Header logo is ei


2015


no image
Causal Inference by Identification of Vector Autoregressive Processes with Hidden Components

Geiger, P., Zhang, K., Schölkopf, B., Gong, M., Janzing, D.

In Proceedings of the 32nd International Conference on Machine Learning, 37, pages: 1917–1925, JMLR Workshop and Conference Proceedings, (Editors: F. Bach and D. Blei), JMLR, ICML, 2015 (inproceedings)

PDF link (url) [BibTex]

2015

PDF link (url) [BibTex]


no image
Brain-Computer Interfacing in Amyotrophic Lateral Sclerosis: Implications of a Resting-State EEG Analysis

Jayaram, V., Widmann, N., Förster, C., Fomina, T., Hohmann, M. R., Müller vom Hagen, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

In Proceedings of the 37th IEEE Conference for Engineering in Medicine and Biology, pages: 6979-6982, EMBC, 2015 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Identification of the Default Mode Network with Electroencephalography

Fomina, T., Hohmann, M. R., Schölkopf, B., Grosse-Wentrup, M.

In Proceedings of the 37th IEEE Conference for Engineering in Medicine and Biology, pages: 7566-7569, EMBC, 2015 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Towards Cognitive Brain-Computer Interfaces for Patients with Amyotrophic Lateral Sclerosis

Fomina, T., Schölkopf, B., Grosse-Wentrup, M.

In 7th Computer Science and Electronic Engineering Conference, pages: 77-80, Curran Associates, Inc., CEEC, 2015 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Towards Learning Hierarchical Skills for Multi-Phase Manipulation Tasks

Kroemer, O., Daniel, C., Neumann, G., van Hoof, H., Peters, J.

In IEEE International Conference on Robotics and Automation, pages: 1503 - 1510, ICRA, 2015 (inproceedings)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl maren ls
Probabilistic Line Searches for Stochastic Optimization

Mahsereci, M., Hennig, P.

In Advances in Neural Information Processing Systems 28, pages: 181-189, (Editors: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama and R. Garnett), Curran Associates, Inc., 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015 (inproceedings)

Abstract
In deterministic optimization, line searches are a standard tool ensuring stability and efficiency. Where only stochastic gradients are available, no direct equivalent has so far been formulated, because uncertain gradients do not allow for a strict sequence of decisions collapsing the search space. We construct a probabilistic line search by combining the structure of existing deterministic methods with notions from Bayesian optimization. Our method retains a Gaussian process surrogate of the univariate optimization objective, and uses a probabilistic belief over the Wolfe conditions to monitor the descent. The algorithm has very low computational cost, and no user-controlled parameters. Experiments show that it effectively removes the need to define a learning rate for stochastic gradient descent. [You can find the matlab research code under `attachments' below. The zip-file contains a minimal working example. The docstring in probLineSearch.m contains additional information. A more polished implementation in C++ will be published here at a later point. For comments and questions about the code please write to mmahsereci@tue.mpg.de.]

Matlab research code link (url) [BibTex]

Matlab research code link (url) [BibTex]


no image
BACKSHIFT: Learning causal cyclic graphs from unknown shift interventions

Rothenhäusler, D., Heinze, C., Peters, J., Meinshausen, N.

Advances in Neural Information Processing Systems 28, pages: 1513-1521, (Editors: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama and R. Garnett), Curran Associates, Inc., 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Particle Gibbs for Infinite Hidden Markov Models

Tripuraneni*, N., Gu*, S., Ge, H., Ghahramani, Z.

Advances in Neural Information Processing Systems 28, pages: 2395-2403, (Editors: Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett), 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015, *equal contribution (conference)

PDF [BibTex]

PDF [BibTex]


Thumb xl 2016 peer grading
Peer grading in a course on algorithms and data structures

Sajjadi, M. S. M., Alamgir, M., von Luxburg, U.

Workshop on Crowdsourcing and Machine Learning (CrowdML) Workshop on Machine Learning for Education (ML4Ed) at at the 32th International Conference on Machine Learning (ICML), 2015 (conference)

Arxiv [BibTex]

Arxiv [BibTex]


no image
A Random Riemannian Metric for Probabilistic Shortest-Path Tractography

Hauberg, S., Schober, M., Liptrot, M., Hennig, P., Feragen, A.

In 18th International Conference on Medical Image Computing and Computer Assisted Intervention, 9349, pages: 597-604, Lecture Notes in Computer Science, MICCAI, 2015 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Recent Methodological Advances in Causal Discovery and Inference

Spirtes, P., Zhang, K.

In 15th Conference on Theoretical Aspects of Rationality and Knowledge, pages: 23-35, (Editors: Ramanujam, R.), TARK, 2015 (inproceedings)

[BibTex]

[BibTex]


no image
Learning Optimal Striking Points for A Ping-Pong Playing Robot

Huang, Y., Schölkopf, B., Peters, J.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 4587-4592, IROS, 2015 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Model-Based Relative Entropy Stochastic Search

Abdolmaleki, A., Peters, J., Neumann, G.

In Advances in Neural Information Processing Systems 28, pages: 3523-3531, (Editors: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama and R. Garnett), Curran Associates, Inc., 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Modeling Spatio-Temporal Variability in Human-Robot Interaction with Probabilistic Movement Primitives

Ewerton, M., Neumann, G., Lioutikov, R., Ben Amor, H., Peters, J., Maeda, G.

In Workshop on Machine Learning for Social Robotics, ICRA, 2015 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Extracting Low-Dimensional Control Variables for Movement Primitives

Rueckert, E., Mundo, J., Paraschos, A., Peters, J., Neumann, G.

In IEEE International Conference on Robotics and Automation, pages: 1511-1518, ICRA, 2015 (inproceedings)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Self-calibration of optical lenses

Hirsch, M., Schölkopf, B.

In IEEE International Conference on Computer Vision (ICCV 2015), pages: 612-620, IEEE, 2015 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Telling cause from effect in deterministic linear dynamical systems

Shajarisales, N., Janzing, D., Schölkopf, B., Besserve, M.

In Proceedings of the 32nd International Conference on Machine Learning, 37, pages: 285–294, JMLR Workshop and Conference Proceedings, (Editors: F. Bach and D. Blei), JMLR, ICML, 2015 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
A Cognitive Brain-Computer Interface for Patients with Amyotrophic Lateral Sclerosis

Hohmann, M. R., Fomina, T., Jayaram, V., Widmann, N., Förster, C., Müller vom Hagen, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, pages: 3187-3191, SMC, 2015 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Efficient Learning of Linear Separators under Bounded Noise

Awasthi, P., Balcan, M., Haghtalab, N., Urner, R.

In Proceedings of the 28th Conference on Learning Theory, 40, pages: 167-190, (Editors: Grünwald, P. and Hazan, E. and Kale, S.), JMLR, COLT, 2015 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Learning multiple collaborative tasks with a mixture of Interaction Primitives

Ewerton, M., Neumann, G., Lioutikov, R., Ben Amor, H., Peters, J., Maeda, G.

In IEEE International Conference on Robotics and Automation, pages: 1535-1542, ICRA, 2015 (inproceedings)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Subspace Alignement based Domain Adaptation for RCNN detector

Raj, A., V., N., Tuytelaars, T.

Proceedings of the 26th British Machine Vision Conference (BMVC 2015), pages: 166.1-166.11, (Editors: Xianghua Xie and Mark W. Jones and Gary K. L. Tam), 2015 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Practical Probabilistic Programming with Monads

Ścibior, A., Ghahramani, Z., Gordon, A. D.

Proceedings of the 2015 ACM SIGPLAN Symposium on Haskell, pages: 165-176, Haskell ’15, ACM, 2015 (conference)

DOI [BibTex]

DOI [BibTex]


no image
The search for single exoplanet transits in the Kepler light curves

Foreman-Mackey, D., Hogg, D. W., Schölkopf, B.

IAU General Assembly, 22, pages: 2258352, 2015 (talk)

link (url) [BibTex]

link (url) [BibTex]


no image
Developing neural networks with neurons competing for survival

Peng, Z, Braun, DA

pages: 152-153, IEEE, Piscataway, NJ, USA, 5th Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics (IEEE ICDL-EPIROB), August 2015 (conference)

Abstract
We study developmental growth in a feedforward neural network model inspired by the survival principle in nature. Each neuron has to select its incoming connections in a way that allow it to fire, as neurons that are not able to fire over a period of time degenerate and die. In order to survive, neurons have to find reoccurring patterns in the activity of the neurons in the preceding layer, because each neuron requires more than one active input at any one time to have enough activation for firing. The sensory input at the lowest layer therefore provides the maximum amount of activation that all neurons compete for. The whole network grows dynamically over time depending on how many patterns can be found and how many neurons can maintain themselves accordingly. We show in simulations that this naturally leads to abstractions in higher layers that emerge in a unsupervised fashion. When evaluating the network in a supervised learning paradigm, it is clear that our network is not competitive. What is interesting though is that this performance was achieved by neurons that simply struggle for survival and do not know about performance error. In contrast to most studies on neural evolution that rely on a network-wide fitness function, our goal was to show that learning behaviour can appear in a system without being driven by any specific utility function or reward signal.

DOI [BibTex]

DOI [BibTex]

2011


no image
Statistical estimation for optimization problems on graphs

Langovoy, M., Sra, S.

In pages: 1-6, NIPS Workshop on Discrete Optimization in Machine Learning (DISCML): Uncertainty, Generalization and Feedback , December 2011 (inproceedings)

Abstract
Large graphs abound in machine learning, data mining, and several related areas. A useful step towards analyzing such graphs is that of obtaining certain summary statistics — e.g., or the expected length of a shortest path between two nodes, or the expected weight of a minimum spanning tree of the graph, etc. These statistics provide insight into the structure of a graph, and they can help predict global properties of a graph. Motivated thus, we propose to study statistical properties of structured subgraphs (of a given graph), in particular, to estimate the expected objective function value of a combinatorial optimization problem over these subgraphs. The general task is very difficult, if not unsolvable; so for concreteness we describe a more specific statistical estimation problem based on spanning trees. We hope that our position paper encourages others to also study other types of graphical structures for which one can prove nontrivial statistical estimates.

PDF Web [BibTex]

2011

PDF Web [BibTex]


no image
On the discardability of data in Support Vector Classification problems

Del Favero, S., Varagnolo, D., Dinuzzo, F., Schenato, L., Pillonetto, G.

In pages: 3210-3215, IEEE, Piscataway, NJ, USA, 50th IEEE Conference on Decision and Control and European Control Conference (CDC - ECC), December 2011 (inproceedings)

Abstract
We analyze the problem of data sets reduction for support vector classification. The work is also motivated by distributed problems, where sensors collect binary measurements at different locations moving inside an environment that needs to be divided into a collection of regions labeled in two different ways. The scope is to let each agent retain and exchange only those measurements that are mostly informative for the collective reconstruction of the decision boundary. For the case of separable classes, we provide the exact conditions and an efficient algorithm to determine if an element in the training set can become a support vector when new data arrive. The analysis is then extended to the non-separable case deriving a sufficient discardability condition and a general data selection scheme for classification. Numerical experiments relative to the distributed problem show that the proposed procedure allows the agents to exchange a small amount of the collected data to obtain a highly predictive decision boundary.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Combined whole-body PET/MR imaging: MR contrast agents do not affect the quantitative accuracy of PET following attenuation correction

Lois, C., Kupferschläger, J., Bezrukov, I., Schmidt, H., Werner, M., Mannheim, J., Pichler, B., Schwenzer, N., Beyer, T.

(SST15-05 ), 97th Scientific Assemble and Annual Meeting of the Radiological Society of North America (RSNA), December 2011 (talk)

Abstract
PURPOSE Combined PET/MR imaging entails the use of MR contrast agents (MRCA) as part of integrated protocols. We assess additional attenuation of the PET emission signals in the presence of oral and intraveneous (iv) MRCA made up of iron oxide and Gd-chelates, respectively. METHOD AND MATERIALS Phantom scans were performed on a clinical PET/CT (Biograph HiRez16, Siemens) and integrated whole-body PET/MR (Biograph mMR, Siemens) using oral (Lumirem) and intraveneous (Gadovist) MRCA. Reference PET attenuation values were determined on a small-animal PET (Inveon, Siemens) using standard PET transmission imaging (TX). Seven syringes of 5mL were filled with (a) Water, (b) Lumirem_100 (100% conc.), (c) Gadovist_100 (100%), (d) Gadovist_18 (18%), (e) Gadovist_02 (0.2%), (f) Imeron-400 CT iv-contrast (100%) and (g) Imeron-400 (2.4%). The same set of syringes was scanned on CT (Sensation16, Siemens) at 120kVp and 160mAs. The effect of MRCA on the attenuation of PET emission data was evaluated using a 20cm cylinder filled uniformly with [18F]-FDG (FDG) in water (BGD). Three 4.5cm diameter cylinders were inserted into the phantom: (C1) Teflon, (C2) Water+FDG (2:1) and (C3) Lumirem_100+FDG (2:1). Two 50mL syringes filled with Gadovist_02+FDG (Sy1) and water+FDG (Sy2) were attached to the sides of (C1) to mimick the effects of iv-contrast in vessels near bone. Syringe-to-background activity ratio was 4-to-1. PET emission data were acquired for 10min each using the PET/CT and the PET/MR. Images were reconstructed using CT- and MR-based attenuation correction. RESULTS Mean linear PET attenuation (cm-1) on TX was (a) 0.098, (b) 0.098, (c) 0.300, (d) 0.134, (e) 0.095, (f) 0.397 and (g) 0.105. Corresponding CT attenuation (HU) was: (a) 5, (b) 14, (c) 3070, (d) 1040, (e) 13, (f) 3070 and (g) 347. Lumirem had little effect on PET attenuation with (C3) being 13% and 10% higher than (C2) on PET/CT and PET/MR, respectively. Gadovist_02 had even smaller effects with (Sy1) being 2.5% lower than (Sy2) on PET/CT and 1.2% higher than (Sy2) on PET/MR. CONCLUSION MRCA in high and clinically relevant concentrations have attenuation values similar to that of CT contrast and water, respectively. In clinical PET/MR scenarios MRCA are not expected to lead to significant attenuation of the PET emission signals.

Web [BibTex]

Web [BibTex]


no image
Information, learning and falsification

Balduzzi, D.

In pages: 1-4, NIPS Philosophy and Machine Learning Workshop, December 2011 (inproceedings)

Abstract
There are (at least) three approaches to quantifying information. The first, algorithmic information or Kolmogorov complexity, takes events as strings and, given a universal Turing machine, quantifies the information content of a string as the length of the shortest program producing it [1]. The second, Shannon information, takes events as belonging to ensembles and quantifies the information resulting from observing the given event in terms of the number of alternate events that have been ruled out [2]. The third, statistical learning theory, has introduced measures of capacity that control (in part) the expected risk of classifiers [3]. These capacities quantify the expectations regarding future data that learning algorithms embed into classifiers. Solomonoff and Hutter have applied algorithmic information to prove remarkable results on universal induction. Shannon information provides the mathematical foundation for communication and coding theory. However, both approaches have shortcomings. Algorithmic information is not computable, severely limiting its practical usefulness. Shannon information refers to ensembles rather than actual events: it makes no sense to compute the Shannon information of a single string – or rather, there are many answers to this question depending on how a related ensemble is constructed. Although there are asymptotic results linking algorithmic and Shannon information, it is unsatisfying that there is such a large gap – a difference in kind – between the two measures. This note describes a new method of quantifying information, effective information, that links algorithmic information to Shannon information, and also links both to capacities arising in statistical learning theory [4, 5]. After introducing the measure, we show that it provides a non-universal analog of Kolmogorov complexity. We then apply it to derive basic capacities in statistical learning theory: empirical VC-entropy and empirical Rademacher complexity. A nice byproduct of our approach is an interpretation of the explanatory power of a learning algorithm in terms of the number of hypotheses it falsifies [6], counted in two different ways for the two capacities. We also discuss how effective information relates to information gain, Shannon and mutual information.

PDF Web [BibTex]

PDF Web [BibTex]


no image
A general linear non-Gaussian state-space model: Identifiability, identification, and applications

Zhang, K., Hyvärinen, A.

In JMLR Workshop and Conference Proceedings Volume 20, pages: 113-128, (Editors: Hsu, C.-N. , W.S. Lee ), MIT Press, Cambridge, MA, USA, 3rd Asian Conference on Machine Learning (ACML), November 2011 (inproceedings)

Abstract
State-space modeling provides a powerful tool for system identification and prediction. In linear state-space models the data are usually assumed to be Gaussian and the models have certain structural constraints such that they are identifiable. In this paper we propose a non-Gaussian state-space model which does not have such constraints. We prove that this model is fully identifiable. We then propose an efficient two-step method for parameter estimation: one first extracts the subspace of the latent processes based on the temporal information of the data, and then performs multichannel blind deconvolution, making use of both the temporal information and non-Gaussianity. We conduct a series of simulations to illustrate the performance of the proposed method. Finally, we apply the proposed model and parameter estimation method on real data, including major world stock indices and magnetoencephalography (MEG) recordings. Experimental results are encouraging and show the practical usefulness of the proposed model and method.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Non-stationary correction of optical aberrations

Schuler, C., Hirsch, M., Harmeling, S., Schölkopf, B.

In pages: 659-666 , (Editors: DN Metaxas and L Quan and A Sanfeliu and LJ Van Gool), IEEE, Piscataway, NJ, USA, 13th IEEE International Conference on Computer Vision (ICCV), November 2011 (inproceedings)

Abstract
Taking a sharp photo at several megapixel resolution traditionally relies on high grade lenses. In this paper, we present an approach to alleviate image degradations caused by imperfect optics. We rely on a calibration step to encode the optical aberrations in a space-variant point spread function and obtain a corrected image by non-stationary deconvolution. By including the Bayer array in our image formation model, we can perform demosaicing as part of the deconvolution.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Learning low-rank output kernels

Dinuzzo, F., Fukumizu, K.

In JMLR Workshop and Conference Proceedings Volume 20, pages: 181-196, (Editors: Hsu, C.-N. , W.S. Lee), JMLR, Cambridge, MA, USA, 3rd Asian Conference on Machine Learning (ACML) , November 2011 (inproceedings)

Abstract
Output kernel learning techniques allow to simultaneously learn a vector-valued function and a positive semidefinite matrix which describes the relationships between the outputs. In this paper, we introduce a new formulation that imposes a low-rank constraint on the output kernel and operates directly on a factor of the kernel matrix. First, we investigate the connection between output kernel learning and a regularization problem for an architecture with two layers. Then, we show that a variety of methods such as nuclear norm regularized regression, reduced-rank regression, principal component analysis, and low rank matrix approximation can be seen as special cases of the output kernel learning framework. Finally, we introduce a block coordinate descent strategy for learning low-rank output kernels.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Stability Condition for Teleoperation System with Packet Loss

Hong, A., Cho, JH., Lee, DY.

In pages: 760-761, 2011 KSME Annual Fall Conference, November 2011 (inproceedings)

Abstract
This paper focuses on the stability condition of teleoperation system where there is a packet loss in communication channel. Communication channel between master and slave cause packet loss and it obviously leads to a performance degradation and instability of teleoperation system. We consider two-channel control architecture for teleoperation system, and control inputs to remote site are produced by position of master and slave. In this paper, teleoperation system is modeled in discrete domain to include packet loss process. Also, the stability condition for teleoperation system with packet loss is discussed with input-to-state stability. Finally, the stability condition is presented in LMI approach.

[BibTex]

[BibTex]


no image
Fast removal of non-uniform camera shake

Hirsch, M., Schuler, C., Harmeling, S., Schölkopf, B.

In pages: 463-470 , (Editors: DN Metaxas and L Quan and A Sanfeliu and LJ Van Gool), IEEE, Piscataway, NJ, USA, 13th IEEE International Conference on Computer Vision (ICCV), November 2011 (inproceedings)

Abstract
Camera shake leads to non-uniform image blurs. State-of-the-art methods for removing camera shake model the blur as a linear combination of homographically transformed versions of the true image. While this is conceptually interesting, the resulting algorithms are computationally demanding. In this paper we develop a forward model based on the efficient filter flow framework, incorporating the particularities of camera shake, and show how an efficient algorithm for blur removal can be obtained. Comprehensive comparisons on a number of real-world blurry images show that our approach is not only substantially faster, but it also leads to better deblurring results.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Cooperative Cuts: a new use of submodularity in image segmentation

Jegelka, S.

Second I.S.T. Austria Symposium on Computer Vision and Machine Learning, October 2011 (talk)

Web [BibTex]

Web [BibTex]


no image
Effect of MR Contrast Agents on Quantitative Accuracy of PET in Combined Whole-Body PET/MR Imaging

Lois, C., Bezrukov, I., Schmidt, H., Schwenzer, N., Werner, M., Pichler, B., Kupferschläger, J., Beyer, T.

2011(MIC3-3), 2011 IEEE Nuclear Science Symposium, Medical Imaging Conference (NSS-MIC), October 2011 (talk)

Abstract
Combined whole-body PET/MR systems are being tested in clinical practice today. Integrated imaging protocols entail the use of MR contrast agents (MRCA) that could bias PET attenuation correction. In this work, we assess the effect of MRCA in PET/MR imaging. We analyze the effect of oral and intravenous MRCA on PET activity after attenuation correction. We conclude that in clinical scenarios, MRCA are not expected to lead to significant attenuation of PET signals, and that attenuation maps are not biased after the ingestion of adequate oral contrasts.

Web [BibTex]

Web [BibTex]


no image
First Results on Patients and Phantoms of a Fully Integrated Clinical Whole-Body PET/MRI

Schmidt, H., Schwenzer, N., Bezrukov, I., Kolb, A., Mantlik, F., Kupferschläger, J., Lois, C., Sauter, A., Brendle, C., Pfannenberg, C., Pichler, B.

2011(J2-8), 2011 IEEE Nuclear Science Symposium, Medical Imaging Conference (NSS-MIC), October 2011 (talk)

Abstract
First clinical fully integrated whole-body PET/MR scanners are just entering the field. Here, we present studies toward quantification accuracy and variation within the PET field of view of small lesions from our BrainPET/MRI, a dedicated clinical brain scanner which was installed three years ago in Tbingen. Also, we present first results for patient and phantom scans of a fully integral whole-body PET/MRI, which was installed two months ago at our department. The quantification accuracy and homogeneity of the BrainPET-Insert (Siemens Medical Solutions, Germany) installed inside the magnet bore of a clinical 3T MRI scanner (Magnetom TIM Trio, Siemens Medical Solutions, Germany) was evaluated by using eight hollow spheres with inner diameters from 3.95 to 7.86 mm placed at different positions inside a homogeneous cylinder phantom with an 9:1 and 6:1 sphere to background ratio. The quantification accuracy for small lesions at different positions in the PET FoV shows a standard deviation of up to 11% and is acceptable for quantitative brain studies where the homogeneity of quantification on the entire FoV is essental. Image quality and resolution of the new Siemens whole-body PET/MR system (Biograph mMR, Siemens Medical Solutions, Germany) was evaluated according to the NEMA NU2 2007 protocol using a body phantom containing six spheres with inner diameter from 10 to 37 mm at sphere to background ratios of 8:1 and 4:1 and the F-18 point sources located at different positions inside the PET FoV, respectively. The evaluation of the whole-body PET/MR system reveals a good PET image quality and resolution comparable to state-of-the-art clinical PET/CT scanners. First images of patient studies carried out at the whole-body PET/MR are presented highlighting the potency of combined PET/MR imaging.

Web [BibTex]

Web [BibTex]


no image
Effect of MR contrast agents on quantitative accuracy of PET in combined whole-body PET/MR imaging

Lois, C., Kupferschläger, J., Bezrukov, I., Schmidt, H., Werner, M., Mannheim, J., Pichler, B., Schwenzer, N., Beyer, T.

(OP314), Annual Congress of the European Association of Nuclear Medicine (EANM), October 2011 (talk)

Abstract
PURPOSE:Combined PET/MR imaging entails the use of MR contrast agents (MRCA) as part of integrated protocols. MRCA are made up of iron oxide and Gd-chelates for oral and intravenous (iv) application, respectively. We assess additional attenuation of the PET emission signals in the presence of oral and iv MRCA.MATERIALS AND METHODS:Phantom scans were performed on a clinical PET/CT (Biograph HiRez16, Siemens) and an integrated whole-body PET/MR (Biograph mMR, Siemens). Two common MRCA were evaluated: Lumirem (oral) and Gadovist (iv).Reference PET attenuation values were determined on a dedicated small-animal PET (Inveon, Siemens) using equivalent standard PET transmission source imaging (TX). Seven syringes of 5mL were filled with (a) Water, (b) Lumirem_100 (100% concentration), (c) Gadovist_100 (100%), (d) Gadovist_18 (18%), (e) Gadovist_02 (0.2%), (f) Imeron-400 CT iv-contrast (100%) and (g) Imeron-400 (2.4%). The same set of syringes was scanned on CT (Sensation16, Siemens) at 120kVp and 160mAs.The effect of MRCA on the attenuation of PET emission data was evaluated using a 20cm cylinder filled uniformly with [18F]-FDG (FDG) in water (BGD). Three 4.5cm diameter cylinders were inserted into the phantom: (C1) Teflon, (C2) Water+FDG (2:1) and (C3) Lumirem_100+FDG (2:1). Two 50mL syringes filled with Gadovist_02+FDG (Sy1) and water+FDG (Sy2) were attached to the sides of (C1) to mimick the effects of iv-contrast in vessels near bone. Syringe-to-background activity ratio was 4-to-1.PET emission data were acquired for 10min each using the PET/CT and the PET/MR. Images were reconstructed using CT- and MR-based attenuation correction (AC). Since Teflon is not correctly identified on MR, PET(/MR) data were reconstructed using MR-AC and CT-AC.RESULTS:Mean linear PET attenuation (cm-1) on TX was (a) 0.098, (b) 0.098, (c) 0.300, (d) 0.134, (e) 0.095, (f) 0.397 and (g) 0.105. Corresponding CT attenuation (HU) was: (a) 5, (b) 14, (c) 3070, (d) 1040, (e) 13, (f) 3070 and (g) 347.Lumirem had little effect on PET attenuation with (C3) being 13%, 10% and 11% higher than (C2) on PET/CT, PET/MR with MR-AC, and PET/MR with CT-AC, respectively. Gadovist_02 had even smaller effects with (Sy1) being 2.5% lower, 1.2% higher, and 3.5% lower than (Sy2) on PET/CT, PET/MR with MR-AC and PET/MR with CT-AC, respectively.CONCLUSION:MRCA in high and clinically relevant concentrations have attenuation values similar to that of CT contrast and water, respectively. In clinical PET/MR scenarios MRCA are not expected to lead to significant attenuation of the PET emission signals.

Web [BibTex]

Web [BibTex]


no image
Attenuation correction in MR-BrainPET with segmented T1-weighted MR images of the patient’s head: A comparative study with CT

Wagenknecht, G., Rota Kops, E., Mantlik, F., Fried, E., Pilz, T., Hautzel, H., Tellmann, L., Pichler, B., Herzog, H.

In pages: 2261-2266 , IEEE, Piscataway, NJ, USA, IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), October 2011 (inproceedings)

Abstract
Our method for attenuation correction (AC) in MR-BrainPET with segmented T1-weighted MR images of the pa-tient's head was applied to data from different MR-BrainPET scanners (Jülich, Tübingen) and compared to CT-based results. The study objectives presented in this paper are twofold. The first objective is to examine if the segmentation method developed for and successfully applied to 3D MP-RAGE data can also be used to segment other T1-weighted MR data such as 3D FLASH data. The second aim is to show if the similarity of segmented MR-based (SBA) and CT-based AC (CBA) obtained at HR+ PET can also be confirmed for BrainPET for which the new AC method is intended for. In order to reach the first objective, 14 segmented MR data sets (three 3D MP-RAGE data sets from Jülich and eleven 3D FLASH data sets from Tubingen) were compared to the resp. CT data based on the Dice coefficient and scatter plots. For bone, a CT threshold HU>;500 was applied. Dice coefficients (mean±std) for the upper cranial part of the skull, the skull above cavities, and in the caudal part including the cerebellum are 0.73±0.1, 0.79±0.04, and 0.49±0.02 for the Jülich data and 0.7U0.1, 0.72±0.1, and 0.60±0.05 for the Tubingen data. To reach the second aim, SBA and CBA were compared for six subjects based on VOI (AAL atlas) analysis. Mean absolute relative difference (maRD) values are maRD(JUFVBWl-FDG): 0.99%±0.83%, maRD(JüFVBW2-FDG): 0.90%±0.89%, and maRD(JUEP-Fluma- zenil): 1.85%±1.25% for the Jülich data and maRD(TuTP02- FDG): 2.99%±1.65%, maRD(TuNP01-FDG): 5.37%±2.29%, and maRD(TuNP02-FDG): 6.52%±1.69% for the three best-segmented Tübingen data sets. The results show similar segmentation quality for both Tl- weighted MR sequence types. The application to AC in BrainPET - hows a high similarity to CT-based AC if the standardized ACF value for bone used in SBA is in good accordance to the bone density of the patient in question.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Learning anticipation policies for robot table tennis

Wang, Z., Lampert, C., Mülling, K., Schölkopf, B., Peters, J.

In pages: 332-337 , (Editors: NM Amato), IEEE, Piscataway, NJ, USA, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 2011 (inproceedings)

Abstract
Playing table tennis is a difficult task for robots, especially due to their limitations of acceleration. A key bottleneck is the amount of time needed to reach the desired hitting position and velocity of the racket for returning the incoming ball. Here, it often does not suffice to simply extrapolate the ball's trajectory after the opponent returns it but more information is needed. Humans are able to predict the ball's trajectory based on the opponent's moves and, thus, have a considerable advantage. Hence, we propose to incorporate an anticipation system into robot table tennis players, which enables the robot to react earlier while the opponent is performing the striking movement. Based on visual observation of the opponent's racket movement, the robot can predict the aim of the opponent and adjust its movement generation accordingly. The policies for deciding how and when to react are obtained by reinforcement learning. We conduct experiments with an existing robot player to show that the learned reaction policy can significantly improve the performance of the overall system.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Estimating integrated information with TMS pulses during wakefulness, sleep and under anesthesia

Balduzzi, D.

In pages: 4717-4720 , IEEE, Piscataway, NJ, USA, 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE EMBC), September 2011 (inproceedings)

Abstract
This paper relates a recently proposed measure of information integration to experiments investigating the evoked high-density electroencephalography (EEG) response to transcranial magnetic stimulation (TMS) during wakefulness, early non-rapid eye movement (NREM) sleep and under anesthesia. We show that bistability, arising at the cellular and population level during NREM sleep and under anesthesia, dramatically reduces the brain’s ability to integrate information.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Improving Denoising Algorithms via a Multi-scale Meta-procedure

Burger, H., Harmeling, S.

In Pattern Recognition, pages: 206-215, (Editors: Mester, R. , M. Felsberg), Springer, Berlin, Germany, 33rd DAGM Symposium, September 2011 (inproceedings)

Abstract
Many state-of-the-art denoising algorithms focus on recovering high-frequency details in noisy images. However, images corrupted by large amounts of noise are also degraded in the lower frequencies. Thus properly handling all frequency bands allows us to better denoise in such regimes. To improve existing denoising algorithms we propose a meta-procedure that applies existing denoising algorithms across different scales and combines the resulting images into a single denoised image. With a comprehensive evaluation we show that the performance of many state-of-the-art denoising algorithms can be improved.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Learning robot grasping from 3-D images with Markov Random Fields

Boularias, A., Kroemer, O., Peters, J.

In pages: 1548-1553 , (Editors: Amato, N.M.), IEEE, Piscataway, NJ, USA, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 2011 (inproceedings)

Abstract
Learning to grasp novel objects is an essential skill for robots operating in unstructured environments. We therefore propose a probabilistic approach for learning to grasp. In particular, we learn a function that predicts the success probability of grasps performed on surface points of a given object. Our approach is based on Markov Random Fields (MRF), and motivated by the fact that points that are geometrically close to each other tend to have similar grasp success probabilities. The MRF approach is successfully tested in simulation, and on a real robot using 3-D scans of various types of objects. The empirical results show a significant improvement over methods that do not utilize the smoothness assumption and classify each point separately from the others.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Neurofeedback of Fronto-Parietal Gamma-Oscillations

Grosse-Wentrup, M.

In pages: 172-175, (Editors: Müller-Putz, G.R. , R. Scherer, M. Billinger, A. Kreilinger, V. Kaiser, C. Neuper), Verlag der Technischen Universität Graz, Graz, Austria, 5th International Brain-Computer Interface Conference (BCI), September 2011 (inproceedings)

Abstract
In recent work, we have provided evidence that fronto-parietal γ-range oscillations are a cause of within-subject performance variations in brain-computer interfaces (BCIs) based on motor-imagery. Here, we explore the feasibility of using neurofeedback of fronto-parietal γ-power to induce a mental state that is beneficial for BCI-performance. We provide empirical evidence based on two healthy subjects that intentional attenuation of fronto-parietal γ-power results in an enhanced resting-state sensorimotor-rhythm (SMR). As a large resting-state amplitude of the SMR has been shown to correlate with good BCI-performance, our approach may provide a means to reduce performance variations in BCIs.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning inverse kinematics with structured prediction

Bocsi, B., Nguyen-Tuong, D., Csato, L., Schölkopf, B., Peters, J.

In pages: 698-703 , (Editors: NM Amato), IEEE, Piscataway, NJ, USA, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 2011 (inproceedings)

Abstract
Learning inverse kinematics of robots with redundant degrees of freedom (DoF) is a difficult problem in robot learning. The difficulty lies in the non-uniqueness of the inverse kinematics function. Existing methods tackle non-uniqueness by segmenting the configuration space and building a global solution from local experts. The usage of local experts implies the definition of an oracle, which governs the global consistency of the local models; the definition of this oracle is difficult. We propose an algorithm suitable to learn the inverse kinematics function in a single global model despite its multivalued nature. Inverse kinematics is approximated from examples using structured output learning methods. Unlike most of the existing methods, which estimate inverse kinematics on velocity level, we address the learning of the direct function on position level. This problem is a significantly harder. To support the proposed method, we conducted real world experiments on a tracking control task and tested our algorithms on these models.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Automatic foreground-background refocusing

Loktyushin, A., Harmeling, S.

In pages: 3445-3448, (Editors: Macq, B. , P. Schelkens), IEEE, Piscataway, NJ, USA, 18th IEEE International Conference on Image Processing (ICIP), September 2011 (inproceedings)

Abstract
A challenging problem in image restoration is to recover an image with a blurry foreground. Such images can easily occur with modern cameras, when the auto-focus aims mistakenly at the background (which will appear sharp) instead of the foreground, where usually the object of interest is. In this paper we propose an automatic procedure that (i) estimates the amount of out-of-focus blur, (ii) segments the image into foreground and background incorporating clues from the blurriness, (iii) recovers the sharp foreground, and finally (iv) blurs the background to refocus the scene. On several real photographs with blurry foreground and sharp background, we demonstrate the effectiveness and limitations of our method.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Reinforcement Learning to adjust Robot Movements to New Situations

Kober, J., Oztop, E., Peters, J.

In Robotics: Science and Systems VI, pages: 33-40, (Editors: Matsuoka, Y. , H. F. Durrant-Whyte, J. Neira), MIT Press, Cambridge, MA, USA, 2010 Robotics: Science and Systems Conference (RSS), September 2011 (inproceedings)

Abstract
Many complex robot motor skills can be represented using elementary movements, and there exist efficient techniques for learning parametrized motor plans using demonstrations and self-improvement. However, in many cases, the robot currently needs to learn a new elementary movement even if a parametrized motor plan exists that covers a similar, related situation. Clearly, a method is needed that modulates the elementary movement through the meta-parameters of its representation. In this paper, we show how to learn such mappings from circumstances to meta-parameters using reinforcement learning.We introduce an appropriate reinforcement learning algorithm based on a kernelized version of the reward-weighted regression. We compare this algorithm to several previous methods on a toy example and show that it performs well in comparison to standard algorithms. Subsequently, we show two robot applications of the presented setup; i.e., the generalization of throwing movements in darts, and of hitting movements in table tennis. We show that both tasks can be learned successfully using simulated and real robots.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Simultaneous EEG Recordings with Dry and Wet Electrodes in Motor-Imagery

Saab, J., Battes, B., Grosse-Wentrup, M.

In pages: 312-315, (Editors: Müller-Putz, G.R. , R. Scherer, M. Billinger, A. Kreilinger, V. Kaiser, C. Neuper), Verlag der Technischen Universität Graz, Graz, Austria, 5th International Brain-Computer Interface Conference (BCI), September 2011 (inproceedings)

Abstract
Robust dry EEG electrodes are arguably the key to making EEG Brain-Computer Interfaces (BCIs) a practical technology. Existing studies on dry EEG electrodes can be characterized by the recording method (stand-alone dry electrodes or simultaneous recording with wet electrodes), the dry electrode technology (e.g. active or passive), the paradigm used for testing (e.g. event-related potentials), and the measure of performance (e.g. comparing dry and wet electrode frequency spectra). In this study, an active-dry electrode prototype is tested, during a motor-imagery task, with EEG-BCI in mind. It is used simultaneously with wet electrodes and assessed using classification accuracy. Our results indicate that the two types of electrodes are comparable in their performance but there are improvements to be made, particularly in finding ways to reduce motion-related artifacts.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning task-space tracking control with kernels

Nguyen-Tuong, D., Peters, J.

In pages: 704-709 , (Editors: Amato, N.M.), IEEE, Piscataway, NJ, USA, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 2011 (inproceedings)

Abstract
Task-space tracking control is essential for robot manipulation. In practice, task-space control of redundant robot systems is known to be susceptive to modeling errors. Here, data driven learning methods may present an interesting alternative approach. However, learning models for task-space tracking control from sampled data is an ill-posed problem. In particular, the same input data point can yield many different output values which can form a non-convex solution space. Because the problem is ill-posed, models cannot be learned from such data using common regression methods. While learning of task-space control mappings is globally ill-posed, it has been shown in recent work that it is locally a well-defined problem. In this paper, we use this insight to formulate a local kernel-based learning approach for online model learning for taskspace tracking control. For evaluations, we show in simulation the ability of the method for online model learning for task-space tracking control of redundant robots.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Automatic particle picking using diffusion filtering and random forest classification

Joubert, P., Nickell, S., Beck, F., Habeck, M., Hirsch, M., Schölkopf, B.

In pages: 6, International Workshop on Microscopic Image Analysis with Application in Biology (MIAAB), September 2011 (inproceedings)

Abstract
An automatic particle picking algorithm for processing electron micrographs of a large molecular complex, the 26S proteasome, is described. The algorithm makes use of a coherence enhancing diffusion filter to denoise the data, and a random forest classifier for removing false positives. It does not make use of a 3D reference model, but uses a training set of manually picked particles instead. False positive and false negative rates of around 25% to 30% are achieved on a testing set. The algorithm was developed for a specific particle, but contains steps that should be useful for developing automatic picking algorithms for other particles.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Active Versus Semi-supervised Learning Paradigm for the Classification of Remote Sensing Images

Persello, C., Bruzzone, L.

In pages: 1-15, (Editors: Bruzzone, L.), SPIE, Bellingham, WA, USA, Image and Signal Processing for Remote Sensing XVII, September 2011 (inproceedings)

Abstract
This paper presents a comparative study in order to analyze active learning (AL) and semi-supervised learning (SSL) for the classification of remote sensing (RS) images. The two learning paradigms are analyzed both from the theoretical and experimental point of view. The aim of this work is to identify the advantages and disadvantages of AL and SSL methods, and to point out the boundary conditions on the applicability of these methods with respect to both the number of available labeled samples and the reliability of classification results. In our experimental analysis, AL and SSL techniques have been applied to the classification of both synthetic and real RS data, defining different classification problems starting from different initial training sets and considering different distributions of the classes. This analysis allowed us to derive important conclusion about the use of these classification approaches and to obtain insight about which one of the two approaches is more appropriate according to the specific classification problem, the available initial training set and the available budget for the acquisition of new labeled samples.

Web DOI [BibTex]

Web DOI [BibTex]