Header logo is ei


2014


no image
Multi-Task Policy Search for Robotics

Deisenroth, M., Englert, P., Peters, J., Fox, D.

In Proceedings of 2014 IEEE International Conference on Robotics and Automation, pages: 3876-3881, IEEE, ICRA, 2014 (inproceedings)

PDF DOI [BibTex]

2014

PDF DOI [BibTex]


no image
Sample-Based Information-Theoretic Stochastic Optimal Control

Lioutikov, R., Paraschos, A., Peters, J., Neumann, G.

In Proceedings of 2014 IEEE International Conference on Robotics and Automation, pages: 3896-3902, IEEE, ICRA, 2014 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Probabilistic Shortest Path Tractography in DTI Using Gaussian Process ODE Solvers

Schober, M., Kasenburg, N., Feragen, A., Hennig, P., Hauberg, S.

In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014, Lecture Notes in Computer Science Vol. 8675, pages: 265-272, (Editors: P. Golland, N. Hata, C. Barillot, J. Hornegger and R. Howe), Springer, Heidelberg, MICCAI, 2014 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Estimating Causal Effects by Bounding Confounding

Geiger, P., Janzing, D., Schölkopf, B.

In Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence , pages: 240-249 , (Editors: Nevin L. Zhang and Jin Tian), AUAI Press Corvallis, Oregon , UAI, 2014 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Kernel Mean Estimation and Stein Effect

Muandet, K., Fukumizu, K., Sriperumbudur, B., Gretton, A., Schölkopf, B.

In Proceedings of the 31st International Conference on Machine Learning, W&CP 32 (1), pages: 10-18, (Editors: Eric P. Xing and Tony Jebara), JMLR, ICML, 2014 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Active Reward Learning

Daniel, C., Viering, M., Metz, J., Kroemer, O., Peters, J.

In Proceedings of Robotics: Science & Systems, (Editors: Fox, D., Kavraki, LE., and Kurniawati, H.), RSS, 2014 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Multi-modal filtering for non-linear estimation

Kamthe, S., Peters, J., Deisenroth, M.

In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pages: 7979-7983, IEEE, ICASSP, 2014 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Inferring latent structures via information inequalities

Chaves, R., Luft, L., Maciel, T., Gross, D., Janzing, D., Schölkopf, B.

In Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence, pages: 112-121, (Editors: NL Zhang and J Tian), AUAI Press, Corvallis, Oregon, UAI, 2014 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Re-ranking Approach to Classification in Large-scale Power-law Distributed Category Systems

Babbar, R., Partalas, I., Gaussier, E., Amini, M.

In Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval, pages: 1059-1062, (Editors: S Geva and A Trotman and P Bruza and CLA Clarke and K Järvelin), ACM, New York, NY, USA, SIGIR, 2014 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Policy Search For Learning Robot Control Using Sparse Data

Bischoff, B., Nguyen-Tuong, D., van Hoof, H., McHutchon, A., Rasmussen, C., Knoll, A., Peters, J., Deisenroth, M.

In Proceedings of 2014 IEEE International Conference on Robotics and Automation, pages: 3882-3887, IEEE, ICRA, 2014 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Learning to Unscrew a Light Bulb from Demonstrations

Manschitz, S., Kober, J., Gienger, M., Peters, J.

In Proceedings for the joint conference of ISR 2014, 45th International Symposium on Robotics and Robotik 2014, 2014 (inproceedings)

[BibTex]

[BibTex]


no image
Towards Neurofeedback Training of Associative Brain Areas for Stroke Rehabilitation

Özdenizci, O., Meyer, T., Cetin, M., Grosse-Wentrup, M.

In Proceedings of the 6th International Brain-Computer Interface Conference, (Editors: G Müller-Putz and G Bauernfeind and C Brunner and D Steyrl and S Wriessnegger and R Scherer), 2014 (inproceedings)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Sampling for Inference in Probabilistic Models with Fast Bayesian Quadrature

Gunter, T., Osborne, M., Garnett, R., Hennig, P., Roberts, S.

In Advances in Neural Information Processing Systems 27, pages: 2789-2797, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), Curran Associates, Inc., 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014 (inproceedings)

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Scalable Kernel Methods via Doubly Stochastic Gradients

Dai, B., Xie, B., He, N., Liang, Y., Raj, A., Balcan, M., Song, L.

Advances in Neural Information Processing Systems 27, pages: 3041-3049, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Learning Economic Parameters from Revealed Preferences

Balcan, M., Daniely, A., Mehta, R., Urner, R., Vazirani, V. V.

In Web and Internet Economics - 10th International Conference, 8877, pages: 338-353, Lecture Notes in Computer Science, (Editors: Liu, T.-Y. and Qi, Q. and Ye, Y.), WINE, 2014 (inproceedings)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Fast Newton methods for the group fused lasso

Wytock, M., Sra, S., Kolter, J. Z.

In Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence, pages: 888-897, (Editors: Zhang, N. L. and Tian, J.), AUAI Press, UAI, 2014 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Mind the Gap: Subspace based Hierarchical Domain Adaptation

Raj, A., Namboodiri, V., Tuytelaars, T.

Transfer and Multi-task learning Workshop in Advances in Neural Information System Conference 27, 2014 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Localized Complexities for Transductive Learning

Tolstikhin, I., Blanchard, G., Kloft, M.

In Proceedings of the 27th Conference on Learning Theory, 35, pages: 857-884, (Editors: Balcan, M.-F. and Feldman, V. and Szepesvári, C.), JMLR, COLT, 2014 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Efficient Structured Matrix Rank Minimization

Yu, A. W., Ma, W., Yu, Y., Carbonell, J., Sra, S.

Advances in Neural Information Processing Systems 27, pages: 1350-1358, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), Curran Associates, Inc., 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Towards building a Crowd-Sourced Sky Map

Lang, D., Hogg, D., Schölkopf, B.

In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, JMLR W\&CP 33, pages: 549–557, (Editors: S. Kaski and J. Corander), JMLR.org, AISTATS, 2014 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Incremental Local Gaussian Regression

Meier, F., Hennig, P., Schaal, S.

In Advances in Neural Information Processing Systems 27, pages: 972-980, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014, clmc (inproceedings)

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Learning to Deblur

Schuler, C. J., Hirsch, M., Harmeling, S., Schölkopf, B.

In NIPS 2014 Deep Learning and Representation Learning Workshop, 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Efficient Bayesian Local Model Learning for Control

Meier, F., Hennig, P., Schaal, S.

In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, pages: 2244 - 2249, IROS, 2014, clmc (inproceedings)

Abstract
Model-based control is essential for compliant controland force control in many modern complex robots, like humanoidor disaster robots. Due to many unknown and hard tomodel nonlinearities, analytical models of such robots are oftenonly very rough approximations. However, modern optimizationcontrollers frequently depend on reasonably accurate models,and degrade greatly in robustness and performance if modelerrors are too large. For a long time, machine learning hasbeen expected to provide automatic empirical model synthesis,yet so far, research has only generated feasibility studies butno learning algorithms that run reliably on complex robots.In this paper, we combine two promising worlds of regressiontechniques to generate a more powerful regression learningsystem. On the one hand, locally weighted regression techniquesare computationally efficient, but hard to tune due to avariety of data dependent meta-parameters. On the other hand,Bayesian regression has rather automatic and robust methods toset learning parameters, but becomes quickly computationallyinfeasible for big and high-dimensional data sets. By reducingthe complexity of Bayesian regression in the spirit of local modellearning through variational approximations, we arrive at anovel algorithm that is computationally efficient and easy toinitialize for robust learning. Evaluations on several datasetsdemonstrate very good learning performance and the potentialfor a general regression learning tool for robotics.

PDF link (url) DOI [BibTex]

PDF link (url) DOI [BibTex]


no image
The sample complexity of agnostic learning under deterministic labels

Ben-David, S., Urner, R.

In Proceedings of the 27th Conference on Learning Theory, 35, pages: 527-542, (Editors: Balcan, M.-F. and Feldman, V. and Szepesvári, C.), JMLR, COLT, 2014 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Towards an optimal stochastic alternating direction method of multipliers

Azadi, S., Sra, S.

Proceedings of the 31st International Conference on Machine Learning, 32, pages: 620-628, (Editors: Xing, E. P. and Jebara, T.), JMLR, ICML, 2014 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Open Problem: Finding Good Cascade Sampling Processes for the Network Inference Problem

Gomez Rodriguez, M., Song, L., Schölkopf, B.

Proceedings of the 27th Conference on Learning Theory, 35, pages: 1276-1279, (Editors: Balcan, M.-F. and Szepesvári, C.), JMLR.org, COLT, 2014 (conference)

PDF [BibTex]

PDF [BibTex]


no image
Curiosity-driven learning with Context Tree Weighting

Peng, Z, Braun, DA

pages: 366-367, IEEE, Piscataway, NJ, USA, 4th Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics (IEEE ICDL-EPIROB), October 2014 (conference)

Abstract
In the first simulation, the intrinsic motivation of the agent was given by measuring learning progress through reduction in informational surprise (Figure 1 A-C). This way the agent should first learn the action that is easiest to learn (a1), and then switch to other actions that still allow for learning (a2) and ignore actions that cannot be learned at all (a3). This is exactly what we found in our simple environment. Compared to the original developmental learning algorithm based on learning progress proposed by Oudeyer [2], our Context Tree Weighting approach does not require local experts to do prediction, rather it learns the conditional probability distribution over observations given action in one structure. In the second simulation, the intrinsic motivation of the agent was given by measuring compression progress through improvement in compressibility (Figure 1 D-F). The agent behaves similarly: the agent first concentrates on the action with the most predictable consequence and then switches over to the regular action where the consequence is more difficult to predict, but still learnable. Unlike the previous simulation, random actions are also interesting to some extent because the compressed symbol strings use 8-bit representations, while only 2 bits are required for our observation space. Our preliminary results suggest that Context Tree Weighting might provide a useful representation to study problems of development.

DOI [BibTex]

DOI [BibTex]


no image
Monte Carlo methods for exact & efficient solution of the generalized optimality equations

Ortega, PA, Braun, DA, Tishby, N

pages: 4322-4327, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), June 2014 (conference)

Abstract
Previous work has shown that classical sequential decision making rules, including expectimax and minimax, are limit cases of a more general class of bounded rational planning problems that trade off the value and the complexity of the solution, as measured by its information divergence from a given reference. This allows modeling a range of novel planning problems having varying degrees of control due to resource constraints, risk-sensitivity, trust and model uncertainty. However, so far it has been unclear in what sense information constraints relate to the complexity of planning. In this paper, we introduce Monte Carlo methods to solve the generalized optimality equations in an efficient \& exact way when the inverse temperatures in a generalized decision tree are of the same sign. These methods highlight a fundamental relation between inverse temperatures and the number of Monte Carlo proposals. In particular, it is seen that the number of proposals is essentially independent of the size of the decision tree.

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2003


no image
How to Deal with Large Dataset, Class Imbalance and Binary Output in SVM based Response Model

Shin, H., Cho, S.

In Proc. of the Korean Data Mining Conference, pages: 93-107, Korean Data Mining Conference, December 2003, Best Paper Award (inproceedings)

Abstract
[Abstract]: Various machine learning methods have made a rapid transition to response modeling in search of improved performance. And support vector machine (SVM) has also been attracting much attention lately. This paper presents an SVM response model. We are specifically focusing on the how-to’s to circumvent practical obstacles, such as how to face with class imbalance problem, how to produce the scores from an SVM classifier for lift chart analysis, and how to evaluate the models on accuracy and profit. Besides coping with the intractability problem of SVM training caused by large marketing dataset, a previously proposed pattern selection algorithm is introduced. SVM training accompanies time complexity of the cube of training set size. The pattern selection algorithm picks up important training patterns before SVM response modeling. We made comparison on SVM training results between the pattern selection algorithm and random sampling. Three aspects of SVM response models were evaluated: accuracies, lift chart analysis, and computational efficiency. The SVM trained with selected patterns showed a high accuracy, a high uplift in profit and in response rate, and a high computational efficiency.

PDF [BibTex]

2003

PDF [BibTex]


no image
On the Complexity of Learning the Kernel Matrix

Bousquet, O., Herrmann, D.

In Advances in Neural Information Processing Systems 15, pages: 399-406, (Editors: Becker, S. , S. Thrun, K. Obermayer), The MIT Press, Cambridge, MA, USA, Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
We investigate data based procedures for selecting the kernel when learning with Support Vector Machines. We provide generalization error bounds by estimating the Rademacher complexities of the corresponding function classes. In particular we obtain a complexity bound for function classes induced by kernels with given eigenvectors, i.e., we allow to vary the spectrum and keep the eigenvectors fix. This bound is only a logarithmic factor bigger than the complexity of the function class induced by a single kernel. However, optimizing the margin over such classes leads to overfitting. We thus propose a suitable way of constraining the class. We use an efficient algorithm to solve the resulting optimization problem, present preliminary experimental results, and compare them to an alignment-based approach.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Bayesian Monte Carlo

Rasmussen, CE., Ghahramani, Z.

In Advances in Neural Information Processing Systems 15, pages: 489-496, (Editors: Becker, S. , S. Thrun, K. Obermayer), MIT Press, Cambridge, MA, USA, Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
We investigate Bayesian alternatives to classical Monte Carlo methods for evaluating integrals. Bayesian Monte Carlo (BMC) allows the incorporation of prior knowledge, such as smoothness of the integrand, into the estimation. In a simple problem we show that this outperforms any classical importance sampling method. We also attempt more challenging multidimensional integrals involved in computing marginal likelihoods of statistical models (a.k.a. partition functions and model evidences). We find that Bayesian Monte Carlo outperformed Annealed Importance Sampling, although for very high dimensional problems or problems with massive multimodality BMC may be less adequate. One advantage of the Bayesian approach to Monte Carlo is that samples can be drawn from any distribution. This allows for the possibility of active design of sample points so as to maximise information gain.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Discriminative Learning for Label Sequences via Boosting

Altun, Y., Hofmann, T., Johnson, M.

In Advances in Neural Information Processing Systems 15, pages: 977-984, (Editors: Becker, S. , S. Thrun, K. Obermayer ), MIT Press, Cambridge, MA, USA, Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
This paper investigates a boosting approach to discriminative learning of label sequences based on a sequence rank loss function.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Control, Planning, Learning, and Imitation with Dynamic Movement Primitives

Schaal, S., Peters, J., Nakanishi, J., Ijspeert, A.

In IROS 2003, pages: 1-21, Workshop on Bilateral Paradigms on Humans and Humanoids, IEEE International Conference on Intelligent Robots and Systems, October 2003 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Cluster Kernels for Semi-Supervised Learning

Chapelle, O., Weston, J., Schölkopf, B.

In Advances in Neural Information Processing Systems 15, pages: 585-592, (Editors: S Becker and S Thrun and K Obermayer), MIT Press, Cambridge, MA, USA, 16th Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
We propose a framework to incorporate unlabeled data in kernel classifier, based on the idea that two points in the same cluster are more likely to have the same label. This is achieved by modifying the eigenspectrum of the kernel matrix. Experimental results assess the validity of this approach.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Mismatch String Kernels for SVM Protein Classification

Leslie, C., Eskin, E., Weston, J., Noble, W.

In Advances in Neural Information Processing Systems 15, pages: 1417-1424, (Editors: Becker, S. , S. Thrun, K. Obermayer), MIT Press, Cambridge, MA, USA, Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
We introduce a class of string kernels, called mismatch kernels, for use with support vector machines (SVMs) in a discriminative approach to the protein classification problem. These kernels measure sequence similarity based on shared occurrences of k-length subsequences, counted with up to m mismatches, and do not rely on any generative model for the positive training sequences. We compute the kernels efficiently using a mismatch tree data structure and report experiments on a benchmark SCOP dataset, where we show that the mismatch kernel used with an SVM classifier performs as well as the Fisher kernel, the most successful method for remote homology detection, while achieving considerable computational savings.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Multiple-step ahead prediction for non linear dynamic systems: A Gaussian Process treatment with propagation of the uncertainty

Girard, A., Rasmussen, CE., Quiñonero-Candela, J., Murray-Smith, R.

In Advances in Neural Information Processing Systems 15, pages: 529-536, (Editors: Becker, S. , S. Thrun, K. Obermayer), MIT Press, Cambridge, MA, USA, Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
We consider the problem of multi-step ahead prediction in time series analysis using the non-parametric Gaussian process model. k-step ahead forecasting of a discrete-time non-linear dynamic system can be performed by doing repeated one-step ahead predictions. For a state-space model of the form y_t = f(y_{t-1},...,y_{t-L}), the prediction of y at time t + k is based on the point estimates of the previous outputs. In this paper, we show how, using an analytical Gaussian approximation, we can formally incorporate the uncertainty about intermediate regressor values, thus updating the uncertainty on the current prediction.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernel Dependency Estimation

Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B., Vapnik, V.

In Advances in Neural Information Processing Systems 15, pages: 873-880, (Editors: S Becker and S Thrun and K Obermayer), MIT Press, Cambridge, MA, USA, 16th Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Incremental Gaussian Processes

Quinonero Candela, J., Winther, O.

In Advances in Neural Information Processing Systems 15, pages: 1001-1008, (Editors: Becker, S. , S. Thrun, K. Obermayer), MIT Press, Cambridge, MA, USA, Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
In this paper, we consider Tipping‘s relevance vector machine (RVM) and formalize an incremental training strategy as a variant of the expectation-maximization (EM) algorithm that we call subspace EM. Working with a subset of active basis functions, the sparsity of the RVM solution will ensure that the number of basis functions and thereby the computational complexity is kept low. We also introduce a mean field approach to the intractable classification model that is expected to give a very good approximation to exact Bayesian inference and contains the Laplace approximation as a special case. We test the algorithms on two large data sets with O(10^3-10^4) examples. The results indicate that Bayesian learning of large data sets, e.g. the MNIST database is realistic.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Linear Combinations of Optic Flow Vectors for Estimating Self-Motion: a Real-World Test of a Neural Model

Franz, MO., Chahl, JS.

In Advances in Neural Information Processing Systems 15, pages: 1319-1326, (Editors: Becker, S., S. Thrun and K. Obermayer), MIT Press, Cambridge, MA, USA, Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
The tangential neurons in the fly brain are sensitive to the typical optic flow patterns generated during self-motion. In this study, we examine whether a simplified linear model of these neurons can be used to estimate self-motion from the optic flow. We present a theory for the construction of an estimator consisting of a linear combination of optic flow vectors that incorporates prior knowledge both about the distance distribution of the environment, and about the noise and self-motion statistics of the sensor. The estimator is tested on a gantry carrying an omnidirectional vision sensor. The experiments show that the proposed approach leads to accurate and robust estimates of rotation rates, whereas translation estimates turn out to be less reliable.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Clustering with the Fisher score

Tsuda, K., Kawanabe, M., Müller, K.

In Advances in Neural Information Processing Systems 15, pages: 729-736, (Editors: Becker, S. , S. Thrun, K. Obermayer), MIT Press, Cambridge, MA, USA, Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
Recently the Fisher score (or the Fisher kernel) is increasingly used as a feature extractor for classification problems. The Fisher score is a vector of parameter derivatives of loglikelihood of a probabilistic model. This paper gives a theoretical analysis about how class information is preserved in the space of the Fisher score, which turns out that the Fisher score consists of a few important dimensions with class information and many nuisance dimensions. When we perform clustering with the Fisher score, K-Means type methods are obviously inappropriate because they make use of all dimensions. So we will develop a novel but simple clustering algorithm specialized for the Fisher score, which can exploit important dimensions. This algorithm is successfully tested in experiments with artificial data and real data (amino acid sequences).

PDF Web [BibTex]

PDF Web [BibTex]


no image
Derivative observations in Gaussian Process models of dynamic systems

Solak, E., Murray-Smith, R., Leithead, WE., Leith, D., Rasmussen, CE.

In Advances in Neural Information Processing Systems 15, pages: 1033-1040, (Editors: Becker, S., S. Thrun and K. Obermayer), MIT Press, Cambridge, MA, USA, Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
Gaussian processes provide an approach to nonparametric modelling which allows a straightforward combination of function and derivative observations in an empirical model. This is of particular importance in identification of nonlinear dynamic systems from experimental data. 1) It allows us to combine derivative information, and associated uncertainty with normal function observations into the learning and inference process. This derivative information can be in the form of priors specified by an expert or identified from perturbation data close to equilibrium. 2) It allows a seamless fusion of multiple local linear models in a consistent manner, inferring consistent models and ensuring that integrability constraints are met. 3) It improves dramatically the computational efficiency of Gaussian process models for dynamic system identification, by summarising large quantities of near-equilibrium data by a handful of linearisations, reducing the training set size - traditionally a problem for Gaussian process models.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Large Margin Methods for Label Sequence Learning

Altun, Y., Hofmann, T.

In pages: 993-996, International Speech Communication Association, Bonn, Germany, 8th European Conference on Speech Communication and Technology (EuroSpeech), September 2003 (inproceedings)

Web [BibTex]

Web [BibTex]


no image
Fast Pattern Selection Algorithm for Support Vector Classifiers: "Time Complexity Analysis"

Shin, H., Cho, S.

In Lecture Notes in Computer Science (LNCS 2690), LNCS 2690, pages: 1008-1015, Springer-Verlag, Heidelberg, The 4th International Conference on Intelligent Data Engineering (IDEAL), September 2003 (inproceedings)

Abstract
Training SVM requires large memory and long cpu time when the pattern set is large. To alleviate the computational burden in SVM training, we propose a fast preprocessing algorithm which selects only the patterns near the decision boundary. The time complexity of the proposed algorithm is much smaller than that of the naive M^2 algorithm

PDF [BibTex]

PDF [BibTex]


no image
Marginalized Kernels between Labeled Graphs

Kashima, H., Tsuda, K., Inokuchi, A.

In 20th International Conference on Machine Learning, pages: 321-328, (Editors: Faucett, T. and N. Mishra), 20th International Conference on Machine Learning, August 2003 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Sparse Gaussian Processes: inference, subspace identification and model selection

Csato, L., Opper, M.

In Proceedings, pages: 1-6, (Editors: Van der Hof, , Wahlberg), The Netherlands, 13th IFAC Symposium on System Identifiaction, August 2003, electronical version; Index ThA02-2 (inproceedings)

Abstract
Gaussian Process (GP) inference is a probabilistic kernel method where the GP is treated as a latent function. The inference is carried out using the Bayesian online learning and its extension to the more general iterative approach which we call TAP/EP learning. Sparsity is introduced in this context to make the TAP/EP method applicable to large datasets. We address the prohibitive scaling of the number of parameters by defining a subset of the training data that is used as the support the GP, thus the number of required parameters is independent of the training set, similar to the case of ``Support--‘‘ or ``Relevance--Vectors‘‘. An advantage of the full probabilistic treatment is that allows the computation of the marginal data likelihood or evidence, leading to hyper-parameter estimation within the GP inference. An EM algorithm to choose the hyper-parameters is proposed. The TAP/EP learning is the E-step and the M-step then updates the hyper-parameters. Due to the sparse E-step the resulting algorithm does not involve manipulation of large matrices. The presented algorithm is applicable to a wide variety of likelihood functions. We present results of applying the algorithm on classification and nonstandard regression problems for artificial and real datasets.

PDF GZIP [BibTex]

PDF GZIP [BibTex]


no image
Adaptive, Cautious, Predictive control with Gaussian Process Priors

Murray-Smith, R., Sbarbaro, D., Rasmussen, CE., Girard, A.

In Proceedings of the 13th IFAC Symposium on System Identification, pages: 1195-1200, (Editors: Van den Hof, P., B. Wahlberg and S. Weiland), Proceedings of the 13th IFAC Symposium on System Identification, August 2003 (inproceedings)

Abstract
Nonparametric Gaussian Process models, a Bayesian statistics approach, are used to implement a nonlinear adaptive control law. Predictions, including propagation of the state uncertainty are made over a k-step horizon. The expected value of a quadratic cost function is minimised, over this prediction horizon, without ignoring the variance of the model predictions. The general method and its main features are illustrated on a simulation example.

PDF [BibTex]

PDF [BibTex]


no image
Generative Model-based Clustering of Directional Data

Banerjee, A., Dhillon, I., Ghosh, J., Sra, S.

In Proc. ACK SIGKDD, pages: 00-00, KDD, August 2003 (inproceedings)

GZIP [BibTex]

GZIP [BibTex]


no image
Hidden Markov Support Vector Machines

Altun, Y., Tsochantaridis, I., Hofmann, T.

In pages: 4-11, (Editors: Fawcett, T. , N. Mishra), AAAI Press, Menlo Park, CA, USA, Twentieth International Conference on Machine Learning (ICML), August 2003 (inproceedings)

Web [BibTex]

Web [BibTex]


no image
How Many Neighbors To Consider in Pattern Pre-selection for Support Vector Classifiers?

Shin, H., Cho, S.

In Proc. of INNS-IEEE International Joint Conference on Neural Networks (IJCNN 2003), pages: 565-570, IJCNN, July 2003 (inproceedings)

Abstract
Training support vector classifiers (SVC) requires large memory and long cpu time when the pattern set is large. To alleviate the computational burden in SVC training, we previously proposed a preprocessing algorithm which selects only the patterns in the overlap region around the decision boundary, based on neighborhood properties [8], [9], [10]. The k-nearest neighbors’ class label entropy for each pattern was used to estimate the pattern’s proximity to the decision boundary. The value of parameter k is critical, yet has been determined by a rather ad-hoc fashion. We propose in this paper a systematic procedure to determine k and show its effectiveness through experiments.

PDF [BibTex]

PDF [BibTex]


no image
On the Representation, Learning and Transfer of Spatio-Temporal Movement Characteristics

Ilg, W., Bakir, GH., Mezger, J., Giese, MA.

In Humanoids Proceedings, pages: 0-0, Humanoids Proceedings, July 2003, electronical version (inproceedings)

Abstract
In this paper we present a learning-based approach for the modelling of complex movement sequences. Based on the method of Spatio-Temporal Morphable Models (STMMS. We derive a hierarchical algorithm that, in a first step, identifies automatically movement elements in movement sequences based on a coarse spatio-temporal description, and in a second step models these movement primitives by approximation through linear combinations of learned example movement trajectories. We describe the different steps of the algorithm and show how it can be applied for modelling and synthesis of complex sequences of human movements that contain movement elements with variable style. The proposed method is demonstrated on different applications of movement representation relevant for imitation learning of movement styles in humanoid robotics.

PDF [BibTex]

PDF [BibTex]