Then we predict the unknown responses of each drug from the de-noised input data. For ascertaining whether de-noising improves prediction or not, we carry out 12-fold cross-validation for assessment of the prediction performance. We use the Pearson‘s correlation coefficient between the true and predicted respon se values as the prediction performance. De-noising improves the prediction performance for 65% of drugs. Furthermore, we found that this noise reduction method is robust and effective even when a large amount of artificial noise is added to the input data. We found that our extended off-subspace noise-reduction method combining heterogeneous biological data is successful and quite useful to improve prediction of human cell cancer drug responses from microarray data.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Data mining problems and solutions for response modeling in CRM

Cho, S., Shin, H., Yu, E., Ha, K., MacLachlan, D.

Entrue Journal of Information Technology, 5(1):55-64, March 2006 (article)

Abstract
We present three data mining problems that are often encountered in building a response model. They are robust modeling, variable selection and data selection. Respective algorithmic solutions are given. They are bagging based ensemble, genetic algorithm based wrapper approach and nearest neighbor-based data selection in that order. A real world data set from Direct Marketing Educational Foundation, or DMEF4, is used to show their effectiveness. Proposed methods were found to solve the problems in a practical way.

PDF [BibTex]

PDF [BibTex]


no image
Model-based Design Analysis and Yield Optimization

Pfingsten, T., Herrmann, D., Rasmussen, C.

IEEE Transactions on Semiconductor Manufacturing, 19(4):475-486, February 2006 (article)

Abstract
Fluctuations are inherent to any fabrication process. Integrated circuits and micro-electro-mechanical systems are particularly affected by these variations, and due to high quality requirements the effect on the devices’ performance has to be understood quantitatively. In recent years it has become possible to model the performance of such complex systems on the basis of design specifications, and model-based Sensitivity Analysis has made its way into industrial engineering. We show how an efficient Bayesian approach, using a Gaussian process prior, can replace the commonly used brute-force Monte Carlo scheme, making it possible to apply the analysis to computationally costly models. We introduce a number of global, statistically justified sensitivity measures for design analysis and optimization. Two models of integrated systems serve us as case studies to introduce the analysis and to assess its convergence properties. We show that the Bayesian Monte Carlo scheme can save costly simulation runs and can ensure a reliable accuracy of the analysis.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Prenatal development of ocular dominance and orientation maps in a self-organizing model of V1

Jegelka, S., Bednar, J., Miikkulainen, R.

Neurocomputing, 69(10-12):1291-1296, February 2006 (article)

Abstract
How orientation and ocular-dominance (OD) maps develop before visual experience begins is controversial. Possible influences include molecular signals and spontaneous activity, but their contributions remain unclear. This paper presents LISSOM simulations suggesting that previsual spontaneous activity alone is sufficient for realistic OR and OD maps to develop. Individual maps develop robustly with various previsual patterns, and are aided by background noise. However, joint OR/OD maps depend crucially on how correlated the patterns are between eyes, even over brief initial periods. Therefore, future biological experiments should account for multiple activity sources, and should measure map interactions rather than maps of single features.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Weighting of experimental evidence in macromolecular structure determination

Habeck, M., Rieping, W., Nilges, M.

Proceedings of the National Academy of Sciences of the United States of America, 103(6):1756-1761, February 2006 (article)

Abstract
The determination of macromolecular structures requires weighting of experimental evidence relative to prior physical information. Although it can critically affect the quality of the calculated structures, experimental data are routinely weighted on an empirical basis. At present, cross-validation is the most rigorous method to determine the best weight. We describe a general method to adaptively weight experimental data in the course of structure calculation. It is further shown that the necessity to define weights for the data can be completely alleviated. We demonstrate the method on a structure calculation from NMR data and find that the resulting structures are optimal in terms of accuracy and structural quality. Our method is devoid of the bias imposed by an empirical choice of the weight and has some advantages over estimating the weight by cross-validation.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Subspace identification through blind source separation

Grosse-Wentrup, M., Buss, M.

IEEE Signal Processing Letters, 13(2):100-103, February 2006 (article)

Abstract
Given a linear and instantaneous mixture model, we prove that for blind source separation (BSS) algorithms based on mutual information, only sources with non-Gaussian distribution are consistently reconstructed independent of initial conditions. This allows the identification of non-Gaussian sources and consequently the identification of signal and noise subspaces through BSS. The results are illustrated with a simple example, and the implications for a variety of signal processing applications, such as denoising and model identification, are discussed.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Classification of Faces in Man and Machine

Graf, A., Wichmann, F., Bülthoff, H., Schölkopf, B.

Neural Computation, 18(1):143-165, January 2006 (article)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Dimension Reduction as a Deflation Method in ICA

Zhang, K., Chan, L.

IEEE Signal Processing Letters, 13(1):45-48, 2006 (article)

Web [BibTex]

Web [BibTex]


no image
Symbol Recognition with Kernel Density Matching

Zhang, W., Wenyin, L., Zhang, K.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12):2020-2024, 2006 (article)

Abstract
We propose a novel approach to similarity assessment for graphic symbols. Symbols are represented as 2D kernel densities and their similarity is measured by the Kullback-Leibler divergence. Symbol orientation is found by gradient-based angle searching or independent component analysis. Experimental results show the outstanding performance of this approach in various situations.

Web [BibTex]

Web [BibTex]


no image
An adaptive method for subband decomposition ICA

Zhang, K., Chan, L.

Neural Computation, 18(1):191-223, 2006 (article)

Abstract
Subband decomposition ICA (SDICA), an extension of ICA, assumes that each source is represented as the sum of some independent subcomponents and dependent subcomponents, which have different frequency bands. In this article, we first investigate the feasibility of separating the SDICA mixture in an adaptive manner. Second, we develop an adaptive method for SDICA, namely band-selective ICA (BS-ICA), which finds the mixing matrix and the estimate of the source independent subcomponents. This method is based on the minimization of the mutual information between outputs. Some practical issues are discussed. For better applicability, a scheme to avoid the high-dimensional score function difference is given. Third, we investigate one form of the overcomplete ICA problems with sources having specific frequency characteristics, which BS-ICA can also be used to solve. Experimental results illustrate the success of the proposed method for solving both SDICA and the over-complete ICA problems.

Web DOI [BibTex]

Web DOI [BibTex]

2003


no image
Learning Control and Planning from the View of Control Theory and Imitation

Peters, J., Schaal, S.

NIPS Workshop "Planning for the Real World: The promises and challenges of dealing with uncertainty", December 2003 (talk)

Abstract
Learning control and planning in high dimensional continuous state-action systems, e.g., as needed in a humanoid robot, has so far been a domain beyond the applicability of generic planning techniques like reinforcement learning and dynamic programming. This talk describes an approach we have taken in order to enable complex robotics systems to learn to accomplish control tasks. Adaptive learning controllers equipped with statistical learning techniques can be used to learn tracking controllers -- missing state information and uncertainty in the state estimates are usually addressed by observers or direct adaptive control methods. Imitation learning is used as an ingredient to seed initial control policies whose output is a desired trajectory suitable to accomplish the task at hand. Reinforcement learning with stochastic policy gradients using a natural gradient forms the third component that allows refining the initial control policy until the task is accomplished. In comparison to general learning control, this approach is highly prestructured and thus more domain specific. However, it seems to be a theoretically clean and feasible strategy for control systems of the complexity that we need to address.

Web [BibTex]

2003

Web [BibTex]


no image
Molecular phenotyping of human chondrocyte cell lines T/C-28a2, T/C-28a4, and C-28/I2

Finger, F., Schorle, C., Zien, A., Gebhard, P., Goldring, M., Aigner, T.

Arthritis & Rheumatism, 48(12):3395-3403, December 2003 (article)

[BibTex]

[BibTex]


no image
A Study on Rainfall - Runoff Models for Improving Ensemble Streamflow Prediction: 1. Rainfallrunoff Models Using Artificial Neural Networks

Jeong, D., Kim, Y., Cho, S., Shin, H.

Journal of the Korean Society of Civil Engineers, 23(6B):521-530, December 2003 (article)

Abstract
The previous ESP (Ensemble Streamflow Prediction) studies conducted in Korea reported that the modeling error is a major source of the ESP forecast error in winter and spring (i.e. dry seasons), and thus suggested that improving the rainfall-runoff model would be critical to obtain more accurate probabilistic forecasts with ESP. This study used two types of Artificial Neural Networks (ANN), such as a Single Neural Network (SNN) and an Ensemble Neural Networks (ENN), to improve the simulation capability of the rainfall-runoff model of the ESP forecasting system for the monthly inflow to the Daecheong dam. Applied for the first time to Korean hydrology, ENN combines the outputs of member models so that it can control the generalization error better than SNN. Because the dry and the flood season in Korea shows considerably different streamflow characteristics, this study calibrated the rainfall-runoff model separately for each season. Therefore, four rainfall-runoff models were developed according to the ANN types and the seasons. This study compared the ANN models with a conceptual rainfall-runoff model called TANK and verified that the ANN models were superior to TANK. Among the ANN models, ENN was more accurate than SNN. The ANN model performance was improved when the model was calibrated separately for the dry and the flood season. The best ANN model developed in this article will be incorporated into the ESP system to increase the forecast capability of ESP for the monthly inflow to the Daecheong dam.

[BibTex]

[BibTex]


no image
Quantitative Cerebral Blood Flow Measurements in the Rat Using a Beta-Probe and H215O

Weber, B., Spaeth, N., Wyss, M., Wild, D., Burger, C., Stanley, R., Buck, A.

Journal of Cerebral Blood Flow and Metabolism, 23(12):1455-1460, December 2003 (article)

Abstract
Beta-probes are a relatively new tool for tracer kinetic studies in animals. They are highly suited to evaluate new positron emission tomography tracers or measure physiologic parameters at rest and after some kind of stimulation or intervention. In many of these experiments, the knowledge of CBF is highly important. Thus, the purpose of this study was to evaluate the method of CBF measurements using a beta-probe and H215O. CBF was measured in the barrel cortex of eight rats at baseline and after acetazolamide challenge. Trigeminal nerve stimulation was additionally performed in five animals. In each category, three injections of 250 to 300 MBq H215O were performed at 10-minute intervals. Data were analyzed using a standard one-tissue compartment model (K1 = CBF, k2 = CBF/p, where p is the partition coefficient). Values for K1 were 0.35 plusminus 0.09, 0.58 plusminus 0.16, and 0.49 plusminus 0.03 mL dot min-1 dot mL-1 at rest, after acetazolamide challenge, and during trigeminal nerve stimulation, respectively. The corresponding values for k2 were 0.55 plusminus 0.12, 0.94 plusminus 0.16, and 0.85 plusminus 0.12 min-7, and for p were 0.64 plusminus 0.05, 0.61 plusminus 0.07, and 0.59 plusminus 0.06.The standard deviation of the difference between two successive experiments, a measure for the reproducibility of the method, was 10.1%, 13.0%, and 5.7% for K1, k2, and p, respectively. In summary, beta-probes in conjunction with H215O allow the reproducible quantitative measurement of CBF, although some systematic underestimation seems to occur, probably because of partial volume effects.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Recurrent neural networks from learning attractor dynamics

Schaal, S., Peters, J.

NIPS Workshop on RNNaissance: Recurrent Neural Networks, December 2003 (talk)

Abstract
Many forms of recurrent neural networks can be understood in terms of dynamic systems theory of difference equations or differential equations. Learning in such systems corresponds to adjusting some internal parameters to obtain a desired time evolution of the network, which can usually be characterized in term of point attractor dynamics, limit cycle dynamics, or, in some more rare cases, as strange attractor or chaotic dynamics. Finding a stable learning process to adjust the open parameters of the network towards shaping the desired attractor type and basin of attraction has remain a complex task, as the parameter trajectories during learning can lead the system through a variety of undesirable unstable behaviors, such that learning may never succeed. In this presentation, we review a recently developed learning framework for a class of recurrent neural networks that employs a more structured network approach. We assume that the canonical system behavior is known a priori, e.g., it is a point attractor or a limit cycle. With either supervised learning or reinforcement learning, it is possible to acquire the transformation from a simple representative of this canonical behavior (e.g., a 2nd order linear point attractor, or a simple limit cycle oscillator) to the desired highly complex attractor form. For supervised learning, one shot learning based on locally weighted regression techniques is possible. For reinforcement learning, stochastic policy gradient techniques can be employed. In any case, the recurrent network learned by these methods inherits the stability properties of the simple dynamic system that underlies the nonlinear transformation, such that stability of the learning approach is not a problem. We demonstrate the success of this approach for learning various skills on a humanoid robot, including tasks that require to incorporate additional sensory signals as coupling terms to modify the recurrent network evolution on-line.

Web [BibTex]

Web [BibTex]


no image
Blind separation of post-nonlinear mixtures using linearizing transformations and temporal decorrelation

Ziehe, A., Kawanabe, M., Harmeling, S., Müller, K.

Journal of Machine Learning Research, 4(7-8):1319-1338, November 2003 (article)

Abstract
We propose two methods that reduce the post-nonlinear blind source separation problem (PNL-BSS) to a linear BSS problem. The first method is based on the concept of maximal correlation: we apply the alternating conditional expectation (ACE) algorithm--a powerful technique from non-parametric statistics--to approximately invert the componentwise nonlinear functions. The second method is a Gaussianizing transformation, which is motivated by the fact that linearly mixed signals before nonlinear transformation are approximately Gaussian distributed. This heuristic, but simple and efficient procedure works as good as the ACE method. Using the framework provided by ACE, convergence can be proven. The optimal transformations obtained by ACE coincide with the sought-after inverse functions of the nonlinearities. After equalizing the nonlinearities, temporal decorrelation separation (TDSEP) allows us to recover the source signals. Numerical simulations testing "ACE-TD" and "Gauss-TD" on realistic examples are performed with excellent results.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Correlated stage- and subfield-associated hippocampal gene expression patterns in experimental and human temporal lobe epilepsy

Becker, A., Chen, J., Zien, A., Sochivko, D., Normann, S., Schramm, J., Elger, C., Wiestler, O., Blumcke, I.

European Journal of Neuroscience, 18(10):2792-2802, November 2003 (article)

Abstract
Epileptic activity evokes profound alterations of hippocampal organization and function. Genomic responses may reflect immediate consequences of excitatory stimulation as well as sustained molecular processes related to neuronal plasticity and structural remodeling. Using oligonucleotide microarrays with 8799 sequences, we determined subregional gene expression profiles in rats subjected to pilocarpine-induced epilepsy (U34A arrays, Affymetrix, Santa Clara, CA, USA; P < 0.05, twofold change, n = 3 per stage). Patterns of gene expression corresponded to distinct stages of epilepsy development. The highest number of differentially expressed genes (dentate gyrus, approx. 400 genes and CA1, approx. 700 genes) was observed 3 days after status epilepticus. The majority of up-regulated genes was associated with mechanisms of cellular stress and injury - 14 days after status epilepticus, numerous transcription factors and genes linked to cytoskeletal and synaptic reorganization were differentially expressed and, in the stage of chronic spontaneous seizures, distinct changes were observed in the transcription of genes involved in various neurotransmission pathways and between animals with low vs. high seizure frequency. A number of genes (n = 18) differentially expressed during the chronic epileptic stage showed corresponding expression patterns in hippocampal subfields of patients with pharmacoresistant temporal lobe epilepsy (n = 5 temporal lobe epilepsy patients; U133A microarrays, Affymetrix; covering 22284 human sequences). These data provide novel insights into the molecular mechanisms of epileptogenesis and seizure-associated cellular and structural remodeling of the hippocampus.

[BibTex]

[BibTex]


no image
Concentration Inequalities for Sub-Additive Functions Using the Entropy Method

Bousquet, O.

Stochastic Inequalities and Applications, 56, pages: 213-247, Progress in Probability, (Editors: Giné, E., C. Houdré and D. Nualart), November 2003 (article)

Abstract
We obtain exponential concentration inequalities for sub-additive functions of independent random variables under weak conditions on the increments of those functions, like the existence of exponential moments for these increments. As a consequence of these general inequalities, we obtain refinements of Talagrand's inequality for empirical processes and new bounds for randomized empirical processes. These results are obtained by further developing the entropy method introduced by Ledoux.

PostScript [BibTex]

PostScript [BibTex]


no image
YKL-39 (chitinase 3-like protein 2), but not YKL-40 (chitinase 3-like protein 1), is up regulated in osteoarthritic chondrocytes

Knorr, T., Obermayr, F., Bartnik, E., Zien, A., Aigner, T.

Annals of the Rheumatic Diseases, 62(10):995-998, October 2003 (article)

Abstract
OBJECTIVE: To investigate quantitatively the mRNA expression levels of YKL-40, an established marker of rheumatoid and osteoarthritic cartilage degeneration in synovial fluid and serum, and a closely related molecule YKL-39, in articular chondrocytes. METHODS: cDNA array and online quantitative polymerase chain reaction (PCR) were used to measure mRNA expression levels of YKL-39 and YKL-40 in chondrocytes in normal, early degenerative, and late stage osteoarthritic cartilage samples. RESULTS: Expression analysis showed high levels of both proteins in normal articular chondrocytes, with lower levels of YKL-39 than YKL-40. Whereas YKL-40 was significantly down regulated in late stage osteoarthritic chondrocytes, YKL-39 was significantly up regulated. In vitro both YKLs were down regulated by interleukin 1beta. CONCLUSIONS: The up regulation of YKL-39 in osteoarthritic cartilage suggests that YKL-39 may be a more accurate marker of chondrocyte activation than YKL-40, although it has yet to be established as a suitable marker in synovial fluid and serum. The decreased expression of YKL-40 by osteoarthritic chondrocytes is surprising as increased levels have been reported in rheumatoid and osteoarthritic synovial fluid, where it may derive from activated synovial cells or osteophytic tissue or by increased matrix destruction in the osteoarthritic joint. YKL-39 and YKL-40 are potentially interesting marker molecules for arthritic joint disease because they are abundantly expressed by both normal and osteoarthritic chondrocytes.

[BibTex]

[BibTex]


no image
Statistical Learning Theory

Bousquet, O.

Machine Learning Summer School, August 2003 (talk)

PDF [BibTex]

PDF [BibTex]


no image
Remarks on Statistical Learning Theory

Bousquet, O.

Machine Learning Summer School, August 2003 (talk)

PDF [BibTex]

PDF [BibTex]


no image
Statistical Learning Theory, Capacity and Complexity

Schölkopf, B.

Complexity, 8(4):87-94, July 2003 (article)

Abstract
We give an exposition of the ideas of statistical learning theory, followed by a discussion of how a reinterpretation of the insights of learning theory could potentially also benefit our understanding of a certain notion of complexity.

Web DOI [BibTex]


no image
Dealing with large Diagonals in Kernel Matrices

Weston, J., Schölkopf, B., Eskin, E., Leslie, C., Noble, W.

Annals of the Institute of Statistical Mathematics, 55(2):391-408, June 2003 (article)

Abstract
In kernel methods, all the information about the training data is contained in the Gram matrix. If this matrix has large diagonal values, which arises for many types of kernels, then kernel methods do not perform well: We propose and test several methods for dealing with this problem by reducing the dynamic range of the matrix while preserving the positive definiteness of the Hessian of the quadratic programming problem that one has to solve when training a Support Vector Machine, which is a common kernel approach for pattern recognition.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
The em Algorithm for Kernel Matrix Completion with Auxiliary Data

Tsuda, K., Akaho, S., Asai, K.

Journal of Machine Learning Research, 4, pages: 67-81, May 2003 (article)

PDF [BibTex]

PDF [BibTex]


no image
Constructing Descriptive and Discriminative Non-linear Features: Rayleigh Coefficients in Kernel Feature Spaces

Mika, S., Rätsch, G., Weston, J., Schölkopf, B., Smola, A., Müller, K.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5):623-628, May 2003 (article)

Abstract
We incorporate prior knowledge to construct nonlinear algorithms for invariant feature extraction and discrimination. Employing a unified framework in terms of a nonlinearized variant of the Rayleigh coefficient, we propose nonlinear generalizations of Fisher‘s discriminant and oriented PCA using support vector kernel functions. Extensive simulations show the utility of our approach.

DOI [BibTex]

DOI [BibTex]


no image
Kernel-based nonlinear blind source separation

Harmeling, S., Ziehe, A., Kawanabe, M., Müller, K.

Neural Computation, 15(5):1089-1124, May 2003 (article)

Abstract
We propose kTDSEP, a kernel-based algorithm for nonlinear blind source separation (BSS). It combines complementary research fields: kernel feature spaces and BSS using temporal information. This yields an efficient algorithm for nonlinear BSS with invertible nonlinearity. Key assumptions are that the kernel feature space is chosen rich enough to approximate the nonlinearity and that signals of interest contain temporal information. Both assumptions are fulfilled for a wide set of real-world applications. The algorithm works as follows: First, the data are (implicitly) mapped to a high (possibly infinite)—dimensional kernel feature space. In practice, however, the data form a smaller submanifold in feature space—even smaller than the number of training data points—a fact that has already been used by, for example, reduced set techniques for support vector machines. We propose to adapt to this effective dimension as a preprocessing step and to construct an orthonormal basis of this submanifold. The latter dimension-reduction step is essential for making the subsequent application of BSS methods computationally and numerically tractable. In the reduced space, we use a BSS algorithm that is based on second-order temporal decorrelation. Finally, we propose a selection procedure to obtain the original sources from the extracted nonlinear components automatically. Experiments demonstrate the excellent performance and efficiency of our kTDSEP algorithm for several problems of nonlinear BSS and for more than two sources.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Tractable Inference for Probabilistic Data Models

Csato, L., Opper, M., Winther, O.

Complexity, 8(4):64-68, April 2003 (article)

Abstract
We present an approximation technique for probabilistic data models with a large number of hidden variables, based on ideas from statistical physics. We give examples for two nontrivial applications. © 2003 Wiley Periodicals, Inc.

PDF GZIP Web [BibTex]

PDF GZIP Web [BibTex]


no image
Feature selection and transduction for prediction of molecular bioactivity for drug design

Weston, J., Perez-Cruz, F., Bousquet, O., Chapelle, O., Elisseeff, A., Schölkopf, B.

Bioinformatics, 19(6):764-771, April 2003 (article)

Abstract
Motivation: In drug discovery a key task is to identify characteristics that separate active (binding) compounds from inactive (non-binding) ones. An automated prediction system can help reduce resources necessary to carry out this task. Results: Two methods for prediction of molecular bioactivity for drug design are introduced and shown to perform well in a data set previously studied as part of the KDD (Knowledge Discovery and Data Mining) Cup 2001. The data is characterized by very few positive examples, a very large number of features (describing three-dimensional properties of the molecules) and rather different distributions between training and test data. Two techniques are introduced specifically to tackle these problems: a feature selection method for unbalanced data and a classifier which adapts to the distribution of the the unlabeled test data (a so-called transductive method). We show both techniques improve identification performance and in conjunction provide an improvement over using only one of the techniques. Our results suggest the importance of taking into account the characteristics in this data which may also be relevant in other problems of a similar type.

Web [BibTex]


no image
Rademacher and Gaussian averages in Learning Theory

Bousquet, O.

Universite de Marne-la-Vallee, March 2003 (talk)

PDF [BibTex]

PDF [BibTex]


no image
Use of the Zero-Norm with Linear Models and Kernel Methods

Weston, J., Elisseeff, A., Schölkopf, B., Tipping, M.

Journal of Machine Learning Research, 3, pages: 1439-1461, March 2003 (article)

Abstract
We explore the use of the so-called zero-norm of the parameters of linear models in learning. Minimization of such a quantity has many uses in a machine learning context: for variable or feature selection, minimizing training error and ensuring sparsity in solutions. We derive a simple but practical method for achieving these goals and discuss its relationship to existing techniques of minimizing the zero-norm. The method boils down to implementing a simple modification of vanilla SVM, namely via an iterative multiplicative rescaling of the training data. Applications we investigate which aid our discussion include variable and feature selection on biological microarray data, and multicategory classification.

PDF PostScript PDF [BibTex]

PDF PostScript PDF [BibTex]


no image
Introduction: Robots with Cognition?

Franz, MO.

6, pages: 38, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2003 (talk)

Abstract
Using robots as models of cognitive behaviour has a long tradition in robotics. Parallel to the historical development in cognitive science, one observes two major, subsequent waves in cognitive robotics. The first is based on ideas of classical, cognitivist Artificial Intelligence (AI). According to the AI view of cognition as rule-based symbol manipulation, these robots typically try to extract symbolic descriptions of the environment from their sensors that are used to update a common, global world representation from which, in turn, the next action of the robot is derived. The AI approach has been successful in strongly restricted and controlled environments requiring well-defined tasks, e.g. in industrial assembly lines. AI-based robots mostly failed, however, in the unpredictable and unstructured environments that have to be faced by mobile robots. This has provoked the second wave in cognitive robotics which tries to achieve cognitive behaviour as an emergent property from the interaction of simple, low-level modules. Robots of the second wave are called animats as their architecture is designed to closely model aspects of real animals. Using only simple reactive mechanisms and Hebbian-type or evolutionary learning, the resulting animats often outperformed the highly complex AI-based robots in tasks such as obstacle avoidance, corridor following etc. While successful in generating robust, insect-like behaviour, typical animats are limited to stereotyped, fixed stimulus-response associations. If one adopts the view that cognition requires a flexible, goal-dependent choice of behaviours and planning capabilities (H.A. Mallot, Kognitionswissenschaft, 1999, 40-48) then it appears that cognitive behaviour cannot emerge from a collection of purely reactive modules. It rather requires environmentally decoupled structures that work without directly engaging the actions that it is concerned with. This poses the current challenge to cognitive robotics: How can we build cognitive robots that show the robustness and the learning capabilities of animats without falling back into the representational paradigm of AI? The speakers of the symposium present their approaches to this question in the context of robot navigation and sensorimotor learning. In the first talk, Prof. Helge Ritter introduces a robot system for imitation learning capable of exploring various alternatives in simulation before actually performing a task. The second speaker, Angelo Arleo, develops a model of spatial memory in rat navigation based on his electrophysiological experiments. He validates the model on a mobile robot which, in some navigation tasks, shows a performance comparable to that of the real rat. A similar model of spatial memory is used to investigate the mechanisms of territory formation in a series of robot experiments presented by Prof. Hanspeter Mallot. In the last talk, we return to the domain of sensorimotor learning where Ralf M{\"o}ller introduces his approach to generate anticipatory behaviour by learning forward models of sensorimotor relationships.

Web [BibTex]

Web [BibTex]


no image
An Introduction to Variable and Feature Selection.

Guyon, I., Elisseeff, A.

Journal of Machine Learning, 3, pages: 1157-1182, 2003 (article)

[BibTex]

[BibTex]


no image
Dynamics of a rigid body in a Stokes fluid

Gonzalez, O., Graf, ABA., Maddocks, JH.

Journal of Fluid Mechanics, 2003 (article) Accepted

[BibTex]

[BibTex]


no image
A novel transient heater-foil technique for liquid crystal experiments on film cooled surfaces

Vogel, G., Graf, ABA., von Wolfersdorf, J., Weigand, B.

ASME Journal of Turbomachinery, 125, pages: 529-537, 2003 (article)

PDF [BibTex]

PDF [BibTex]


no image
Microarrays: How Many Do You Need?

Zien, A., Fluck, J., Zimmer, R., Lengauer, T.

Journal of Computational Biology, 10(3-4):653-667, 2003 (article)

Abstract
We estimate the number of microarrays that is required in order to gain reliable results from a common type of study: the pairwise comparison of different classes of samples. We show that current knowledge allows for the construction of models that look realistic with respect to searches for individual differentially expressed genes and derive prototypical parameters from real data sets. Such models allow investigation of the dependence of the required number of samples on the relevant parameters: the biological variability of the samples within each class, the fold changes in expression that are desired to be detected, the detection sensitivity of the microarrays, and the acceptable error rates of the results. We supply experimentalists with general conclusions as well as a freely accessible Java applet at www.scai.fhg.de/special/bio/howmanyarrays/ for fine tuning simulations to their particular settings.

Web [BibTex]

Web [BibTex]


no image
New Approaches to Statistical Learning Theory

Bousquet, O.

Annals of the Institute of Statistical Mathematics, 55(2):371-389, 2003 (article)

Abstract
We present new tools from probability theory that can be applied to the analysis of learning algorithms. These tools allow to derive new bounds on the generalization performance of learning algorithms and to propose alternative measures of the complexity of the learning task, which in turn can be used to derive new learning algorithms.

PostScript [BibTex]

PostScript [BibTex]


no image
Gene expression in chondrocytes assessed with use of microarrays

Aigner, T., Zien, A., Hanisch, D., Zimmer, R.

Journal of Bone and Joint Surgery, 85(Suppl 2):117-123, 2003 (article)

[BibTex]

[BibTex]

2002


no image
Optimized Support Vector Machines for Nonstationary Signal Classification

Davy, M., Gretton, A., Doucet, A., Rayner, P.

IEEE Signal Processing Letters, 9(12):442-445, December 2002 (article)

Abstract
This letter describes an efficient method to perform nonstationary signal classification. A support vector machine (SVM) algorithm is introduced and its parameters optimised in a principled way. Simulations demonstrate that our low complexity method outperforms state-of-the-art nonstationary signal classification techniques.

PostScript Web DOI [BibTex]

2002

PostScript Web DOI [BibTex]


no image
A New Discriminative Kernel from Probabilistic Models

Tsuda, K., Kawanabe, M., Rätsch, G., Sonnenburg, S., Müller, K.

Neural Computation, 14(10):2397-2414, October 2002 (article)

PDF [BibTex]

PDF [BibTex]


no image
Functional Genomics of Osteoarthritis

Aigner, T., Bartnik, E., Zien, A., Zimmer, R.

Pharmacogenomics, 3(5):635-650, September 2002 (article)

Web [BibTex]

Web [BibTex]


no image
Constructing Boosting algorithms from SVMs: an application to one-class classification.

Rätsch, G., Mika, S., Schölkopf, B., Müller, K.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(9):1184-1199, September 2002 (article)

Abstract
We show via an equivalence of mathematical programs that a support vector (SV) algorithm can be translated into an equivalent boosting-like algorithm and vice versa. We exemplify this translation procedure for a new algorithm—one-class leveraging—starting from the one-class support vector machine (1-SVM). This is a first step toward unsupervised learning in a boosting framework. Building on so-called barrier methods known from the theory of constrained optimization, it returns a function, written as a convex combination of base hypotheses, that characterizes whether a given test point is likely to have been generated from the distribution underlying the training data. Simulations on one-class classification problems demonstrate the usefulness of our approach.

DOI [BibTex]

DOI [BibTex]


no image
Co-Clustering of Biological Networks and Gene Expression Data

Hanisch, D., Zien, A., Zimmer, R., Lengauer, T.

Bioinformatics, (Suppl 1):145S-154S, 18, July 2002 (article)

Abstract
Motivation: Large scale gene expression data are often analysed by clustering genes based on gene expression data alone, though a priori knowledge in the form of biological networks is available. The use of this additional information promises to improve exploratory analysis considerably. Results: We propose constructing a distance function which combines information from expression data and biological networks. Based on this function, we compute a joint clustering of genes and vertices of the network. This general approach is elaborated for metabolic networks. We define a graph distance function on such networks and combine it with a correlation-based distance function for gene expression measurements. A hierarchical clustering and an associated statistical measure is computed to arrive at a reasonable number of clusters. Our method is validated using expression data of the yeast diauxic shift. The resulting clusters are easily interpretable in terms of the biochemical network and the gene expression data and suggest that our method is able to automatically identify processes that are relevant under the measured conditions.

Web [BibTex]

Web [BibTex]


no image
Confidence measures for protein fold recognition

Sommer, I., Zien, A., von Ohsen, N., Zimmer, R., Lengauer, T.

Bioinformatics, 18(6):802-812, June 2002 (article)

[BibTex]

[BibTex]