Header logo is ei


2007


no image
An Extensible Probabilistic Transformation-based Approach to the Third Recognizing Textual Entailment Challenge

Harmeling, S.

In TextEntail 2007, pages: 137-142, ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, June 2007 (inproceedings)

Abstract
We introduce a system for textual entailment that is based on a probabilistic model of entailment. The model is defined using some calculus of transformations on dependency trees, which is characterized by the fact that derivations in that calculus preserve the truth only with a certain probability. We also describe a possible set of transformations (and with it implicitly a calculus) that was successfully applied to the RTE3 challenge data. However, our system can be improved in many ways and we see it as the starting point for a promising new approach to textual entailment.

Web [BibTex]

2007

Web [BibTex]


no image
Weighted Substructure Mining for Image Analysis

Nowozin, S., Tsuda, K., Uno, T., Kudo, T., BakIr, G.

In CVPR 2007, pages: 1-8, IEEE Computer Society, Los Alamitos, CA, USA, 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 2007 (inproceedings)

Abstract
In web-related applications of image categorization, it is desirable to derive an interpretable classification rule with high accuracy. Using the bag-of-words representation and the linear support vector machine, one can partly fulfill the goal, but the accuracy of linear classifiers is not high and the obtained features are not informative for users. We propose to combine item set mining and large margin classifiers to select features from the power set of all visual words. Our resulting classification rule is easier to browse and simpler to understand, because each feature has richer information. As a next step, each image is represented as a graph where nodes correspond to local image features and edges encode geometric relations between features. Combining graph mining and boosting, we can obtain a classification rule based on subgraph features that contain more information than the set features. We evaluate our algorithm in a web-retrieval ranking task where the goal is to reject outliers from a set of images returned for a keyword query. Furthermore, it is evaluated on the supervised classification tasks with the challenging VOC2005 data set. Our approach yields excellent accuracy in the unsupervised ranking task compared to a recently proposed probabilistic model and competitive results in the supervised classification task.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Local Learning Projections

Wu, M., Yu, K., Yu, S., Schölkopf, B.

In Proceedings of the 24th International Conference on Machine Learning, pages: 1039-1046, (Editors: Z Ghahramani), ACM Press, New York, NY, USA, ICML, June 2007 (inproceedings)

Abstract
This paper presents a Local Learning Projection (LLP) approach for linear dimensionality reduction. We first point out that the well known Principal Component Analysis (PCA) essentially seeks the projection that has the minimal global estimation error. Then we propose a dimensionality reduction algorithm that leads to the projection with the minimal local estimation error, and elucidate its advantages for classification tasks. We also indicate that LLP keeps the local information in the sense that the projection value of each point can be well estimated based on its neighbors and their projection values. Experimental results are provided to validate the effectiveness of the proposed algorithm.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Training and Approximation of a Primal Multiclass Support Vector Machine

Zien, A., Bona, F., Ong, C.

In ASMDA 2007, pages: 1-8, (Editors: Skiadas, C. H.), 12th International Conference on Applied Stochastic Models and Data Analysis, June 2007 (inproceedings)

Abstract
We revisit the multiclass support vector machine (SVM) and generalize the formulation to convex loss functions and joint feature maps. Motivated by recent work [Chapelle, 2006] we use logistic loss and softmax to enable gradient based primal optimization. Kernels are incorporated via kernel principal component analysis (KPCA), which naturally leads to approximation methods for large scale problems. We investigate similarities and differences to previous multiclass SVM approaches. Experimental comparisons to previous approaches and to the popular one-vs-rest SVM are presented on several different datasets.

PDF PostScript Web [BibTex]

PDF PostScript Web [BibTex]


no image
Nonlinear independent component analysis with minimum nonlinear distortion

Zhang, K., Chan, L.

In ICML ’07: Proceedings of the 24th international conference on Machine learning, pages: 1127-1134, (Editors: Z Ghahramani), ACM, New York, NY, USA, 24th International Conference on Machine Learning (ICML), June 2007 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Information-theoretic Metric Learning

Davis, J., Kulis, B., Jain, P., Sra, S., Dhillon, I.

In ICML 2007, pages: 209-216, (Editors: Ghahramani, Z. ), ACM Press, New York, NY, USA, 24th Annual International Conference on Machine Learning, June 2007 (inproceedings)

Abstract
In this paper, we present an information-theoretic approach to learning a Mahalanobis distance function. We formulate the problem as that of minimizing the differential relative entropy between two multivariate Gaussians under constraints on the distance function. We express this problem as a particular Bregman optimization problem---that of minimizing the LogDet divergence subject to linear constraints. Our resulting algorithm has several advantages over existing methods. First, our method can handle a wide variety of constraints and can optionally incorporate a prior on the distance function. Second, it is fast and scalable. Unlike most existing methods, no eigenvalue computations or semi-definite programming are required. We also present an online version and derive regret bounds for the resulting algorithm. Finally, we evaluate our method on a recent error reporting system for software called Clarify, in the context of metric learning for nearest neighbor classification, as well as on standard data sets.

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Dependence Maximization View of Clustering

Song, L., Smola, A., Gretton, A., Borgwardt, K.

In Proceedings of the 24th Annual International Conference on Machine Learning (ICML 2007), pages: 815-822, (Editors: Ghahramani, Z. ), ACM Press, New York, NY, USA, Twenty-Fourth Annual International Conference on Machine Learning (ICML), June 2007 (inproceedings)

Abstract
We propose a family of clustering algorithms based on the maximization of dependence between the input variables and their cluster labels, as expressed by the Hilbert-Schmidt Independence Criterion (HSIC). Under this framework, we unify the geometric, spectral, and statistical dependence views of clustering, and subsume many existing algorithms as special cases (e.g. k-means and spectral clustering). Distinctive to our framework is that kernels can also be applied on the labels, which can endow them with particular structures. We also obtain a perturbation bound on the change in k-means clustering.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Multiclass Multiple Kernel Learning

Zien, A., Ong, C.

In ICML 2007, pages: 1191-1198, (Editors: Ghahramani, Z. ), ACM Press, New York, NY, USA, 24th International Conference on Machine Learning, June 2007 (inproceedings)

Abstract
In many applications it is desirable to learn from several kernels. “Multiple kernel learning” (MKL) allows the practitioner to optimize over linear combinations of kernels. By enforcing sparse coefficients, it also generalizes feature selection to kernel selection. We propose MKL for joint feature maps. This provides a convenient and principled way for MKL with multiclass problems. In addition, we can exploit the joint feature map to learn kernels on output spaces. We show the equivalence of several different primal formulations including different regularizers. We present several optimization methods, and compare a convex quadratically constrained quadratic program (QCQP) and two semi-infinite linear programs (SILPs) toy data, showing that the SILPs are faster than the QCQP. We then demonstrate the utility of our method by applying the SILP to three real world datasets.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Transductive Support Vector Machines for Structured Variables

Zien, A., Brefeld, U., Scheffer, T.

In ICML 2007, pages: 1183-1190, (Editors: Ghahramani, Z. ), ACM Press, New York, NY, USA, 24th International Conference on Machine Learning, June 2007 (inproceedings)

Abstract
We study the problem of learning kernel machines transductively for structured output variables. Transductive learning can be reduced to combinatorial optimization problems over all possible labelings of the unlabeled data. In order to scale transductive learning to structured variables, we transform the corresponding non-convex, combinatorial, constrained optimization problems into continuous, unconstrained optimization problems. The discrete optimization parameters are eliminated and the resulting differentiable problems can be optimized efficiently. We study the effectiveness of the generalized TSVM on multiclass classification and label-sequence learning problems empirically.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Competition and Coordination in Stochastic Games

Burkov, A., Boularias, A., Chaib-Draa, B.

In Canadian AI 2007, pages: 26-37, (Editors: Kobti, Z. , D. Wu), Springer, Berlin, Germany, 20th Conference of the Canadian Society for Computational Studies of Intelligence, May 2007 (inproceedings)

Abstract
Agent competition and coordination are two classical and most important tasks in multiagent systems. In recent years, there was a number of learning algorithms proposed to resolve such type of problems. Among them, there is an important class of algorithms, called adaptive learning algorithms, that were shown to be able to converge in self-play to a solution in a wide variety of the repeated matrix games. Although certain algorithms of this class, such as Infinitesimal Gradient Ascent (IGA), Policy Hill-Climbing (PHC) and Adaptive Play Q-learning (APQ), have been catholically studied in the recent literature, a question of how these algorithms perform versus each other in general form stochastic games is remaining little-studied. In this work we are trying to answer this question. To do that, we analyse these algorithms in detail and give a comparative analysis of their behavior on a set of competition and coordination stochastic games. Also, we introduce a new multiagent learning algorithm, called ModIGA. This is an extension of the IGA algorithm, which is able to estimate the strategy of its opponents in the cases when they do not explicitly play mixed strategies (e.g., APQ) and which can be applied to the games with more than two actions.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Change-Point Detection using Krylov Subspace Learning

Ide, T., Tsuda, K.

In SDM 2007, pages: 515-520, (Editors: Apte, C. ), Society for Industrial and Applied Mathematics, Pittsburgh, PA, USA, SIAM International Conference on Data Mining, April 2007 (inproceedings)

Abstract
We propose an efficient algorithm for principal component analysis (PCA) that is applicable when only the inner product with a given vector is needed. We show that Krylov subspace learning works well both in matrix compression and implicit calculation of the inner product by taking full advantage of the arbitrariness of the seed vector. We apply our algorithm to a PCA-based change-point detection algorithm, and show that it results in about 50 times improvement in computational time.

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Bayesian Approach to Nonlinear Parameter Identification for Rigid Body Dynamics

Ting, J., Mistry, M., Peters, J., Schaal, S., Nakanishi, J.

In RSS 2006, pages: 247-254, (Editors: Sukhatme, G. S., S. Schaal, W. Burgard, D. Fox), MIT Press, Cambridge, MA, USA, Robotics: Science and Systems II (RSS ), April 2007 (inproceedings)

Abstract
For robots of increasing complexity such as humanoid robots, conventional identification of rigid body dynamics models based on CAD data and actuator models becomes difficult and inaccurate due to the large number of additional nonlinear effects in these systems, e.g., stemming from stiff wires, hydraulic hoses, protective shells, skin, etc. Data driven parameter estimation offers an alternative model identification method, but it is often burdened by various other problems, such as significant noise in all measured or inferred variables of the robot. The danger of physically inconsistent results also exists due to unmodeled nonlinearities or insufficiently rich data. In this paper, we address all these problems by developing a Bayesian parameter identification method that can automatically detect noise in both input and output data for the regression algorithm that performs system identification. A post-processing step ensures physically consistent rigid body parameters by nonlinearly projecting the result of the Bayesian estimation onto constraints given by positive definite inertia matrices and the parallel axis theorem. We demonstrate on synthetic and actual robot data that our technique performs parameter identification with 5 to 20% higher accuracy than traditional methods. Due to the resulting physically consistent parameters, our algorithm enables us to apply advanced control methods that algebraically require physical consistency on robotic platforms.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning causality by identifying common effects with kernel-based dependence measures

Sun, X., Janzing, D.

In ESANN 2007, pages: 453-458, D-Side, Evere, Belgium, 15th European Symposium on Artificial Neural Networks, April 2007 (inproceedings)

Abstract
We describe a method for causal inference that measures the strength of statistical dependence by the Hilbert-Schmidt norm of kernel-based conditional cross-covariance operators. We consider the increase of the dependence of two variables X and Y by conditioning on a third variable Z as a hint for Z being a common effect of X and Y. Based on this assumption, we collect "votes" for hypothetical causal directions and orient the edges according to the majority vote. For most of our experiments with artificial and real-world data our method has outperformed the conventional constraint-based inductive causation (IC) algorithm.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Exploring the causal order of binary variables via exponential hierarchies of Markov kernels

Sun, X., Janzing, D.

In ESANN 2007, pages: 465-470, D-Side, Evere, Belgium, 15th European Symposium on Artificial Neural Networks, April 2007 (inproceedings)

Abstract
We propose a new algorithm for estimating the causal structure that underlies the observed dependence among n (n>=4) binary variables X_1,...,X_n. Our inference principle states that the factorization of the joint probability into conditional probabilities for X_j given X_1,...,X_{j-1} often leads to simpler terms if the order of variables is compatible with the directed acyclic graph representing the causal structure. We study joint measures of OR/AND gates and show that the complexity of the conditional probabilities (the so-called Markov kernels), defined by a hierarchy of exponential models, depends on the order of the variables. Some toy and real-data experiments support our inference rule.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Applying the Episodic Natural Actor-Critic Architecture to Motor Primitive Learning

Peters, J., Schaal, S.

In Proceedings of the 15th European Symposium on Artificial Neural Networks (ESANN 2007), pages: 295-300, D-Side, Evere, Belgium, 15th European Symposium on Artificial Neural Networks (ESANN), April 2007 (inproceedings)

Abstract
In this paper, we investigate motor primitive learning with the Natural Actor-Critic approach. The Natural Actor-Critic consists out of actor updates which are achieved using natural stochastic policy gradients while the critic obtains the natural policy gradient by linear regression. We show that this architecture can be used to learn the “building blocks of movement generation”, called motor primitives. Motor primitives are parameterized control policies such as splines or nonlinear differential equations with desired attractor properties. We show that our most modern algorithm, the Episodic Natural Actor-Critic outperforms previous algorithms by at least an order of magnitude. We demonstrate the efficiency of this reinforcement learning method in the application of learning to hit a baseball with an anthropomorphic robot arm.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Fast Newton-type Methods for the Least Squares Nonnegative Matrix Approximation Problem

Kim, D., Sra, S., Dhillon, I.

In SDM 2007, pages: 343-354, (Editors: Apte, C. ), Society for Industrial and Applied Mathematics, Pittsburgh, PA, USA, SIAM International Conference on Data Mining, April 2007 (inproceedings)

Abstract
Nonnegative Matrix Approximation is an effective matrix decomposition technique that has proven to be useful for a wide variety of applications ranging from document analysis and image processing to bioinformatics. There exist a few algorithms for nonnegative matrix approximation (NNMA), for example, Lee & Seung’s multiplicative updates, alternating least squares, and certain gradient descent based procedures. All of these procedures suffer from either slow convergence, numerical instabilities, or at worst, theoretical unsoundness. In this paper we present new and improved algorithms for the least-squares NNMA problem, which are not only theoretically well-founded, but also overcome many of the deficiencies of other methods. In particular, we use non-diagonal gradient scaling to obtain rapid convergence. Our methods provide numerical results superior to both Lee & Seung’s method as well to the alternating least squares (ALS) heuristic, which is known to work well in some situations but has no theoretical guarantees (Berry et al. 2006). Our approach extends naturally to include regularization and box-constraints, without sacrificing convergence guarantees. We present experimental results on both synthetic and realworld datasets to demonstrate the superiority of our methods, in terms of better approximations as well as efficiency.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Distinguishing Between Cause and Effect via Kernel-Based Complexity Measures for Conditional Distributions

Sun, X., Janzing, D., Schölkopf, B.

In Proceedings of the 15th European Symposium on Artificial Neural Networks , pages: 441-446, (Editors: M Verleysen), D-Side Publications, Evere, Belgium, ESANN, April 2007 (inproceedings)

Abstract
We propose a method to evaluate the complexity of probability measures from data that is based on a reproducing kernel Hilbert space seminorm of the logarithm of conditional probability densities. The motivation is to provide a tool for a causal inference method which assumes that conditional probabilities for effects given their causes are typically simpler and smoother than vice-versa. We present experiments with toy data where the quantitative results are consistent with our intuitive understanding of complexity and smoothness. Also in some examples with real-world data the probability measure corresponding to the true causal direction turned out to be less complex than those of the reversed order.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Deterministic Annealing for Multiple-Instance Learning

Gehler, P., Chapelle, O.

In JMLR Workshop and Conference Proceedings Volume 2: AISTATS 2007, pages: 123-130, (Editors: Meila, M. , X. Shen), MIT Press, Cambridge, MA, USA, 11th International Conference on Artificial Intelligence and Statistics, March 2007 (inproceedings)

Abstract
In this paper we demonstrate how deterministic annealing can be applied to different SVM formulations of the multiple-instance learning (MIL) problem. Our results show that we find better local minima compared to the heuristic methods those problems are usually solved with. However this does not always translate into a better test error suggesting an inadequacy of the objective function. Based on this finding we propose a new objective function which together with the deterministic annealing algorithm finds better local minima and achieves better performance on a set of benchmark datasets. Furthermore the results also show how the structure of MIL datasets influence the performance of MIL algorithms and we discuss how future benchmark datasets for the MIL problem should be designed.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Bayesian Inference and Optimal Design in the Sparse Linear Model

Seeger, M., Steinke, F., Tsuda, K.

In JMLR Workshop and Conference Proceedings Volume 2: AISTATS 2007, pages: 444-451, (Editors: Meila, M. , X. Shen), JMLR, Cambridge, MA, USA, 11th International Conference on Artificial Intelligence and Statistics, March 2007 (inproceedings)

Abstract
The sparse linear model has seen many successful applications in Statistics, Machine Learning, and Computational Biology, such as identification of gene regulatory networks from micro-array expression data. Prior work has either approximated Bayesian inference by expensive Markov chain Monte Carlo, or replaced it by point estimation. We show how to obtain a good approximation to Bayesian analysis efficiently, using the Expectation Propagation method. We also address the problems of optimal design and hyperparameter estimation. We demonstrate our framework on a gene network identification task.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Stick-breaking Construction for the Indian Buffet Process

Teh, Y., Görür, D., Ghahramani, Z.

In JMLR Workshop and Conference Proceedings Volume 2: AISTATS 2007, pages: 556-563, (Editors: Meila, M. , X. Shen), MIT Press, Cambridge, MA, USA, 11th International Conference on Artificial Intelligence and Statistics, March 2007 (inproceedings)

Abstract
The Indian buffet process (IBP) is a Bayesian nonparametric distribution whereby objects are modelled using an unbounded number of latent features. In this paper we derive a stick-breaking representation for the IBP. Based on this new representation, we develop slice samplers for the IBP that are efficient, easy to implement and are more generally applicable than the currently available Gibbs sampler. This representation, along with the work of Thibaux and Jordan [17], also illuminates interesting theoretical connections between the IBP, Chinese restaurant processes, Beta processes and Dirichlet processes.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Fast Kernel ICA using an Approximate Newton Method

Shen, H., Jegelka, S., Gretton, A.

In JMLR Workshop and Conference Proceedings Volume 2: AISTATS 2007, pages: 476-483, (Editors: Meila, M. , X. Shen), MIT Press, Cambridge, MA, USA, 11th International Conference on Artificial Intelligence and Statistics, March 2007 (inproceedings)

Abstract
Recent approaches to independent component analysis (ICA) have used kernel independence measures to obtain very good performance, particularly where classical methods experience difficulty (for instance, sources with near-zero kurtosis). We present Fast Kernel ICA (FastKICA), a novel optimisation technique for one such kernel independence measure, the Hilbert-Schmidt independence criterion (HSIC). Our search procedure uses an approximate Newton method on the special orthogonal group, where we estimate the Hessian locally about independence. We employ incomplete Cholesky decomposition to efficiently compute the gradient and approximate Hessian. FastKICA results in more accurate solutions at a given cost compared with gradient descent, and is relatively insensitive to local minima when initialised far from independence. These properties allow kernel approaches to be extended to problems with larger numbers of sources and observations. Our method is competitive with other modern and classical ICA approaches in both speed and accuracy.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Transductive Classification via Local Learning Regularization

Wu, M., Schölkopf, B.

In JMLR Workshop and Conference Proceedings Volume 2: AISTATS 2007, pages: 628-635, (Editors: M Meila and X Shen), 11th International Conference on Artificial Intelligence and Statistics, March 2007 (inproceedings)

Abstract
The idea of local learning, classifying a particular point based on its neighbors, has been successfully applied to supervised learning problems. In this paper, we adapt it for Transductive Classification (TC) problems. Specifically, we formulate a Local Learning Regularizer (LL-Reg) which leads to a solution with the property that the label of each data point can be well predicted based on its neighbors and their labels. For model selection, an efficient way to compute the leave-one-out classification error is provided for the proposed and related algorithms. Experimental results using several benchmark datasets illustrate the effectiveness of the proposed approach.

PDF Web [BibTex]

PDF Web [BibTex]


no image
The Independent Components of Natural Images are Perceptually Dependent

Bethge, M., Wiecki, T., Wichmann, F.

In Human Vision and Electronic Imaging XII, pages: 1-12, (Editors: Rogowitz, B. E.), SPIE, Bellingham, WA, USA, SPIE Human Vision and Electronic Imaging Conference, February 2007 (inproceedings)

Abstract
The independent components of natural images are a set of linear filters which are optimized for statistical independence. With such a set of filters images can be represented without loss of information. Intriguingly, the filter shapes are localized, oriented, and bandpass, resembling important properties of V1 simple cell receptive fields. Here we address the question of whether the independent components of natural images are also perceptually less dependent than other image components. We compared the pixel basis, the ICA basis and the discrete cosine basis by asking subjects to interactively predict missing pixels (for the pixel basis) or to predict the coefficients of ICA and DCT basis functions in patches of natural images. Like Kersten (1987) we find the pixel basis to be perceptually highly redundant but perhaps surprisingly, the ICA basis showed significantly higher perceptual dependencies than the DCT basis. This shows a dissociation between statistical and perceptual dependence measures.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Unsupervised learning of a steerable basis for invariant image representations

Bethge, M., Gerwinn, S., Macke, J.

In Human Vision and Electronic Imaging XII, pages: 1-12, (Editors: Rogowitz, B. E.), SPIE, Bellingham, WA, USA, SPIE Human Vision and Electronic Imaging Conference, February 2007 (inproceedings)

Abstract
There are two aspects to unsupervised learning of invariant representations of images: First, we can reduce the dimensionality of the representation by finding an optimal trade-off between temporal stability and informativeness. We show that the answer to this optimization problem is generally not unique so that there is still considerable freedom in choosing a suitable basis. Which of the many optimal representations should be selected? Here, we focus on this second aspect, and seek to find representations that are invariant under geometrical transformations occuring in sequences of natural images. We utilize ideas of steerability and Lie groups, which have been developed in the context of filter design. In particular, we show how an anti-symmetric version of canonical correlation analysis can be used to learn a full-rank image basis which is steerable with respect to rotations. We provide a geometric interpretation of this algorithm by showing that it finds the two-dimensional eigensubspaces of the avera ge bivector. For data which exhibits a variety of transformations, we develop a bivector clustering algorithm, which we use to learn a basis of generalized quadrature pairs (i.e. complex cells) from sequences of natural images.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A Subspace Kernel for Nonlinear Feature Extraction

Wu, M., Farquhar, J.

In IJCAI-07, pages: 1125-1130, (Editors: Veloso, M. M.), AAAI Press, Menlo Park, CA, USA, International Joint Conference on Artificial Intelligence, January 2007 (inproceedings)

Abstract
Kernel based nonlinear Feature Extraction (KFE) or dimensionality reduction is a widely used pre-processing step in pattern classification and data mining tasks. Given a positive definite kernel function, it is well known that the input data are implicitly mapped to a feature space with usually very high dimensionality. The goal of KFE is to find a low dimensional subspace of this feature space, which retains most of the information needed for classification or data analysis. In this paper, we propose a subspace kernel based on which the feature extraction problem is transformed to a kernel parameter learning problem. The key observation is that when projecting data into a low dimensional subspace of the feature space, the parameters that are used for describing this subspace can be regarded as the parameters of the kernel function between the projected data. Therefore current kernel parameter learning methods can be adapted to optimize this parameterized kernel function. Experimental results are provided to validate the effectiveness of the proposed approach.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Graph kernels for disease outcome prediction from protein-protein interaction networks

Borgwardt, KM., Vishwanathan, SVN., Schraudolph, N., Kriegel, H-P.

In pages: 4-15, (Editors: Altman, R.B. A.K. Dunker, L. Hunter, T. Murray, T.E. Klein), World Scientific, Hackensack, NJ, USA, Pacific Symposium on Biocomputing (PSB), January 2007 (inproceedings)

Abstract
It is widely believed that comparing discrepancies in the protein-protein interaction (PPI) networks of individuals will become an important tool in understanding and preventing diseases. Currently PPI networks for individuals are not available, but gene expression data is becoming easier to obtain and allows us to represent individuals by a co-integrated gene expression/protein interaction network. Two major problems hamper the application of graph kernels – state-of-the-art methods for whole-graph comparison – to compare PPI networks. First, these methods do not scale to graphs of the size of a PPI network. Second, missing edges in these interaction networks are biologically relevant for detecting discrepancies, yet, these methods do not take this into account. In this article we present graph kernels for biological network comparison that are fast to compute and take into account missing interactions. We evaluate their practical performance on two datasets of co-integrated gene expression/PPI networks.

PDF [BibTex]

PDF [BibTex]


no image
Independent Factor Reinforcement Learning for Portfolio Management

Li, J., Zhang, K., Chan, L.

In Proceedings of the 8th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2007), pages: 1020-1031, (Editors: H Yin and P Tiño and E Corchado and W Byrne and X Yao), Springer, Berlin, Germany, 8th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL), 2007 (inproceedings)

Web [BibTex]

Web [BibTex]


no image
Kernel-Based Nonlinear Independent Component Analysis

Zhang, K., Chan, L.

In Independent Component Analysis and Signal Separation, 7th International Conference, ICA 2007, pages: 301-308, (Editors: M E Davies and C J James and S A Abdallah and M D Plumbley), Springer, 7th International Conference on Independent Component Analysis and Signal Separation (ICA), 2007, Lecture Notes in Computer Science, Vol. 4666 (inproceedings)

Web DOI [BibTex]

Web DOI [BibTex]


no image
Towards Machine Learning of Motor Skills

Peters, J., Schaal, S., Schölkopf, B.

In Proceedings of Autonome Mobile Systeme (AMS), pages: 138-144, (Editors: K Berns and T Luksch), 2007, clmc (inproceedings)

Abstract
Autonomous robots that can adapt to novel situations has been a long standing vision of robotics, artificial intelligence, and cognitive sciences. Early approaches to this goal during the heydays of artificial intelligence research in the late 1980s, however, made it clear that an approach purely based on reasoning or human insights would not be able to model all the perceptuomotor tasks that a robot should fulfill. Instead, new hope was put in the growing wake of machine learning that promised fully adaptive control algorithms which learn both by observation and trial-and-error. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics, and usually scaling was only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general approach to motor skill learning in order to get one step closer towards human-like performance. For doing so, we study two ma jor components for such an approach, i.e., firstly, a theoretically well-founded general approach to representing the required control structures for task representation and execution and, secondly, appropriate learning algorithms which can be applied in this setting.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Reinforcement Learning for Optimal Control of Arm Movements

Theodorou, E., Peters, J., Schaal, S.

In Abstracts of the 37st Meeting of the Society of Neuroscience., Neuroscience, 2007, clmc (inproceedings)

Abstract
Every day motor behavior consists of a plethora of challenging motor skills from discrete movements such as reaching and throwing to rhythmic movements such as walking, drumming and running. How this plethora of motor skills can be learned remains an open question. In particular, is there any unifying computa-tional framework that could model the learning process of this variety of motor behaviors and at the same time be biologically plausible? In this work we aim to give an answer to these questions by providing a computational framework that unifies the learning mechanism of both rhythmic and discrete movements under optimization criteria, i.e., in a non-supervised trial-and-error fashion. Our suggested framework is based on Reinforcement Learning, which is mostly considered as too costly to be a plausible mechanism for learning com-plex limb movement. However, recent work on reinforcement learning with pol-icy gradients combined with parameterized movement primitives allows novel and more efficient algorithms. By using the representational power of such mo-tor primitives we show how rhythmic motor behaviors such as walking, squash-ing and drumming as well as discrete behaviors like reaching and grasping can be learned with biologically plausible algorithms. Using extensive simulations and by using different reward functions we provide results that support the hy-pothesis that Reinforcement Learning could be a viable candidate for motor learning of human motor behavior when other learning methods like supervised learning are not feasible.

[BibTex]

[BibTex]


no image
Reinforcement learning by reward-weighted regression for operational space control

Peters, J., Schaal, S.

In Proceedings of the 24th Annual International Conference on Machine Learning, pages: 745-750, ICML, 2007, clmc (inproceedings)

Abstract
Many robot control problems of practical importance, including operational space control, can be reformulated as immediate reward reinforcement learning problems. However, few of the known optimization or reinforcement learning algorithms can be used in online learning control for robots, as they are either prohibitively slow, do not scale to interesting domains of complex robots, or require trying out policies generated by random search, which are infeasible for a physical system. Using a generalization of the EM-base reinforcement learning framework suggested by Dayan & Hinton, we reduce the problem of learning with immediate rewards to a reward-weighted regression problem with an adaptive, integrated reward transformation for faster convergence. The resulting algorithm is efficient, learns smoothly without dangerous jumps in solution space, and works well in applications of complex high degree-of-freedom robots.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Policy gradient methods for machine learning

Peters, J., Theodorou, E., Schaal, S.

In Proceedings of the 14th INFORMS Conference of the Applied Probability Society, pages: 97-98, Eindhoven, Netherlands, July 9-11, 2007, 2007, clmc (inproceedings)

Abstract
We present an in-depth survey of policy gradient methods as they are used in the machine learning community for optimizing parameterized, stochastic control policies in Markovian systems with respect to the expected reward. Despite having been developed separately in the reinforcement learning literature, policy gradient methods employ likelihood ratio gradient estimators as also suggested in the stochastic simulation optimization community. It is well-known that this approach to policy gradient estimation traditionally suffers from three drawbacks, i.e., large variance, a strong dependence on baseline functions and a inefficient gradient descent. In this talk, we will present a series of recent results which tackles each of these problems. The variance of the gradient estimation can be reduced significantly through recently introduced techniques such as optimal baselines, compatible function approximations and all-action gradients. However, as even the analytically obtainable policy gradients perform unnaturally slow, it required the step from ÔvanillaÕ policy gradient methods towards natural policy gradients in order to overcome the inefficiency of the gradient descent. This development resulted into the Natural Actor-Critic architecture which can be shown to be very efficient in application to motor primitive learning for robotics.

[BibTex]

[BibTex]


no image
Policy Learning for Motor Skills

Peters, J., Schaal, S.

In Proceedings of 14th International Conference on Neural Information Processing (ICONIP), pages: 233-242, (Editors: Ishikawa, M. , K. Doya, H. Miyamoto, T. Yamakawa), 2007, clmc (inproceedings)

Abstract
Policy learning which allows autonomous robots to adapt to novel situations has been a long standing vision of robotics, artificial intelligence, and cognitive sciences. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics, and usually scaling was only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general approach policy learning with the goal of an application to motor skill refinement in order to get one step closer towards human-like performance. For doing so, we study two major components for such an approach, i.e., firstly, we study policy learning algorithms which can be applied in the general setting of motor skill learning, and, secondly, we study a theoretically well-founded general approach to representing the required control structures for task representation and execution.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Reinforcement learning for operational space control

Peters, J., Schaal, S.

In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, pages: 2111-2116, IEEE Computer Society, ICRA, 2007, clmc (inproceedings)

Abstract
While operational space control is of essential importance for robotics and well-understood from an analytical point of view, it can be prohibitively hard to achieve accurate control in face of modeling errors, which are inevitable in complex robots, e.g., humanoid robots. In such cases, learning control methods can offer an interesting alternative to analytical control algorithms. However, the resulting supervised learning problem is ill-defined as it requires to learn an inverse mapping of a usually redundant system, which is well known to suffer from the property of non-convexity of the solution space, i.e., the learning system could generate motor commands that try to steer the robot into physically impossible configurations. The important insight that many operational space control algorithms can be reformulated as optimal control problems, however, allows addressing this inverse learning problem in the framework of reinforcement learning. However, few of the known optimization or reinforcement learning algorithms can be used in online learning control for robots, as they are either prohibitively slow, do not scale to interesting domains of complex robots, or require trying out policies generated by random search, which are infeasible for a physical system. Using a generalization of the EM-based reinforcement learning framework suggested by Dayan & Hinton, we reduce the problem of learning with immediate rewards to a reward-weighted regression problem with an adaptive, integrated reward transformation for faster convergence. The resulting algorithm is efficient, learns smoothly without dangerous jumps in solution space, and works well in applications of complex high degree-of-freedom robots.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Using reward-weighted regression for reinforcement learning of task space control

Peters, J., Schaal, S.

In Proceedings of the 2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning, pages: 262-267, Honolulu, Hawaii, April 1-5, 2007, 2007, clmc (inproceedings)

Abstract
In this paper, we evaluate different versions from the three main kinds of model-free policy gradient methods, i.e., finite difference gradients, `vanilla' policy gradients and natural policy gradients. Each of these methods is first presented in its simple form and subsequently refined and optimized. By carrying out numerous experiments on the cart pole regulator benchmark we aim to provide a useful baseline for future research on parameterized policy search algorithms. Portable C++ code is provided for both plant and algorithms; thus, the results in this paper can be reevaluated, reused and new algorithms can be inserted with ease.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Evaluation of Policy Gradient Methods and Variants on the Cart-Pole Benchmark

Riedmiller, M., Peters, J., Schaal, S.

In Proceedings of the 2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning, pages: 254-261, ADPRL, 2007, clmc (inproceedings)

Abstract
In this paper, we evaluate different versions from the three main kinds of model-free policy gradient methods, i.e., finite difference gradients, `vanilla' policy gradients and natural policy gradients. Each of these methods is first presented in its simple form and subsequently refined and optimized. By carrying out numerous experiments on the cart pole regulator benchmark we aim to provide a useful baseline for future research on parameterized policy search algorithms. Portable C++ code is provided for both plant and algorithms; thus, the results in this paper can be reevaluated, reused and new algorithms can be inserted with ease.

PDF [BibTex]

PDF [BibTex]

2006


no image
Global Biclustering of Microarray Data

Wolf, T., Brors, B., Hofmann, T., Georgii, E.

In ICDMW 2006, pages: 125-129, (Editors: Tsumoto, S. , C. W. Clifton, N. Zhong, X. Wu, J. Liu, B. W. Wah, Y.-M. Cheung), IEEE Computer Society, Los Alamitos, CA, USA, Sixth IEEE International Conference on Data Mining, December 2006 (inproceedings)

Abstract
We consider the problem of simultaneously clustering genes and conditions of a gene expression data matrix. A bicluster is defined as a subset of genes that show similar behavior within a subset of conditions. Finding biclusters can be useful for revealing groups of genes involved in the same molecular process as well as groups of conditions where this process takes place. Previous work either deals with local, bicluster-based criteria or assumes a very specific structure of the data matrix (e.g. checkerboard or block-diagonal) [11]. In contrast, our goal is to find a set of flexibly arranged biclusters which is optimal in regard to a global objective function. As this is a NP-hard combinatorial problem, we describe several techniques to obtain approximate solutions. We benchmarked our approach successfully on the Alizadeh B-cell lymphoma data set [1].

Web DOI [BibTex]

2006

Web DOI [BibTex]


no image
Conformal Multi-Instance Kernels

Blaschko, M., Hofmann, T.

In NIPS 2006 Workshop on Learning to Compare Examples, pages: 1-6, NIPS Workshop on Learning to Compare Examples, December 2006 (inproceedings)

Abstract
In the multiple instance learning setting, each observation is a bag of feature vectors of which one or more vectors indicates membership in a class. The primary task is to identify if any vectors in the bag indicate class membership while ignoring vectors that do not. We describe here a kernel-based technique that defines a parametric family of kernels via conformal transformations and jointly learns a discriminant function over bags together with the optimal parameter settings of the kernel. Learning a conformal transformation effectively amounts to weighting regions in the feature space according to their contribution to classification accuracy; regions that are discriminative will be weighted higher than regions that are not. This allows the classifier to focus on regions contributing to classification accuracy while ignoring regions that correspond to vectors found both in positive and in negative bags. We show how parameters of this transformation can be learned for support vector machines by posing the problem as a multiple kernel learning problem. The resulting multiple instance classifier gives competitive accuracy for several multi-instance benchmark datasets from different domains.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Information-theoretic Metric Learning

Davis, J., Kulis, B., Sra, S., Dhillon, I.

In NIPS 2006 Workshop on Learning to Compare Examples, pages: 1-5, NIPS Workshop on Learning to Compare Examples, December 2006 (inproceedings)

Abstract
We formulate the metric learning problem as that of minimizing the differential relative entropy between two multivariate Gaussians under constraints on the Mahalanobis distance function. Via a surprising equivalence, we show that this problem can be solved as a low-rank kernel learning problem. Specifically, we minimize the Burg divergence of a low-rank kernel to an input kernel, subject to pairwise distance constraints. Our approach has several advantages over existing methods. First, we present a natural information-theoretic formulation for the problem. Second, the algorithm utilizes the methods developed by Kulis et al. [6], which do not involve any eigenvector computation; in particular, the running time of our method is faster than most existing techniques. Third, the formulation offers insights into connections between metric learning and kernel learning.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Pattern Mining in Frequent Dynamic Subgraphs

Borgwardt, KM., Kriegel, H-P., Wackersreuther, P.

In pages: 818-822, (Editors: Clifton, C.W.), IEEE Computer Society, Los Alamitos, CA, USA, Sixth International Conference on Data Mining (ICDM), December 2006 (inproceedings)

Abstract
Graph-structured data is becoming increasingly abundant in many application domains. Graph mining aims at finding interesting patterns within this data that represent novel knowledge. While current data mining deals with static graphs that do not change over time, coming years will see the advent of an increasing number of time series of graphs. In this article, we investigate how pattern mining on static graphs can be extended to time series of graphs. In particular, we are considering dynamic graphs with edge insertions and edge deletions over time. We define frequency in this setting and provide algorithmic solutions for finding frequent dynamic subgraph patterns. Existing subgraph mining algorithms can be easily integrated into our framework to make them handle dynamic graphs. Experimental results on real-world data confirm the practical feasibility of our approach.

Web DOI [BibTex]

Web DOI [BibTex]


no image
3DString: a feature string kernel for 3D object classification on voxelized data

Assfalg, J., Borgwardt, KM., Kriegel, H-P.

In pages: 198-207, (Editors: Yu, P.S. , V.J. Tsotras, E.A. Fox, B. Liu), ACM Press, New York, NY, USA, 15th ACM International Conference on Information and Knowledge Management (CIKM), November 2006 (inproceedings)

Abstract
Classification of 3D objects remains an important task in many areas of data management such as engineering, medicine or biology. As a common preprocessing step in current approaches to classification of voxelized 3D objects, voxel representations are transformed into a feature vector description.In this article, we introduce an approach of transforming 3D objects into feature strings which represent the distribution of voxels over the voxel grid. Attractively, this feature string extraction can be performed in linear runtime with respect to the number of voxels. We define a similarity measure on these feature strings that counts common k-mers in two input strings, which is referred to as the spectrum kernel in the field of kernel methods. We prove that on our feature strings, this similarity measure can be computed in time linear to the number of different characters in these strings. This linear runtime behavior makes our kernel attractive even for large datasets that occur in many application domains. Furthermore, we explain that our similarity measure induces a metric which allows to combine it with an M-tree for handling of large volumes of data. Classification experiments on two published benchmark datasets show that our novel approach is competitive with the best state-of-the-art methods for 3D object classification.

DOI [BibTex]

DOI [BibTex]


no image
Adapting Spatial Filter Methods for Nonstationary BCIs

Tomioka, R., Hill, J., Blankertz, B., Aihara, K.

In IBIS 2006, pages: 65-70, 2006 Workshop on Information-Based Induction Sciences, November 2006 (inproceedings)

Abstract
A major challenge in applying machine learning methods to Brain-Computer Interfaces (BCIs) is to overcome the possible nonstationarity in the data from the datablock the method is trained on and that the method is applied to. Assuming the joint distributions of the whitened signal and the class label to be identical in two blocks, where the whitening is done in each block independently, we propose a simple adaptation formula that is applicable to a broad class of spatial filtering methods including ICA, CSP, and logistic regression classifiers. We characterize the class of linear transformations for which the above assumption holds. Experimental results on 60 BCI datasets show improved classification accuracy compared to (a) fixed spatial filter approach (no adaptation) and (b) fixed spatial pattern approach (proposed by Hill et al., 2006 [1]).

PDF [BibTex]

PDF [BibTex]


no image
A Linear Programming Approach for Molecular QSAR analysis

Saigo, H., Kadowaki, T., Tsuda, K.

In MLG 2006, pages: 85-96, (Editors: Gärtner, T. , G. C. Garriga, T. Meinl), International Workshop on Mining and Learning with Graphs, September 2006, Best Paper Award (inproceedings)

Abstract
Small molecules in chemistry can be represented as graphs. In a quantitative structure-activity relationship (QSAR) analysis, the central task is to find a regression function that predicts the activity of the molecule in high accuracy. Setting a QSAR as a primal target, we propose a new linear programming approach to the graph-based regression problem. Our method extends the graph classification algorithm by Kudo et al. (NIPS 2004), which is a combination of boosting and graph mining. Instead of sequential multiplicative updates, we employ the linear programming boosting (LP) for regression. The LP approach allows to include inequality constraints for the parameter vector, which turns out to be particularly useful in QSAR tasks where activity values are sometimes unavailable. Furthermore, the efficiency is improved significantly by employing multiple pricing.

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Incremental Aspect Models for Mining Document Streams

Surendran, A., Sra, S.

In PKDD 2006, pages: 633-640, (Editors: Fürnkranz, J. , T. Scheffer, M. Spiliopoulou), Springer, Berlin, Germany, 10th European Conference on Principles and Practice of Knowledge Discovery in Databases, September 2006 (inproceedings)

Abstract
In this paper we introduce a novel approach for incrementally building aspect models, and use it to dynamically discover underlying themes from document streams. Using the new approach we present an application which we call “query-line tracking” i.e., we automatically discover and summarize different themes or stories that appear over time, and that relate to a particular query. We present evaluation on news corpora to demonstrate the strength of our method for both query-line tracking, online indexing and clustering.

Web DOI [BibTex]

Web DOI [BibTex]


no image
PALMA: Perfect Alignments using Large Margin Algorithms

Rätsch, G., Hepp, B., Schulze, U., Ong, C.

In GCB 2006, pages: 104-113, (Editors: Huson, D. , O. Kohlbacher, A. Lupas, K. Nieselt, A. Zell), Gesellschaft für Informatik, Bonn, Germany, German Conference on Bioinformatics, September 2006 (inproceedings)

Abstract
Despite many years of research on how to properly align sequences in the presence of sequencing errors, alternative splicing and micro-exons, the correct alignment of mRNA sequences to genomic DNA is still a challenging task. We present a novel approach based on large margin learning that combines kernel based splice site predictions with common sequence alignment techniques. By solving a convex optimization problem, our algorithm -- called PALMA -- tunes the parameters of the model such that the true alignment scores higher than all other alignments. In an experimental study on the alignments of mRNAs containing artificially generated micro-exons, we show that our algorithm drastically outperforms all other methods: It perfectly aligns all 4358 sequences on an hold-out set, while the best other method misaligns at least 90 of them. Moreover, our algorithm is very robust against noise in the query sequence: when deleting, inserting, or mutating up to 50% of the query sequence, it still aligns 95% of all sequences correctly, while other methods achieve less than 36% accuracy. For datasets, additional results and a stand-alone alignment tool see http://www.fml.mpg.de/raetsch/projects/palma.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Graph Based Semi-Supervised Learning with Sharper Edges

Shin, H., Hill, N., Rätsch, G.

In ECML 2006, pages: 401-412, (Editors: Fürnkranz, J. , T. Scheffer, M. Spiliopoulou), Springer, Berlin, Germany, 17th European Conference on Machine Learning (ECML), September 2006 (inproceedings)

Abstract
In many graph-based semi-supervised learning algorithms, edge weights are assumed to be fixed and determined by the data points‘ (often symmetric)relationships in input space, without considering directionality. However, relationships may be more informative in one direction (e.g. from labelled to unlabelled) than in the reverse direction, and some relationships (e.g. strong weights between oppositely labelled points) are unhelpful in either direction. Undesirable edges may reduce the amount of influence an informative point can propagate to its neighbours -- the point and its outgoing edges have been ``blunted.‘‘ We present an approach to ``sharpening‘‘ in which weights are adjusted to meet an optimization criterion wherever they are directed towards labelled points. This principle can be applied to a wide variety of algorithms. In the current paper, we present one ad hoc solution satisfying the principle, in order to show that it can improve performance on a number of publicly available benchmark data sets.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Robust MEG Source Localization of Event Related Potentials: Identifying Relevant Sources by Non-Gaussianity

Breun, P., Grosse-Wentrup, M., Utschick, W., Buss, M.

In DAGM 2006, pages: 394-403, (Editors: Franke, K. , K.-R. Müller, B. Nickolay, R. Schäfer), Springer, Berlin, Germany, 28th Annual Symposium of the German Association for Pattern Recognition, September 2006 (inproceedings)

Abstract
Independent Component Analysis (ICA) is a frequently used preprocessing step in source localization of MEG and EEG data. By decomposing the measured data into maximally independent components (ICs), estimates of the time course and the topographies of neural sources are obtained. In this paper, we show that when using estimated source topographies for localization, correlations between neural sources introduce an error into the obtained source locations. This error can be avoided by reprojecting ICs onto the observation space, but requires the identification of relevant ICs. For Event Related Potentials (ERPs), we identify relevant ICs by estimating their non-Gaussianity. The efficacy of the approach is tested on auditory evoked potentials (AEPs) recorded by MEG. It is shown that ten trials are sufficient for reconstructing all important characteristics of the AEP, and source localization of the reconstructed ERP yields the same focus of activity as the average of 250 trials.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Finite-Horizon Optimal State-Feedback Control of Nonlinear Stochastic Systems Based on a Minimum Principle

Deisenroth, MP., Ohtsuka, T., Weissel, F., Brunn, D., Hanebeck, UD.

In MFI 2006, pages: 371-376, (Editors: Hanebeck, U. D.), IEEE Service Center, Piscataway, NJ, USA, 6th IEEE International Conference on Multisensor Fusion and Integration, September 2006 (inproceedings)

Abstract
In this paper, an approach to the finite-horizon optimal state-feedback control problem of nonlinear, stochastic, discrete-time systems is presented. Starting from the dynamic programming equation, the value function will be approximated by means of Taylor series expansion up to second-order derivatives. Moreover, the problem will be reformulated, such that a minimum principle can be applied to the stochastic problem. Employing this minimum principle, the optimal control problem can be rewritten as a two-point boundary-value problem to be solved at each time step of a shrinking horizon. To avoid numerical problems, the two-point boundary-value problem will be solved by means of a continuation method. Thus, the curse of dimensionality of dynamic programming is avoided, and good candidates for the optimal state-feedback controls are obtained. The proposed approach will be evaluated by means of a scalar example system.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Uniform Convergence of Adaptive Graph-Based Regularization

Hein, M.

In COLT 2006, pages: 50-64, (Editors: Lugosi, G. , H.-U. Simon), Springer, Berlin, Germany, 19th Annual Conference on Learning Theory, September 2006 (inproceedings)

Abstract
The regularization functional induced by the graph Laplacian of a random neighborhood graph based on the data is adaptive in two ways. First it adapts to an underlying manifold structure and second to the density of the data-generating probability measure. We identify in this paper the limit of the regularizer and show uniform convergence over the space of Hoelder functions. As an intermediate step we derive upper bounds on the covering numbers of Hoelder functions on compact Riemannian manifolds, which are of independent interest for the theoretical analysis of manifold-based learning methods.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Efficient Large Scale Linear Programming Support Vector Machines

Sra, S.

In ECML 2006, pages: 767-774, (Editors: Fürnkranz, J. , T. Scheffer, M. Spiliopoulou), Springer, Berlin, Germany, 17th European Conference on Machine Learning, September 2006 (inproceedings)

Abstract
This paper presents a decomposition method for efficiently constructing ℓ1-norm Support Vector Machines (SVMs). The decomposition algorithm introduced in this paper possesses many desirable properties. For example, it is provably convergent, scales well to large datasets, is easy to implement, and can be extended to handle support vector regression and other SVM variants. We demonstrate the efficiency of our algorithm by training on (dense) synthetic datasets of sizes up to 20 million points (in ℝ32). The results show our algorithm to be several orders of magnitude faster than a previously published method for the same task. We also present experimental results on real data sets—our method is seen to be not only very fast, but also highly competitive against the leading SVM implementations.

Web DOI [BibTex]

Web DOI [BibTex]