Header logo is ei


2005


no image
Morphological characterization of molecular complexes present in the synaptic cleft

Lucic, V., Yang, T., Schweikert, G., Förster, F., Baumeister, W.

Structure, 13(3):423-434, March 2005 (article)

Abstract
We obtained tomograms of isolated mammalian excitatory synapses by cryo-electron tomography. This method allows the investigation of biological material in the frozen-hydrated state, without staining, and can therefore provide reliable structural information at the molecular level. We developed an automated procedure for the segmentation of molecular complexes present in the synaptic cleft based on thresholding and connectivity, and calculated several morphological characteristics of these complexes. Extensive lateral connections along the synaptic cleft are shown to form a highly connected structure with a complex topology. Our results are essentially parameter-free, i.e., they do not depend on the choice of certain parameter values (such as threshold). In addition, the results are not sensitive to noise; the same conclusions can be drawn from the analysis of both nondenoised and denoised tomograms.

PDF DOI [BibTex]

2005

PDF DOI [BibTex]


no image
Experimentally optimal v in support vector regression for different noise models and parameter settings

Chalimourda, A., Schölkopf, B., Smola, A.

Neural Networks, 18(2):205-205, March 2005 (article)

PDF DOI [BibTex]


no image
Semi-supervised protein classification using cluster kernels

Weston, J., Leslie, C., Ie, E., Zhou, D., Elisseeff, A., Noble, W.

Bioinformatics, 21(15):3241-3247, 2005 (article)

[BibTex]

[BibTex]


no image
Invariance of Neighborhood Relation under Input Space to Feature Space Mapping

Shin, H., Cho, S.

Pattern Recognition Letters, 26(6):707-718, 2005 (article)

Abstract
If the training pattern set is large, it takes a large memory and a long time to train support vector machine (SVM). Recently, we proposed neighborhood property based pattern selection algorithm (NPPS) which selects only the patterns that are likely to be near the decision boundary ahead of SVM training [Proc. of the 7th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Lecture Notes in Artificial Intelligence (LNAI 2637), Seoul, Korea, pp. 376–387]. NPPS tries to identify those patterns that are likely to become support vectors in feature space. Preliminary reports show its effectiveness: SVM training time was reduced by two orders of magnitude with almost no loss in accuracy for various datasets. It has to be noted, however, that decision boundary of SVM and support vectors are all defined in feature space while NPPS described above operates in input space. If neighborhood relation in input space is not preserved in feature space, NPPS may not always be effective. In this paper, we sh ow that the neighborhood relation is invariant under input to feature space mapping. The result assures that the patterns selected by NPPS in input space are likely to be located near decision boundary in feature space.

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Graph Kernels for Chemical Informatics

Ralaivola, L., Swamidass, J., Saigo, H., Baldi, P.

Neural Networks, 18(8):1093-1110, 2005 (article)

Abstract
Increased availability of large repositories of chemical compounds is creating new challenges and opportunities for the application of machine learning methods to problems in computational chemistry and chemical informatics. Because chemical compounds are often represented by the graph of their covalent bonds, machine learning methods in this domain must be capable of processing graphical structures with variable size. Here we first briefly review the literature on graph kernels and then introduce three new kernels (Tanimoto, MinMax, Hybrid) based on the idea of molecular fingerprints and counting labeled paths of depth up to d using depthfirst search from each possible vertex. The kernels are applied to three classification problems to predict mutagenicity, toxicity, and anti-cancer activity on three publicly available data sets. The kernels achieve performances at least comparable, and most often superior, to those previously reported in the literature reaching accuracies of 91.5% on the Mutag dataset, 65-67% on the PTC (Predictive Toxicology Challenge) dataset, and 72% on the NCI (National Cancer Institute) dataset. Properties and tradeoffs of these kernels, as well as other proposed kernels that leverage 1D or 3D representations of molecules, are briefly discussed.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Extended Gaussianization Method for Blind Separation of Post-Nonlinear Mixtures

Zhang, K., Chan, L.

Neural Computation, 17(2):425-452, 2005 (article)

Abstract
The linear mixture model has been investigated in most articles tackling the problem of blind source separation. Recently, several articles have addressed a more complex model: blind source separation (BSS) of post-nonlinear (PNL) mixtures. These mixtures are assumed to be generated by applying an unknown invertible nonlinear distortion to linear instantaneous mixtures of some independent sources. The gaussianization technique for BSS of PNL mixtures emerged based on the assumption that the distribution of the linear mixture of independent sources is gaussian. In this letter, we review the gaussianization method and then extend it to apply to PNL mixture in which the linear mixture is close to gaussian. Our proposed method approximates the linear mixture using the Cornish-Fisher expansion. We choose the mutual information as the independence measurement to develop a learning algorithm to separate PNL mixtures. This method provides better applicability and accuracy. We then discuss the sufficient condition for the method to be valid. The characteristics of the nonlinearity do not affect the performance of this method. With only a few parameters to tune, our algorithm has a comparatively low computation. Finally, we present experiments to illustrate the efficiency of our method.

Web DOI [BibTex]


no image
Theory of Classification: A Survey of Some Recent Advances

Boucheron, S., Bousquet, O., Lugosi, G.

ESAIM: Probability and Statistics, 9, pages: 323 , 2005 (article)

Abstract
The last few years have witnessed important new developments in the theory and practice of pattern classification. We intend to survey some of the main new ideas that have lead to these important recent developments.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Moment Inequalities for Functions of Independent Random Variables

Boucheron, S., Bousquet, O., Lugosi, G., Massart, P.

To appear in Annals of Probability, 33, pages: 514-560, 2005 (article)

Abstract
A general method for obtaining moment inequalities for functions of independent random variables is presented. It is a generalization of the entropy method which has been used to derive concentration inequalities for such functions cite{BoLuMa01}, and is based on a generalized tensorization inequality due to Lata{l}a and Oleszkiewicz cite{LaOl00}. The new inequalities prove to be a versatile tool in a wide range of applications. We illustrate the power of the method by showing how it can be used to effortlessly re-derive classical inequalities including Rosenthal and Kahane-Khinchine-type inequalities for sums of independent random variables, moment inequalities for suprema of empirical processes, and moment inequalities for Rademacher chaos and $U$-statistics. Some of these corollaries are apparently new. In particular, we generalize Talagrands exponential inequality for Rademacher chaos of order two to any order. We also discuss applications for other complex functions of independent random variables, such as suprema of boolean polynomials which include, as special cases, subgraph counting problems in random graphs.

PDF [BibTex]

PDF [BibTex]


no image
A novel representation of protein sequences for prediction of subcellular location using support vector machines

Matsuda, S., Vert, J., Saigo, H., Ueda, N., Toh, H., Akutsu, T.

Protein Science, 14, pages: 2804-2813, 2005 (article)

Abstract
As the number of complete genomes rapidly increases, accurate methods to automatically predict the subcellular location of proteins are increasingly useful to help their functional annotation. In order to improve the predictive accuracy of the many prediction methods developed to date, a novel representation of protein sequences is proposed. This representation involves local compositions of amino acids and twin amino acids, and local frequencies of distance between successive (basic, hydrophobic, and other) amino acids. For calculating the local features, each sequence is split into three parts: N-terminal, middle, and C-terminal. The N-terminal part is further divided into four regions to consider ambiguity in the length and position of signal sequences. We tested this representation with support vector machines on two data sets extracted from the SWISS-PROT database. Through fivefold cross-validation tests, overall accuracies of more than 87% and 91% were obtained for eukaryotic and prokaryotic proteins, respectively. It is concluded that considering the respective features in the N-terminal, middle, and C-terminal parts is helpful to predict the subcellular location. Keywords: subcellular location; signal sequence; amino acid composition; distance frequency; support vector machine; predictive accuracy

Web DOI [BibTex]

Web DOI [BibTex]


no image
A tutorial on v-support vector machines

Chen, P., Lin, C., Schölkopf, B.

Applied Stochastic Models in Business and Industry, 21(2):111-136, 2005 (article)

Abstract
We briefly describe the main ideas of statistical learning theory, support vector machines (SVMs), and kernel feature spaces. We place particular emphasis on a description of the so-called -SVM, including details of the algorithm and its implementation, theoretical results, and practical applications. Copyright © 2005 John Wiley & Sons, Ltd.

PDF [BibTex]

PDF [BibTex]


no image
Robust EEG Channel Selection Across Subjects for Brain Computer Interfaces

Schröder, M., Lal, T., Hinterberger, T., Bogdan, M., Hill, J., Birbaumer, N., Rosenstiel, W., Schölkopf, B.

EURASIP Journal on Applied Signal Processing, 2005(19, Special Issue: Trends in Brain Computer Interfaces):3103-3112, (Editors: Vesin, J. M., T. Ebrahimi), 2005 (article)

Abstract
Most EEG-based Brain Computer Interface (BCI) paradigms come along with specific electrode positions, e.g.~for a visual based BCI electrode positions close to the primary visual cortex are used. For new BCI paradigms it is usually not known where task relevant activity can be measured from the scalp. For individual subjects Lal et.~al showed that recording positions can be found without the use of prior knowledge about the paradigm used. However it remains unclear to what extend their method of Recursive Channel Elimination (RCE) can be generalized across subjects. In this paper we transfer channel rankings from a group of subjects to a new subject. For motor imagery tasks the results are promising, although cross-subject channel selection does not quite achieve the performance of channel selection on data of single subjects. Although the RCE method was not provided with prior knowledge about the mental task, channels that are well known to be important (from a physiological point of view) were consistently selected whereas task-irrelevant channels were reliably disregarded.

Web DOI [BibTex]

Web DOI [BibTex]

2002


no image
Optimized Support Vector Machines for Nonstationary Signal Classification

Davy, M., Gretton, A., Doucet, A., Rayner, P.

IEEE Signal Processing Letters, 9(12):442-445, December 2002 (article)

Abstract
This letter describes an efficient method to perform nonstationary signal classification. A support vector machine (SVM) algorithm is introduced and its parameters optimised in a principled way. Simulations demonstrate that our low complexity method outperforms state-of-the-art nonstationary signal classification techniques.

PostScript Web DOI [BibTex]

2002

PostScript Web DOI [BibTex]


no image
A New Discriminative Kernel from Probabilistic Models

Tsuda, K., Kawanabe, M., Rätsch, G., Sonnenburg, S., Müller, K.

Neural Computation, 14(10):2397-2414, October 2002 (article)

PDF [BibTex]

PDF [BibTex]


no image
Functional Genomics of Osteoarthritis

Aigner, T., Bartnik, E., Zien, A., Zimmer, R.

Pharmacogenomics, 3(5):635-650, September 2002 (article)

Web [BibTex]

Web [BibTex]


no image
Constructing Boosting algorithms from SVMs: an application to one-class classification.

Rätsch, G., Mika, S., Schölkopf, B., Müller, K.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(9):1184-1199, September 2002 (article)

Abstract
We show via an equivalence of mathematical programs that a support vector (SV) algorithm can be translated into an equivalent boosting-like algorithm and vice versa. We exemplify this translation procedure for a new algorithm—one-class leveraging—starting from the one-class support vector machine (1-SVM). This is a first step toward unsupervised learning in a boosting framework. Building on so-called barrier methods known from the theory of constrained optimization, it returns a function, written as a convex combination of base hypotheses, that characterizes whether a given test point is likely to have been generated from the distribution underlying the training data. Simulations on one-class classification problems demonstrate the usefulness of our approach.

DOI [BibTex]

DOI [BibTex]


no image
Co-Clustering of Biological Networks and Gene Expression Data

Hanisch, D., Zien, A., Zimmer, R., Lengauer, T.

Bioinformatics, (Suppl 1):145S-154S, 18, July 2002 (article)

Abstract
Motivation: Large scale gene expression data are often analysed by clustering genes based on gene expression data alone, though a priori knowledge in the form of biological networks is available. The use of this additional information promises to improve exploratory analysis considerably. Results: We propose constructing a distance function which combines information from expression data and biological networks. Based on this function, we compute a joint clustering of genes and vertices of the network. This general approach is elaborated for metabolic networks. We define a graph distance function on such networks and combine it with a correlation-based distance function for gene expression measurements. A hierarchical clustering and an associated statistical measure is computed to arrive at a reasonable number of clusters. Our method is validated using expression data of the yeast diauxic shift. The resulting clusters are easily interpretable in terms of the biochemical network and the gene expression data and suggest that our method is able to automatically identify processes that are relevant under the measured conditions.

Web [BibTex]

Web [BibTex]


no image
Confidence measures for protein fold recognition

Sommer, I., Zien, A., von Ohsen, N., Zimmer, R., Lengauer, T.

Bioinformatics, 18(6):802-812, June 2002 (article)

[BibTex]

[BibTex]


no image
The contributions of color to recognition memory for natural scenes

Wichmann, F., Sharpe, L., Gegenfurtner, K.

Journal of Experimental Psychology: Learning, Memory and Cognition, 28(3):509-520, May 2002 (article)

Abstract
The authors used a recognition memory paradigm to assess the influence of color information on visual memory for images of natural scenes. Subjects performed 5-10% better for colored than for black-and-white images independent of exposure duration. Experiment 2 indicated little influence of contrast once the images were suprathreshold, and Experiment 3 revealed that performance worsened when images were presented in color and tested in black and white, or vice versa, leading to the conclusion that the surface property color is part of the memory representation. Experiments 4 and 5 exclude the possibility that the superior recognition memory for colored images results solely from attentional factors or saliency. Finally, the recognition memory advantage disappears for falsely colored images of natural scenes: The improvement in recognition memory depends on the color congruence of presented images with learned knowledge about the color gamut found within natural scenes. The results can be accounted for within a multiple memory systems framework.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Training invariant support vector machines

DeCoste, D., Schölkopf, B.

Machine Learning, 46(1-3):161-190, January 2002 (article)

Abstract
Practical experience has shown that in order to obtain the best possible performance, prior knowledge about invariances of a classification problem at hand ought to be incorporated into the training procedure. We describe and review all known methods for doing so in support vector machines, provide experimental results, and discuss their respective merits. One of the significant new results reported in this work is our recent achievement of the lowest reported test error on the well-known MNIST digit recognition benchmark task, with SVM training times that are also significantly faster than previous SVM methods.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Model Selection for Small Sample Regression

Chapelle, O., Vapnik, V., Bengio, Y.

Machine Learning, 48(1-3):9-23, 2002 (article)

Abstract
Model selection is an important ingredient of many machine learning algorithms, in particular when the sample size in small, in order to strike the right trade-off between overfitting and underfitting. Previous classical results for linear regression are based on an asymptotic analysis. We present a new penalization method for performing model selection for regression that is appropriate even for small samples. Our penalization is based on an accurate estimator of the ratio of the expected training error and the expected generalization error, in terms of the expected eigenvalues of the input covariance matrix.

PostScript [BibTex]

PostScript [BibTex]


no image
Contrast discrimination with sinusoidal gratings of different spatial frequency

Bird, C., Henning, G., Wichmann, F.

Journal of the Optical Society of America A, 19(7), pages: 1267-1273, 2002 (article)

Abstract
The detectability of contrast increments was measured as a function of the contrast of a masking or “pedestal” grating at a number of different spatial frequencies ranging from 2 to 16 cycles per degree of visual angle. The pedestal grating always had the same orientation, spatial frequency and phase as the signal. The shape of the contrast increment threshold versus pedestal contrast (TvC) functions depend of the performance level used to define the “threshold,” but when both axes are normalized by the contrast corresponding to 75% correct detection at each frequency, the (TvC) functions at a given performance level are identical. Confidence intervals on the slope of the rising part of the TvC functions are so wide that it is not possible with our data to reject Weber’s Law.

PDF [BibTex]

PDF [BibTex]


no image
A Bennett Concentration Inequality and Its Application to Suprema of Empirical Processes

Bousquet, O.

C. R. Acad. Sci. Paris, Ser. I, 334, pages: 495-500, 2002 (article)

Abstract
We introduce new concentration inequalities for functions on product spaces. They allow to obtain a Bennett type deviation bound for suprema of empirical processes indexed by upper bounded functions. The result is an improvement on Rio's version \cite{Rio01b} of Talagrand's inequality \cite{Talagrand96} for equidistributed variables.

PDF PostScript [BibTex]


no image
Numerical evolution of axisymmetric, isolated systems in general relativity

Frauendiener, J., Hein, M.

Physical Review D, 66, pages: 124004-124004, 2002 (article)

Abstract
We describe in this article a new code for evolving axisymmetric isolated systems in general relativity. Such systems are described by asymptotically flat space-times, which have the property that they admit a conformal extension. We are working directly in the extended conformal manifold and solve numerically Friedrich's conformal field equations, which state that Einstein's equations hold in the physical space-time. Because of the compactness of the conformal space-time the entire space-time can be calculated on a finite numerical grid. We describe in detail the numerical scheme, especially the treatment of the axisymmetry and the boundary.

GZIP [BibTex]

GZIP [BibTex]


no image
Marginalized kernels for biological sequences

Tsuda, K., Kin, T., Asai, K.

Bioinformatics, 18(Suppl 1):268-275, 2002 (article)

PDF [BibTex]

PDF [BibTex]


no image
Stability and Generalization

Bousquet, O., Elisseeff, A.

Journal of Machine Learning Research, 2, pages: 499-526, 2002 (article)

Abstract
We define notions of stability for learning algorithms and show how to use these notions to derive generalization error bounds based on the empirical error and the leave-one-out error. The methods we use can be applied in the regression framework as well as in the classification one when the classifier is obtained by thresholding a real-valued function. We study the stability properties of large classes of learning algorithms such as regularization based algorithms. In particular we focus on Hilbert space regularization and Kullback-Leibler regularization. We demonstrate how to apply the results to SVM for regression and classification.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Subspace information criterion for non-quadratic regularizers – model selection for sparse regressors

Tsuda, K., Sugiyama, M., Müller, K.

IEEE Trans Neural Networks, 13(1):70-80, 2002 (article)

PDF [BibTex]

PDF [BibTex]


no image
Modeling splicing sites with pairwise correlations

Arita, M., Tsuda, K., Asai, K.

Bioinformatics, 18(Suppl 2):27-34, 2002 (article)

PDF [BibTex]

PDF [BibTex]


no image
Perfusion Quantification using Gaussian Process Deconvolution

Andersen, IK., Szymkowiak, A., Rasmussen, CE., Hanson, LG., Marstrand, JR., Larsson, HBW., Hansen, LK.

Magnetic Resonance in Medicine, (48):351-361, 2002 (article)

Abstract
The quantification of perfusion using dynamic susceptibility contrast MR imaging requires deconvolution to obtain the residual impulse-response function (IRF). Here, a method using a Gaussian process for deconvolution, GPD, is proposed. The fact that the IRF is smooth is incorporated as a constraint in the method. The GPD method, which automatically estimates the noise level in each voxel, has the advantage that model parameters are optimized automatically. The GPD is compared to singular value decomposition (SVD) using a common threshold for the singular values and to SVD using a threshold optimized according to the noise level in each voxel. The comparison is carried out using artificial data as well as using data from healthy volunteers. It is shown that GPD is comparable to SVD variable optimized threshold when determining the maximum of the IRF, which is directly related to the perfusion. GPD provides a better estimate of the entire IRF. As the signal to noise ratio increases or the time resolution of the measurements increases, GPD is shown to be superior to SVD. This is also found for large distribution volumes.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Tracking a Small Set of Experts by Mixing Past Posteriors

Bousquet, O., Warmuth, M.

Journal of Machine Learning Research, 3, pages: 363-396, (Editors: Long, P.), 2002 (article)

Abstract
In this paper, we examine on-line learning problems in which the target concept is allowed to change over time. In each trial a master algorithm receives predictions from a large set of n experts. Its goal is to predict almost as well as the best sequence of such experts chosen off-line by partitioning the training sequence into k+1 sections and then choosing the best expert for each section. We build on methods developed by Herbster and Warmuth and consider an open problem posed by Freund where the experts in the best partition are from a small pool of size m. Since k >> m, the best expert shifts back and forth between the experts of the small pool. We propose algorithms that solve this open problem by mixing the past posteriors maintained by the master algorithm. We relate the number of bits needed for encoding the best partition to the loss bounds of the algorithms. Instead of paying log n for choosing the best expert in each section we first pay log (n choose m) bits in the bounds for identifying the pool of m experts and then log m bits per new section. In the bounds we also pay twice for encoding the boundaries of the sections.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
A femoral arteriovenous shunt facilitates arterial whole blood sampling in animals

Weber, B., Burger, C., Biro, P., Buck, A.

Eur J Nucl Med Mol Imaging, 29, pages: 319-323, 2002 (article)

[BibTex]

[BibTex]


no image
Contrast discrimination with pulse-trains in pink noise

Henning, G., Bird, C., Wichmann, F.

Journal of the Optical Society of America A, 19(7), pages: 1259-1266, 2002 (article)

Abstract
Detection performance was measured with sinusoidal and pulse-train gratings. Although the 2.09-c/deg pulse-train, or line gratings, contained at least 8 harmonics all at equal contrast, they were no more detectable than their most detectable component. The addition of broadband pink noise designed to equalize the detectability of the components of the pulse train made the pulse train about a factor of four more detectable than any of its components. However, in contrast-discrimination experiments, with a pedestal or masking grating of the same form and phase as the signal and 15% contrast, the noise did not affect the discrimination performance of the pulse train relative to that obtained with its sinusoidal components. We discuss the implications of these observations for models of early vision in particular the implications for possible sources of internal noise.

PDF [BibTex]

PDF [BibTex]


no image
Choosing Multiple Parameters for Support Vector Machines

Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.

Machine Learning, 46(1):131-159, 2002 (article)

Abstract
The problem of automatically tuning multiple parameters for pattern recognition Support Vector Machines (SVM) is considered. This is done by minimizing some estimates of the generalization error of SVMs using a gradient descent algorithm over the set of parameters. Usual methods for choosing parameters, based on exhaustive search become intractable as soon as the number of parameters exceeds two. Some experimental results assess the feasibility of our approach for a large number of parameters (more than 100) and demonstrate an improvement of generalization performance.

PDF PostScript [BibTex]

PDF PostScript [BibTex]

2001


no image
Anabolic and Catabolic Gene Expression Pattern Analysis in Normal Versus Osteoarthritic Cartilage Using Complementary DNA-Array Technology

Aigner, T., Zien, A., Gehrsitz, A., Gebhard, P., McKenna, L.

Arthritis and Rheumatism, 44(12):2777-2789, December 2001 (article)

Web [BibTex]

2001

Web [BibTex]


no image
Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators

Williamson, R., Smola, A., Schölkopf, B.

IEEE Transactions on Information Theory, 47(6):2516-2532, September 2001 (article)

Abstract
We derive new bounds for the generalization error of kernel machines, such as support vector machines and related regularization networks by obtaining new bounds on their covering numbers. The proofs make use of a viewpoint that is apparently novel in the field of statistical learning theory. The hypothesis class is described in terms of a linear operator mapping from a possibly infinite-dimensional unit ball in feature space into a finite-dimensional space. The covering numbers of the class are then determined via the entropy numbers of the operator. These numbers, which characterize the degree of compactness of the operator can be bounded in terms of the eigenvalues of an integral operator induced by the kernel function used by the machine. As a consequence, we are able to theoretically explain the effect of the choice of kernel function on the generalization performance of support vector machines.

DOI [BibTex]

DOI [BibTex]


no image
Centralization: A new method for the normalization of gene expression data

Zien, A., Aigner, T., Zimmer, R., Lengauer, T.

Bioinformatics, 17, pages: S323-S331, June 2001, Mathematical supplement available at http://citeseer.ist.psu.edu/574280.html (article)

Abstract
Microarrays measure values that are approximately proportional to the numbers of copies of different mRNA molecules in samples. Due to technical difficulties, the constant of proportionality between the measured intensities and the numbers of mRNA copies per cell is unknown and may vary for different arrays. Usually, the data are normalized (i.e., array-wise multiplied by appropriate factors) in order to compensate for this effect and to enable informative comparisons between different experiments. Centralization is a new two-step method for the computation of such normalization factors that is both biologically better motivated and more robust than standard approaches. First, for each pair of arrays the quotient of the constants of proportionality is estimated. Second, from the resulting matrix of pairwise quotients an optimally consistent scaling of the samples is computed.

PDF PostScript Web [BibTex]

PDF PostScript Web [BibTex]


no image
Regularized principal manifolds

Smola, A., Mika, S., Schölkopf, B., Williamson, R.

Journal of Machine Learning Research, 1, pages: 179-209, June 2001 (article)

Abstract
Many settings of unsupervised learning can be viewed as quantization problems - the minimization of the expected quantization error subject to some restrictions. This allows the use of tools such as regularization from the theory of (supervised) risk minimization for unsupervised learning. This setting turns out to be closely related to principal curves, the generative topographic map, and robust coding. We explore this connection in two ways: (1) we propose an algorithm for finding principal manifolds that can be regularized in a variety of ways; and (2) we derive uniform convergence bounds and hence bounds on the learning rates of the algorithm. In particular, we give bounds on the covering numbers which allows us to obtain nearly optimal learning rates for certain types of regularization operators. Experimental results demonstrate the feasibility of the approach.

PDF [BibTex]

PDF [BibTex]


no image
Failure Diagnosis of Discrete Event Systems

Son, HI., Kim, KW., Lee, S.

Journal of Control, Automation and Systems Engineering, 7(5):375-383, May 2001, In Korean (article)

[BibTex]

[BibTex]


no image
Pattern Selection Using the Bias and Variance of Ensemble

Shin, H., Cho, S.

Journal of the Korean Institute of Industrial Engineers, 28(1):112-127, March 2001 (article)

Abstract
[Abstract]: A useful pattern is a pattern that contributes much to learning. For a classification problem those patterns near the class boundary surfaces carry more information to the classifier. For a regression problem the ones near the estimated surface carry more information. In both cases, the usefulness is defined only for those patterns either without error or with negligible error. Using only the useful patterns gives several benefits. First, computational complexity in memory and time for learning is decreased. Second, overfitting is avoided even when the learner is over-sized. Third, learning results in more stable learners. In this paper, we propose a pattern “utility index” that measures the utility of an individual pattern. The utility index is based on the bias and variance of a pattern trained by a network ensemble. In classification, the pattern with a low bias and a high variance gets a high score. In regression, on the other hand, the one with a low bias and a low variance gets a high score. Based on the distribution of the utility index, the original training set is divided into a high-score group and a low-score group. Only the high-score group is then used for training. The proposed method is tested on synthetic and real-world benchmark datasets. The proposed approach gives a better or at least similar performance.

[BibTex]

[BibTex]


no image
Structure and Functionality of a Designed p53 Dimer.

Davison, TS., Nie, X., Ma, W., Lin, Y., Kay, C., Benchimol, S., Arrowsmith, C.

Journal of Molecular Biology, 307(2):605-617, March 2001 (article)

Abstract
P53 is a homotetrameric tumor suppressor protein involved in transcriptional control of genes that regulate cell proliferation and death. In order to probe the role that oligomerization plays in this capacity, we have previously designed and characterized a series of p53 proteins with altered oligomeric states through hydrophilc substitution of residues Met340 or Leu344 in the normally tetrameric oligomerization domain. Although such mutations have little effect on the overall secondary structural content of the oligomerization domain, both solubility and the resistance to thermal denaturation are substantially reduced relative to that of the wild-type domain. Here, we report the design and characterization of a double-mutant p53 with alterations of residues at positions Met340 and Leu344. The double-mutations Met340Glu/Leu344Lys and Met340Gln/Leu344Arg resulted in distinct dimeric forms of the protein. Furthermore, we have verified by NMR structure determination that the double-mutant Met340Gln/Leu344Arg is essentially a "half-tetramer". Analysis of the in vivo activities of full-length p53 oligomeric mutants reveals that while cell-cycle arrest requires tetrameric p53, transcriptional transactivation activity of monomers and dimers retain roughly background and half of the wild-type activity, respectively.

Web [BibTex]

Web [BibTex]


no image
An Introduction to Kernel-Based Learning Algorithms

Müller, K., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.

IEEE Transactions on Neural Networks, 12(2):181-201, March 2001 (article)

Abstract
This paper provides an introduction to support vector machines, kernel Fisher discriminant analysis, and kernel principal component analysis, as examples for successful kernel-based learning methods. We first give a short background about Vapnik-Chervonenkis theory and kernel feature spaces and then proceed to kernel based learning in supervised and unsupervised scenarios including practical and algorithmic considerations. We illustrate the usefulness of kernel algorithms by discussing applications such as optical character recognition and DNA analysis

DOI [BibTex]

DOI [BibTex]


no image
Estimating the support of a high-dimensional distribution.

Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.

Neural Computation, 13(7):1443-1471, March 2001 (article)

Abstract
Suppose you are given some data set drawn from an underlying probability distribution P and you want to estimate a “simple” subset S of input space such that the probability that a test point drawn from P lies outside of S equals some a priori specified value between 0 and 1. We propose a method to approach this problem by trying to estimate a function f that is positive on S and negative on the complement. The functional form of f is given by a kernel expansion in terms of a potentially small subset of the training data; it is regularized by controlling the length of the weight vector in an associated feature space. The expansion coefficients are found by solving a quadratic programming problem, which we do by carrying out sequential optimization over pairs of input patterns. We also provide a theoretical analysis of the statistical performance of our algorithm. The algorithm is a natural extension of the support vector algorithm to the case of unlabeled data.

Web DOI [BibTex]

Web DOI [BibTex]


no image
The psychometric function: II. Bootstrap-based confidence intervals and sampling

Wichmann, F., Hill, N.

Perception and Psychophysics, 63 (8), pages: 1314-1329, 2001 (article)

PDF [BibTex]

PDF [BibTex]


no image
The psychometric function: I. Fitting, sampling and goodness-of-fit

Wichmann, F., Hill, N.

Perception and Psychophysics, 63 (8), pages: 1293-1313, 2001 (article)

Abstract
The psychometric function relates an observer'sperformance to an independent variable, usually some physical quantity of a stimulus in a psychophysical task. This paper, together with its companion paper (Wichmann & Hill, 2001), describes an integrated approach to (1) fitting psychometric functions, (2) assessing the goodness of fit, and (3) providing confidence intervals for the function'sparameters and other estimates derived from them, for the purposes of hypothesis testing. The present paper deals with the first two topics, describing a constrained maximum-likelihood method of parameter estimation and developing several goodness-of-fit tests. Using Monte Carlo simulations, we deal with two specific difficulties that arise when fitting functions to psychophysical data. First, we note that human observers are prone to stimulus-independent errors (or lapses ). We show that failure to account for this can lead to serious biases in estimates of the psychometric function'sparameters and illustrate how the problem may be overcome. Second, we note that psychophysical data sets are usually rather small by the standards required by most of the commonly applied statistical tests. We demonstrate the potential errors of applying traditional X^2 methods to psychophysical data and advocate use of Monte Carlo resampling techniques that do not rely on asymptotic theory. We have made available the software to implement our methods

PDF [BibTex]

PDF [BibTex]


no image
The control structure of artificial creatures

Zhou, D., Dai, R.

Artificial Life and Robotics, 5(3), 2001, invited article (article)

Web [BibTex]

Web [BibTex]


no image
Markovian domain fingerprinting: statistical segmentation of protein sequences

Bejerano, G., Seldin, Y., Margalit, H., Tishby, N.

Bioinformatics, 17(10):927-934, 2001 (article)

PDF Web [BibTex]

PDF Web [BibTex]