Header logo is ei



no image
Incremental Local Gaussian Regression

Meier, F., Hennig, P., Schaal, S.

In Advances in Neural Information Processing Systems 27, pages: 972-980, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014, clmc (inproceedings)

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Domain adaptation-can quantity compensate for quality?

Ben-David, S., Urner, R.

Annals of Mathematics and Artificial Intelligence, 70(3):185-202, 2014 (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
oxel level [18]F-FDG PET/MRI unsupervised segmentation of the tumor microenvironment

Katiyar, P., Divine, M. R., Pichler, B. J., Disselhorst, J. A.

World Molecular Imaging Conference, 2014 (poster)

[BibTex]

[BibTex]


no image
Sérsic galaxy models in weak lensing shape measurement: model bias, noise bias and their interaction

Kacprzak, T., Bridle, S., Rowe, B., Voigt, L., Zuntz, J., Hirsch, M., MacCrann, N.

Monthly Notices of the Royal Astronomical Society, 441(3):2528-2538, Oxford University Press, 2014 (article)

DOI [BibTex]

DOI [BibTex]


no image
Learning to Deblur

Schuler, C. J., Hirsch, M., Harmeling, S., Schölkopf, B.

In NIPS 2014 Deep Learning and Representation Learning Workshop, 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Analysis of Distance Functions in Graphs

Alamgir, M.

University of Hamburg, Germany, University of Hamburg, Germany, 2014 (phdthesis)

[BibTex]

[BibTex]


no image
Efficient Bayesian Local Model Learning for Control

Meier, F., Hennig, P., Schaal, S.

In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, pages: 2244 - 2249, IROS, 2014, clmc (inproceedings)

Abstract
Model-based control is essential for compliant controland force control in many modern complex robots, like humanoidor disaster robots. Due to many unknown and hard tomodel nonlinearities, analytical models of such robots are oftenonly very rough approximations. However, modern optimizationcontrollers frequently depend on reasonably accurate models,and degrade greatly in robustness and performance if modelerrors are too large. For a long time, machine learning hasbeen expected to provide automatic empirical model synthesis,yet so far, research has only generated feasibility studies butno learning algorithms that run reliably on complex robots.In this paper, we combine two promising worlds of regressiontechniques to generate a more powerful regression learningsystem. On the one hand, locally weighted regression techniquesare computationally efficient, but hard to tune due to avariety of data dependent meta-parameters. On the other hand,Bayesian regression has rather automatic and robust methods toset learning parameters, but becomes quickly computationallyinfeasible for big and high-dimensional data sets. By reducingthe complexity of Bayesian regression in the spirit of local modellearning through variational approximations, we arrive at anovel algorithm that is computationally efficient and easy toinitialize for robust learning. Evaluations on several datasetsdemonstrate very good learning performance and the potentialfor a general regression learning tool for robotics.

PDF link (url) DOI [BibTex]

PDF link (url) DOI [BibTex]


no image
The sample complexity of agnostic learning under deterministic labels

Ben-David, S., Urner, R.

In Proceedings of the 27th Conference on Learning Theory, 35, pages: 527-542, (Editors: Balcan, M.-F. and Feldman, V. and Szepesvári, C.), JMLR, COLT, 2014 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Towards an optimal stochastic alternating direction method of multipliers

Azadi, S., Sra, S.

Proceedings of the 31st International Conference on Machine Learning, 32, pages: 620-628, (Editors: Xing, E. P. and Jebara, T.), JMLR, ICML, 2014 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Diminished White Matter Integrity in Patients with Systemic Lupus Erythematosus

Schmidt-Wilcke, T., Cagnoli, P., Wang, P., Schultz, T., Lotz, A., Mccune, W. J., Sundgren, P. C.

NeuroImage: Clinical, 5, pages: 291-297, 2014 (article)

DOI [BibTex]

DOI [BibTex]


no image
Open Problem: Finding Good Cascade Sampling Processes for the Network Inference Problem

Gomez Rodriguez, M., Song, L., Schölkopf, B.

Proceedings of the 27th Conference on Learning Theory, 35, pages: 1276-1279, (Editors: Balcan, M.-F. and Szepesvári, C.), JMLR.org, COLT, 2014 (conference)

PDF [BibTex]

PDF [BibTex]


no image
Information-Theoretic Bounded Rationality and ϵ-Optimality

Braun, DA, Ortega, PA

Entropy, 16(8):4662-4676, August 2014 (article)

Abstract
Bounded rationality concerns the study of decision makers with limited information processing resources. Previously, the free energy difference functional has been suggested to model bounded rational decision making, as it provides a natural trade-off between an energy or utility function that is to be optimized and information processing costs that are measured by entropic search costs. The main question of this article is how the information-theoretic free energy model relates to simple \(\epsilon\)-optimality models of bounded rational decision making, where the decision maker is satisfied with any action in an \(\epsilon\)-neighborhood of the optimal utility. We find that the stochastic policies that optimize the free energy trade-off comply with the notion of \(\epsilon\)-optimality. Moreover, this optimality criterion even holds when the environment is adversarial. We conclude that the study of bounded rationality based on \(\epsilon\)-optimality criteria that abstract away from the particulars of the information processing constraints is compatible with the information-theoretic free energy model of bounded rationality.

DOI [BibTex]

DOI [BibTex]


no image
Occam’s Razor in sensorimotor learning

Genewein, T, Braun, D

Proceedings of the Royal Society of London B, 281(1783):1-7, May 2014 (article)

Abstract
A large number of recent studies suggest that the sensorimotor system uses probabilistic models to predict its environment and makes inferences about unobserved variables in line with Bayesian statistics. One of the important features of Bayesian statistics is Occam's Razor—an inbuilt preference for simpler models when comparing competing models that explain some observed data equally well. Here, we test directly for Occam's Razor in sensorimotor control. We designed a sensorimotor task in which participants had to draw lines through clouds of noisy samples of an unobserved curve generated by one of two possible probabilistic models—a simple model with a large length scale, leading to smooth curves, and a complex model with a short length scale, leading to more wiggly curves. In training trials, participants were informed about the model that generated the stimulus so that they could learn the statistics of each model. In probe trials, participants were then exposed to ambiguous stimuli. In probe trials where the ambiguous stimulus could be fitted equally well by both models, we found that participants showed a clear preference for the simpler model. Moreover, we found that participants’ choice behaviour was quantitatively consistent with Bayesian Occam's Razor. We also show that participants’ drawn trajectories were similar to samples from the Bayesian predictive distribution over trajectories and significantly different from two non-probabilistic heuristics. In two control experiments, we show that the preference of the simpler model cannot be simply explained by a difference in physical effort or by a preference for curve smoothness. Our results suggest that Occam's Razor is a general behavioural principle already present during sensorimotor processing.

DOI [BibTex]

DOI [BibTex]


no image
Generalized Thompson sampling for sequential decision-making and causal inference

Ortega, PA, Braun, DA

Complex Adaptive Systems Modeling, 2(2):1-23, March 2014 (article)

Abstract
Purpose Sampling an action according to the probability that the action is believed to be the optimal one is sometimes called Thompson sampling. Methods Although mostly applied to bandit problems, Thompson sampling can also be used to solve sequential adaptive control problems, when the optimal policy is known for each possible environment. The predictive distribution over actions can then be constructed by a Bayesian superposition of the policies weighted by their posterior probability of being optimal. Results Here we discuss two important features of this approach. First, we show in how far such generalized Thompson sampling can be regarded as an optimal strategy under limited information processing capabilities that constrain the sampling complexity of the decision-making process. Second, we show how such Thompson sampling can be extended to solve causal inference problems when interacting with an environment in a sequential fashion. Conclusion In summary, our results suggest that Thompson sampling might not merely be a useful heuristic, but a principled method to address problems of adaptive sequential decision-making and causal inference.

DOI [BibTex]

DOI [BibTex]


no image
Assessing randomness and complexity in human motion trajectories through analysis of symbolic sequences

Peng, Z, Genewein, T, Braun, DA

Frontiers in Human Neuroscience, 8(168):1-13, March 2014 (article)

Abstract
Complexity is a hallmark of intelligent behavior consisting both of regular patterns and random variation. To quantitatively assess the complexity and randomness of human motion, we designed a motor task in which we translated subjects' motion trajectories into strings of symbol sequences. In the first part of the experiment participants were asked to perform self-paced movements to create repetitive patterns, copy pre-specified letter sequences, and generate random movements. To investigate whether the degree of randomness can be manipulated, in the second part of the experiment participants were asked to perform unpredictable movements in the context of a pursuit game, where they received feedback from an online Bayesian predictor guessing their next move. We analyzed symbol sequences representing subjects' motion trajectories with five common complexity measures: predictability, compressibility, approximate entropy, Lempel-Ziv complexity, as well as effective measure complexity. We found that subjects’ self-created patterns were the most complex, followed by drawing movements of letters and self-paced random motion. We also found that participants could change the randomness of their behavior depending on context and feedback. Our results suggest that humans can adjust both complexity and regularity in different movement types and contexts and that this can be assessed with information-theoretic measures of the symbolic sequences generated from movement trajectories.

DOI [BibTex]

DOI [BibTex]


no image
Curiosity-driven learning with Context Tree Weighting

Peng, Z, Braun, DA

pages: 366-367, IEEE, Piscataway, NJ, USA, 4th Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics (IEEE ICDL-EPIROB), October 2014 (conference)

Abstract
In the first simulation, the intrinsic motivation of the agent was given by measuring learning progress through reduction in informational surprise (Figure 1 A-C). This way the agent should first learn the action that is easiest to learn (a1), and then switch to other actions that still allow for learning (a2) and ignore actions that cannot be learned at all (a3). This is exactly what we found in our simple environment. Compared to the original developmental learning algorithm based on learning progress proposed by Oudeyer [2], our Context Tree Weighting approach does not require local experts to do prediction, rather it learns the conditional probability distribution over observations given action in one structure. In the second simulation, the intrinsic motivation of the agent was given by measuring compression progress through improvement in compressibility (Figure 1 D-F). The agent behaves similarly: the agent first concentrates on the action with the most predictable consequence and then switches over to the regular action where the consequence is more difficult to predict, but still learnable. Unlike the previous simulation, random actions are also interesting to some extent because the compressed symbol strings use 8-bit representations, while only 2 bits are required for our observation space. Our preliminary results suggest that Context Tree Weighting might provide a useful representation to study problems of development.

DOI [BibTex]

DOI [BibTex]


no image
Monte Carlo methods for exact & efficient solution of the generalized optimality equations

Ortega, PA, Braun, DA, Tishby, N

pages: 4322-4327, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), June 2014 (conference)

Abstract
Previous work has shown that classical sequential decision making rules, including expectimax and minimax, are limit cases of a more general class of bounded rational planning problems that trade off the value and the complexity of the solution, as measured by its information divergence from a given reference. This allows modeling a range of novel planning problems having varying degrees of control due to resource constraints, risk-sensitivity, trust and model uncertainty. However, so far it has been unclear in what sense information constraints relate to the complexity of planning. In this paper, we introduce Monte Carlo methods to solve the generalized optimality equations in an efficient \& exact way when the inverse temperatures in a generalized decision tree are of the same sign. These methods highlight a fundamental relation between inverse temperatures and the number of Monte Carlo proposals. In particular, it is seen that the number of proposals is essentially independent of the size of the decision tree.

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2009


no image
Learning an Interactive Segmentation System

Nickisch, H., Kohli, P., Rother, C.

Max Planck Institute for Biological Cybernetics, December 2009 (techreport)

Abstract
Many successful applications of computer vision to image or video manipulation are interactive by nature. However, parameters of such systems are often trained neglecting the user. Traditionally, interactive systems have been treated in the same manner as their fully automatic counterparts. Their performance is evaluated by computing the accuracy of their solutions under some fixed set of user interactions. This paper proposes a new evaluation and learning method which brings the user in the loop. It is based on the use of an active robot user - a simulated model of a human user. We show how this approach can be used to evaluate and learn parameters of state-of-the-art interactive segmentation systems. We also show how simulated user models can be integrated into the popular max-margin method for parameter learning and propose an algorithm to solve the resulting optimisation problem.

Web [BibTex]

2009

Web [BibTex]


no image
Machine Learning for Brain-Computer Interfaces

Hill, NJ.

Mini-Symposia on Assistive Machine Learning for People with Disabilities at NIPS (AMD), December 2009 (talk)

Abstract
Brain-computer interfaces (BCI) aim to be the ultimate in assistive technology: decoding a user‘s intentions directly from brain signals without involving any muscles or peripheral nerves. Thus, some classes of BCI potentially offer hope for users with even the most extreme cases of paralysis, such as in late-stage Amyotrophic Lateral Sclerosis, where nothing else currently allows communication of any kind. Other lines in BCI research aim to restore lost motor function in as natural a way as possible, reconnecting and in some cases re-training motor-cortical areas to control prosthetic, or previously paretic, limbs. Research and development are progressing on both invasive and non-invasive fronts, although BCI has yet to make a breakthrough to widespread clinical application. The high-noise high-dimensional nature of brain-signals, particularly in non-invasive approaches and in patient populations, make robust decoding techniques a necessity. Generally, the approach has been to use relatively simple feature extraction techniques, such as template matching and band-power estimation, coupled to simple linear classifiers. This has led to a prevailing view among applied BCI researchers that (sophisticated) machine-learning is irrelevant since "it doesn‘t matter what classifier you use once you‘ve done your preprocessing right and extracted the right features." I shall show a few examples of how this runs counter to both the empirical reality and the spirit of what needs to be done to bring BCI into clinical application. Along the way I‘ll highlight some of the interesting problems that remain open for machine-learners.

PDF Web Web [BibTex]

PDF Web Web [BibTex]


no image
Learning Probabilistic Models via Bayesian Inverse Planning

Boularias, A., Chaib-Draa, B.

NIPS Workshop on Probabilistic Approaches for Robotics and Control, December 2009 (poster)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Efficient Subwindow Search: A Branch and Bound Framework for Object Localization

Lampert, C., Blaschko, M., Hofmann, T.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12):2129-2142, December 2009 (article)

Abstract
Most successful object recognition systems rely on binary classification, deciding only if an object is present or not, but not providing information on the actual object location. To estimate the object‘s location, one can take a sliding window approach, but this strongly increases the computational cost because the classifier or similarity function has to be evaluated over a large set of candidate subwindows. In this paper, we propose a simple yet powerful branch and bound scheme that allows efficient maximization of a large class of quality functions over all possible subimages. It converges to a globally optimal solution typically in linear or even sublinear time, in contrast to the quadratic scaling of exhaustive or sliding window search. We show how our method is applicable to different object detection and image retrieval scenarios. The achieved speedup allows the use of classifiers for localization that formerly were considered too slow for this task, such as SVMs with a spatial pyramid kernel or nearest-neighbor classifiers based on the chi^2 distance. We demonstrate state-of-the-art localization performance of the resulting systems on the UIUC Cars data set, the PASCAL VOC 2006 data set, and in the PASCAL VOC 2007 competition.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Bayesian Quadratic Reinforcement Learning

Hennig, P., Stern, D., Graepel, T.

NIPS Workshop on Probabilistic Approaches for Robotics and Control, December 2009 (poster)

PDF Web [BibTex]

PDF Web [BibTex]


no image
A computational model of human table tennis for robot application

Mülling, K., Peters, J.

In AMS 2009, pages: 57-64, (Editors: Dillmann, R. , J. Beyerer, C. Stiller, M. Zöllner, T. Gindele), Springer, Berlin, Germany, Autonome Mobile Systeme, December 2009 (inproceedings)

Abstract
Table tennis is a difficult motor skill which requires all basic components of a general motor skill learning system. In order to get a step closer to such a generic approach to the automatic acquisition and refinement of table tennis, we study table tennis from a human motor control point of view. We make use of the basic models of discrete human movement phases, virtual hitting points, and the operational timing hypothesis. Using these components, we create a computational model which is aimed at reproducing human-like behavior. We verify the functionality of this model in a physically realistic simulation of a BarrettWAM.

Web DOI [BibTex]

Web DOI [BibTex]


no image
PAC-Bayesian Approach to Formulation of Clustering Objectives

Seldin, Y.

NIPS Workshop on "Clustering: Science or Art? Towards Principled Approaches", December 2009 (talk)

Abstract
Clustering is a widely used tool for exploratory data analysis. However, the theoretical understanding of clustering is very limited. We still do not have a well-founded answer to the seemingly simple question of "how many clusters are present in the data?", and furthermore a formal comparison of clusterings based on different optimization objectives is far beyond our abilities. The lack of good theoretical support gives rise to multiple heuristics that confuse the practitioners and stall development of the field. We suggest that the ill-posed nature of clustering problems is caused by the fact that clustering is often taken out of its subsequent application context. We argue that one does not cluster the data just for the sake of clustering it, but rather to facilitate the solution of some higher level task. By evaluation of the clustering‘s contribution to the solution of the higher level task it is possible to compare different clusterings, even those obtained by different optimization objectives. In the preceding work it was shown that such an approach can be applied to evaluation and design of co-clustering solutions. Here we suggest that this approach can be extended to other settings, where clustering is applied.

PDF Web Web [BibTex]

PDF Web Web [BibTex]


no image
A second order sliding mode controller with polygonal constraints

Dinuzzo, F.

In pages: 6715-6719, IEEE, Piscataway, NJ, USA, 48th IEEE Conference on Decision and Control (CDC), December 2009 (inproceedings)

Abstract
It is presented a discontinuous controller that ensure uniform finite-time zero stabilization of the output for uncertain SISO systems of relative degree two, while keeping the auxiliary system state within a prescribed convex polygon. The proposed method extends applicability of second order sliding modes controllers to the case of uncertain dynamical systems with constraints.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Generation of three-dimensional random rotations in fitting and matching problems

Habeck, M.

Computational Statistics, 24(4):719-731, December 2009 (article)

Abstract
An algorithm is developed to generate random rotations in three-dimensional space that follow a probability distribution arising in fitting and matching problems. The rotation matrices are orthogonally transformed into an optimal basis and then parameterized using Euler angles. The conditional distributions of the three Euler angles have a very simple form: the two azimuthal angles can be decoupled by sampling their sum and difference from a von Mises distribution; the cosine of the polar angle is exponentially distributed and thus straighforward to generate. Simulation results are shown and demonstrate the effectiveness of the method. The algorithm is compared to other methods for generating random rotations such as a random walk Metropolis scheme and a Gibbs sampling algorithm recently introduced by Green and Mardia. Finally, the algorithm is applied to a probabilistic version of the Procrustes problem of fitting two point sets and applied in the context of protein structure superposition.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Semi-supervised Kernel Canonical Correlation Analysis of Human Functional Magnetic Resonance Imaging Data

Shelton, JA.

Women in Machine Learning Workshop (WiML), December 2009 (talk)

Abstract
Kernel Canonical Correlation Analysis (KCCA) is a general technique for subspace learning that incorporates principal components analysis (PCA) and Fisher linear discriminant analysis (LDA) as special cases. By finding directions that maximize correlation, KCCA learns representations tied more closely to underlying process generating the the data and can ignore high-variance noise directions. However, for data where acquisition in a given modality is expensive or otherwise limited, KCCA may suffer from small sample effects. We propose to use semi-supervised Laplacian regularization to utilize data that are present in only one modality. This manifold learning approach is able to find highly correlated directions that also lie along the data manifold, resulting in a more robust estimate of correlated subspaces. Functional magnetic resonance imaging (fMRI) acquired data are naturally amenable to subspace techniques as data are well aligned and such data of the human brain are a particularly interesting candidate. In this study we implemented various supervised and semi-supervised versions of KCCA on human fMRI data, with regression to single and multivariate labels (corresponding to video content subjects viewed during the image acquisition). In each variate condition, Laplacian regularization improved performance whereas the semi-supervised variants of KCCA yielded the best performance. We additionally analyze the weights learned by the regression in order to infer brain regions that are important during different types of visual processing.

PDF Web [BibTex]


no image
Adaptive Importance Sampling for Value Function Approximation in Off-policy Reinforcement Learning

Hachiya, H., Akiyama, T., Sugiyama, M., Peters, J.

Neural Networks, 22(10):1399-1410, December 2009 (article)

Abstract
Off-policy reinforcement learning is aimed at efficiently using data samples gathered from a policy that is different from the currently optimized policy. A common approach is to use importance sampling techniques for compensating for the bias of value function estimators caused by the difference between the data-sampling policy and the target policy. However, existing off-policy methods often do not take the variance of the value function estimators explicitly into account and therefore their performance tends to be unstable. To cope with this problem, we propose using an adaptive importance sampling technique which allows us to actively control the trade-off between bias and variance. We further provide a method for optimally determining the trade-off parameter based on a variant of cross-validation. We demonstrate the usefulness of the proposed approach through simulations.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A PAC-Bayesian Approach to Formulation of Clustering Objectives

Seldin, Y., Tishby, N.

In Proceedings of the NIPS 2009 Workshop "Clustering: Science or Art? Towards Principled Approaches", pages: 1-4, NIPS Workshop "Clustering: Science or Art? Towards Principled Approaches", December 2009 (inproceedings)

Abstract
Clustering is a widely used tool for exploratory data analysis. However, the theoretical understanding of clustering is very limited. We still do not have a well-founded answer to the seemingly simple question of “how many clusters are present in the data?”, and furthermore a formal comparison of clusterings based on different optimization objectives is far beyond our abilities. The lack of good theoretical support gives rise to multiple heuristics that confuse the practitioners and stall development of the field. We suggest that the ill-posed nature of clustering problems is caused by the fact that clustering is often taken out of its subsequent application context. We argue that one does not cluster the data just for the sake of clustering it, but rather to facilitate the solution of some higher level task. By evaluation of the clustering’s contribution to the solution of the higher level task it is possible to compare different clusterings, even those obtained by different optimization objectives. In the preceding work it was shown that such an approach can be applied to evaluation and design of co-clustering solutions. Here we suggest that this approach can be extended to other settings, where clustering is applied.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Policy Transfer in Apprenticeship Learning

Boularias, A., Chaib-Draa, B.

NIPS Workshop on Transfer Learning for Structured Data (TLSD-09), December 2009 (poster)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Notes on Graph Cuts with Submodular Edge Weights

Jegelka, S., Bilmes, J.

In pages: 1-6, NIPS Workshop on Discrete Optimization in Machine Learning: Submodularity, Sparsity & Polyhedra (DISCML), December 2009 (inproceedings)

Abstract
Generalizing the cost in the standard min-cut problem to a submodular cost function immediately makes the problem harder. Not only do we prove NP hardness even for nonnegative submodular costs, but also show a lower bound of (|V |1/3) on the approximation factor for the (s, t) cut version of the problem. On the positive side, we propose and compare three approximation algorithms with an overall approximation factor of O(min{|V |,p|E| log |V |}) that appear to do well in practice.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Guest editorial: special issue on structured prediction

Parker, C., Altun, Y., Tadepalli, P.

Machine Learning, 77(2-3):161-164, December 2009 (article)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Structured prediction by joint kernel support estimation

Lampert, CH., Blaschko, MB.

Machine Learning, 77(2-3):249-269, December 2009 (article)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Learning new basic Movements for Robotics

Kober, J., Peters, J.

In AMS 2009, pages: 105-112, (Editors: Dillmann, R. , J. Beyerer, C. Stiller, M. Zöllner, T. Gindele), Springer, Berlin, Germany, Autonome Mobile Systeme, December 2009 (inproceedings)

Abstract
Obtaining novel skills is one of the most important problems in robotics. Machine learning techniques may be a promising approach for automatic and autonomous acquisition of movement policies. However, this requires both an appropriate policy representation and suitable learning algorithms. Employing the most recent form of the dynamical systems motor primitives originally introduced by Ijspeert et al. [1], we show how both discrete and rhythmic tasks can be learned using a concerted approach of both imitation and reinforcement learning, and present our current best performing learning algorithms. Finally, we show that it is possible to include a start-up phase in rhythmic primitives. We apply our approach to two elementary movements, i.e., Ball-in-a-Cup and Ball-Paddling, which can be learned on a real Barrett WAM robot arm at a pace similar to human learning.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
From Motor Learning to Interaction Learning in Robots

Sigaud, O., Peters, J.

In Proceedings of 7ème Journées Nationales de la Recherche en Robotique, pages: 189-195, JNRR, November 2009 (inproceedings)

Abstract
The number of advanced robot systems has been increasing in recent years yielding a large variety of versatile designs with many degrees of freedom. These robots have the potential of being applicable in uncertain tasks outside well-structured industrial settings. However, the complexity of both systems and tasks is often beyond the reach of classical robot programming methods. As a result, a more autonomous solution for robot task acquisition is needed where robots adaptively adjust their behaviour to the encountered situations and required tasks. Learning approaches pose one of the most appealing ways to achieve this goal. However, while learning approaches are of high importance for robotics, we cannot simply use off-the-shelf methods from the machine learning community as these usually do not scale into the domains of robotics due to excessive computational cost as well as a lack of scalability. Instead, domain appropriate approaches are needed. We focus here on several core domains of robot learning. For accurate task execution, we need motor learning capabilities. For fast learning of the motor tasks, imitation learning offers the most promising approach. Self improvement requires reinforcement learning approaches that scale into the domain of complex robots. Finally, for efficient interaction of humans with robot systems, we will need a form of interaction learning. This contribution provides a general introduction to these issues and briefly presents the contributions of the related book chapters to the corresponding research topics.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Detection of objects in noisy images and site percolation on square lattices

Langovoy, M., Wittich, O.

(2009-035), EURANDOM, Technische Universiteit Eindhoven, November 2009 (techreport)

Abstract
We propose a novel probabilistic method for detection of objects in noisy images. The method uses results from percolation and random graph theories. We present an algorithm that allows to detect objects of unknown shapes in the presence of random noise. Our procedure substantially differs from wavelets-based algorithms. The algorithm has linear complexity and exponential accuracy and is appropriate for real-time systems. We prove results on consistency and algorithmic complexity of our procedure.

PDF [BibTex]

PDF [BibTex]


no image
A note on ethical aspects of BCI

Haselager, P., Vlek, R., Hill, J., Nijboer, F.

Neural Networks, 22(9):1352-1357, November 2009 (article)

Abstract
This paper focuses on ethical aspects of BCI, as a research and a clinical tool, that are challenging for practitioners currently working in the field. Specifically, the difficulties involved in acquiring informed consent from locked-in patients are investigated, in combination with an analysis of the shared moral responsibility in BCI teams, and the complications encountered in establishing effective communication with media.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Model Learning with Local Gaussian Process Regression

Nguyen-Tuong, D., Seeger, M., Peters, J.

Advanced Robotics, 23(15):2015-2034, November 2009 (article)

Abstract
Precise models of robot inverse dynamics allow the design of significantly more accurate, energy-efficient and compliant robot control. However, in some cases the accuracy of rigid-body models does not suffice for sound control performance due to unmodeled nonlinearities arising from hydraulic cable dynamics, complex friction or actuator dynamics. In such cases, estimating the inverse dynamics model from measured data poses an interesting alternative. Nonparametric regression methods, such as Gaussian process regression (GPR) or locally weighted projection regression (LWPR), are not as restrictive as parametric models and, thus, offer a more flexible framework for approximating unknown nonlinearities. In this paper, we propose a local approximation to the standard GPR, called local GPR (LGP), for real-time model online learning by combining the strengths of both regression methods, i.e., the high accuracy of GPR and the fast speed of LWPR. The approach is shown to have competitive learning performance for hig h-dimensional data while being sufficiently fast for real-time learning. The effectiveness of LGP is exhibited by a comparison with the state-of-the-art regression techniques, such as GPR, LWPR and ν-support vector regression. The applicability of the proposed LGP method is demonstrated by real-time online learning of the inverse dynamics model for robot model-based control on a Barrett WAM robot arm.

PDF Web DOI [BibTex]


no image
An Incremental GEM Framework for Multiframe Blind Deconvolution, Super-Resolution, and Saturation Correction

Harmeling, S., Sra, S., Hirsch, M., Schölkopf, B.

(187), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2009 (techreport)

Abstract
We develop an incremental generalized expectation maximization (GEM) framework to model the multiframe blind deconvolution problem. A simplistic version of this problem was recently studied by Harmeling etal~cite{harmeling09}. We solve a more realistic version of this problem which includes the following major features: (i) super-resolution ability emph{despite} noise and unknown blurring; (ii) saturation-correction, i.e., handling of overexposed pixels that can otherwise confound the image processing; and (iii) simultaneous handling of color channels. These features are seamlessly integrated into our incremental GEM framework to yield simple but efficient multiframe blind deconvolution algorithms. We present technical details concerning critical steps of our algorithms, especially to highlight how all operations can be written using matrix-vector multiplications. We apply our algorithm to real-world images from astronomy and super resolution tasks. Our experimental results show that our methods yield improve d resolution and deconvolution at the same time.

PDF [BibTex]

PDF [BibTex]


no image
Efficient Filter Flow for Space-Variant Multiframe Blind Deconvolution

Hirsch, M., Sra, S., Schölkopf, B., Harmeling, S.

(188), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2009 (techreport)

Abstract
Ultimately being motivated by facilitating space-variant blind deconvolution, we present a class of linear transformations, that are expressive enough for space-variant filters, but at the same time especially designed for efficient matrix-vector-multiplications. Successful results on astronomical imaging through atmospheric turbulences and on noisy magnetic resonance images of constantly moving objects demonstrate the practical significance of our approach.

PDF [BibTex]

PDF [BibTex]


no image
Methods for feature selection in a learning machine

Weston, J., Elisseeff, A., Schölkopf, B., Pérez-Cruz, F.

United States Patent, No 7624074, November 2009 (patent)

[BibTex]

[BibTex]


no image
Event-Related Potentials in Brain-Computer Interfacing

Hill, NJ.

Invited lecture on the bachelor & masters course "Introduction to Brain-Computer Interfacing", October 2009 (talk)

Abstract
An introduction to event-related potentials with specific reference to their use in brain-computer interfacing applications and research.

PDF [BibTex]

PDF [BibTex]


no image
BCI2000 and Python

Hill, NJ.

Invited lecture at the 5th International BCI2000 Workshop, October 2009 (talk)

Abstract
A tutorial, with exercises, on how to integrate your own Python code with the BCI2000 software package.

PDF [BibTex]

PDF [BibTex]


no image
Implementing a Signal Processing Filter in BCI2000 Using C++

Hill, NJ., Mellinger, J.

Invited lecture at the 5th International BCI2000 Workshop, October 2009 (talk)

Abstract
This tutorial shows how the functionality of the BCI2000 software package can be extended with one‘s own code, using BCI2000‘s C++ API.

PDF [BibTex]

PDF [BibTex]


no image
Detecting Objects in Large Image Collections and Videos by Efficient Subimage Retrieval

Lampert, CH.

In ICCV 2009, pages: 987-994, IEEE Computer Society, Piscataway, NJ, USA, Twelfth IEEE International Conference on Computer Vision, October 2009 (inproceedings)

Abstract
We study the task of detecting the occurrence of objects in large image collections or in videos, a problem that combines aspects of content based image retrieval and object localization. While most previous approaches are either limited to special kinds of queries, or do not scale to large image sets, we propose a new method, efficient subimage retrieval (ESR), which is at the same time very flexible and very efficient. Relying on a two-layered branch-and-bound setup, ESR performs object-based image retrieval in sets of 100,000 or more images within seconds. An extensive evaluation on several datasets shows that ESR is not only very fast, but it also achieves detection accuracies that are on par with or superior to previously published methods for object-based image retrieval.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Algebraic polynomials and moments of stochastic integrals

Langovoy, M.

(2009-031), EURANDOM, Technische Universiteit Eindhoven, October 2009 (techreport)

PDF [BibTex]

PDF [BibTex]


no image
Toward a Theory of Consciousness

Tononi, G., Balduzzi, D.

In The Cognitive Neurosciences, pages: 1201-1220, (Editors: Gazzaniga, M.S.), MIT Press, Cambridge, MA, USA, October 2009 (inbook)

Web [BibTex]

Web [BibTex]


no image
Inferring textual entailment with a probabilistically sound calculus

Harmeling, S.

Natural Language Engineering, 15(4):459-477, October 2009 (article)

Abstract
We introduce a system for textual entailment that is based on a probabilistic model of entailment. The model is defined using a calculus of transformations on dependency trees, which is characterized by the fact that derivations in that calculus preserve the truth only with a certain probability. The calculus is successfully evaluated on the datasets of the PASCAL Challenge on Recognizing Textual Entailment.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Modeling and Visualizing Uncertainty in Gene Expression Clusters using Dirichlet Process Mixtures

Rasmussen, CE., de la Cruz, BJ., Ghahramani, Z., Wild, DL.

IEEE/ACM Transactions on Computational Biology and Bioinformatics, 6(4):615-628, October 2009 (article)

Abstract
Although the use of clustering methods has rapidly become one of the standard computational approaches in the literature of microarray gene expression data, little attention has been paid to uncertainty in the results obtained. Dirichlet process mixture models provide a non-parametric Bayesian alternative to the bootstrap approach to modeling uncertainty in gene expression clustering. Most previously published applications of Bayesian model based clustering methods have been to short time series data. In this paper we present a case study of the application of non-parametric Bayesian clustering methods to the clustering of high-dimensional non-time series gene expression data using full Gaussian covariances. We use the probability that two genes belong to the same cluster in a Dirichlet process mixture model as a measure of the similarity of these gene expression profiles. Conversely, this probability can be used to define a dissimilarity measure, which, for the purposes of visualization, can be input to one of the standard linkage algorithms used for hierarchical clustering. Biologically plausible results are obtained from the Rosetta compendium of expression profiles which extend previously published cluster analyses of this data.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]