Header logo is ei


2010


no image
Using Model Knowledge for Learning Inverse Dynamics

Nguyen-Tuong, D., Peters, J.

In Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA 2010), pages: 2677-2682, IEEE, Piscataway, NJ, USA, 2010 IEEE International Conference on Robotics and Automation (ICRA), May 2010 (inproceedings)

Abstract
In recent years, learning models from data has become an increasingly interesting tool for robotics, as it allows straightforward and accurate model approximation. However, in most robot learning approaches, the model is learned from scratch disregarding all prior knowledge about the system. For many complex robot systems, available prior knowledge from advanced physics-based modeling techniques can entail valuable information for model learning that may result in faster learning speed, higher accuracy and better generalization. In this paper, we investigate how parametric physical models (e.g., obtained from rigid body dynamics) can be used to improve the learning performance, and, especially, how semiparametric regression methods can be applied in this context. We present two possible semiparametric regression approaches, where the knowledge of the physical model can either become part of the mean function or of the kernel in a nonparametric Gaussian process regression. We compare the learning performance o f these methods first on sampled data and, subsequently, apply the obtained inverse dynamics models in tracking control on a real Barrett WAM. The results show that the semiparametric models learned with rigid body dynamics as prior outperform the standard rigid body dynamics models on real data while generalizing better for unknown parts of the state space.

PDF Web DOI [BibTex]

2010

PDF Web DOI [BibTex]


no image
Coherent Inference on Optimal Play in Game Trees

Hennig, P., Stern, D., Graepel, T.

In JMLR Workshop and Conference Proceedings Volume 9: AISTATS 2010, pages: 326-333, (Editors: Teh, Y.W. , M. Titterington ), JMLR, Cambridge, MA, USA, Thirteenth International Conference on Artificial Intelligence and Statistics, May 2010 (inproceedings)

Abstract
Round-based games are an instance of discrete planning problems. Some of the best contemporary game tree search algorithms use random roll-outs as data. Relying on a good policy, they learn on-policy values by propagating information upwards in the tree, but not between sibling nodes. Here, we present a generative model and a corresponding approximate message passing scheme for inference on the optimal, off-policy value of nodes in smooth AND/OR trees, given random roll-outs. The crucial insight is that the distribution of values in game trees is not completely arbitrary. We define a generative model of the on-policy values using a latent score for each state, representing the value under the random roll-out policy. Inference on the values under the optimal policy separates into an inductive, pre-data step and a deductive, post-data part. Both can be solved approximately with Expectation Propagation, allowing off-policy value inference for any node in the (exponentially big) tree in linear time.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Incremental Sparsification for Real-time Online Model Learning

Nguyen-Tuong, D., Peters, J.

In JMLR Workshop and Conference Proceedings Volume 9: AISTATS 2010, pages: 557-564, (Editors: Teh, Y.W. , M. Titterington), JMLR, Cambridge, MA, USA, Thirteenth International Conference on Artificial Intelligence and Statistics, May 2010 (inproceedings)

Abstract
Online model learning in real-time is required by many applications such as in robot tracking control. It poses a difficult problem, as fast and incremental online regression with large data sets is the essential component which cannot be achieved by straightforward usage of off-the-shelf machine learning methods (such as Gaussian process regression or support vector regression). In this paper, we propose a framework for online, incremental sparsification with a fixed budget designed for large scale real-time model learning. The proposed approach combines a sparsification method based on an independence measure with a large scale database. In combination with an incremental learning approach such as sequential support vector regression, we obtain a regression method which is applicable in real-time online learning. It exhibits competitive learning accuracy when compared with standard regression techniques. Implementation on a real robot emphasizes the applicability of the proposed approach in real-time online model learning for real world systems.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Multitask Learning for Brain-Computer Interfaces

Alamgir, M., Grosse-Wentrup, M., Altun, Y.

In JMLR Workshop and Conference Proceedings Volume 9: AISTATS 2010, pages: 17-24, (Editors: Teh, Y.W. , M. Titterington), JMLR, Cambridge, MA, USA, Thirteenth International Conference on Artificial Intelligence and Statistics , May 2010 (inproceedings)

Abstract
Brain-computer interfaces (BCIs) are limited in their applicability in everyday settings by the current necessity to record subjectspecific calibration data prior to actual use of the BCI for communication. In this paper, we utilize the framework of multitask learning to construct a BCI that can be used without any subject-specific calibration process. We discuss how this out-of-the-box BCI can be further improved in a computationally efficient manner as subject-specific data becomes available. The feasibility of the approach is demonstrated on two sets of experimental EEG data recorded during a standard two-class motor imagery paradigm from a total of 19 healthy subjects. Specifically, we show that satisfactory classification results can be achieved with zero training data, and combining prior recordings with subjectspecific calibration data substantially outperforms using subject-specific data only. Our results further show that transfer between recordings under slightly different experimental setups is feasible.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Identifying Cause and Effect on Discrete Data using Additive Noise Models

Peters, J., Janzing, D., Schölkopf, B.

In JMLR Workshop and Conference Proceedings Volume 9: AISTATS 2010, pages: 597-604, (Editors: YW Teh and M Titterington), JMLR, Cambridge, MA, USA, 13th International Conference on Artificial Intelligence and Statistics, May 2010 (inproceedings)

Abstract
Inferring the causal structure of a set of random variables from a finite sample of the joint distribution is an important problem in science. Recently, methods using additive noise models have been suggested to approach the case of continuous variables. In many situations, however, the variables of interest are discrete or even have only finitely many states. In this work we extend the notion of additive noise models to these cases. Whenever the joint distribution P(X;Y ) admits such a model in one direction, e.g. Y = f(X) + N; N ? X, it does not admit the reversed model X = g(Y ) + ~N ; ~N ? Y as long as the model is chosen in a generic way. Based on these deliberations we propose an efficient new algorithm that is able to distinguish between cause and effect for a finite sample of discrete variables. We show that this algorithm works both on synthetic and real data sets.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Semi-supervised Learning via Generalized Maximum Entropy

Erkan, A., Altun, Y.

In JMLR Workshop and Conference Proceedings Volume 9: AISTATS 2010, pages: 209-216, (Editors: Teh, Y.W. , M. Titterington), JMLR, Cambridge, MA, USA, Thirteenth International Conference on Artificial Intelligence and Statistics , May 2010 (inproceedings)

Abstract
Various supervised inference methods can be analyzed as convex duals of the generalized maximum entropy (MaxEnt) framework. Generalized MaxEnt aims to find a distribution that maximizes an entropy function while respecting prior information represented as potential functions in miscellaneous forms of constraints and/or penalties. We extend this framework to semi-supervised learning by incorporating unlabeled data via modifications to these potential functions reflecting structural assumptions on the data geometry. The proposed approach leads to a family of discriminative semi-supervised algorithms, that are convex, scalable, inherently multi-class, easy to implement, and that can be kernelized naturally. Experimental evaluation of special cases shows the competitiveness of our methodology.

PDF Web [BibTex]

PDF Web [BibTex]


no image
A New Algorithm for Improving the Resolution of Cryo-EM Density Maps

Hirsch, M., Schölkopf, B., Habeck, M.

In Research in Computational Molecular Biology, Lecture Notes in Bioinformatics, Vol. 6044 , pages: 174-188, (Editors: B Berger), Springer, Berlin, Germany, 14th International Conference on Research in Computational Molecular Biology (RECOMB), May 2010 (inproceedings)

Abstract
Cryo-electron microscopy (cryo-EM) plays an increasingly prominent role in structure elucidation of macromolecular assemblies. Advances in experimental instrumentation and computational power have spawned numerous cryo-EM studies of large biomolecular complexes resulting in the reconstruction of three-dimensional density maps at intermediate and low resolution. In this resolution range, identification and interpretation of structural elements and modeling of biomolecular structure with atomic detail becomes problematic. In this paper, we present a novel algorithm that enhances the resolution of intermediate- and low-resolution density maps. Our underlying assumption is to model the low-resolution density map as a blurred and possibly noise-corrupted version of an unknown high-resolution map that we seek to recover by deconvolution. By exploiting the nonnegativity of both the high-resolution map and blur kernel we derive multiplicative updates reminiscent of those used in nonnegative matrix factorization. Our framework allows for easy incorporation of additional prior knowledge such as smoothness and sparseness, on both the sharpened density map and the blur kernel. A probabilistic formulation enables us to derive updates for the hyperparameters, therefore our approach has no parameter that needs adjustment. We apply the algorithm to simulated three-dimensional electron microscopic data. We show that our method provides better resolved density maps when compared with B-factor sharpening, especially in the presence of noise. Moreover, our method can use additional information provided by homologous structures, which helps to improve the resolution even further.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Movement Templates for Learning of Hitting and Batting

Kober, J., Mülling, K., Krömer, O., Lampert, C., Schölkopf, B., Peters, J.

In Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA 2010), pages: 853-858, IEEE, Piscataway, NJ, USA, 2010 IEEE International Conference on Robotics and Automation (ICRA), May 2010 (inproceedings)

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Experiments with Motor Primitives to learn Table Tennis

Peters, J., Mülling, K., Kober, J.

In Experimental Robotics, pages: 1-13, (Editors: Khatib, O. , V. Kumar, G. Sukhatme), Springer, Berlin, Germany, 12th International Symposium on Experimental Robotics (ISER), March 2010 (inproceedings)

Web [BibTex]

Web [BibTex]


no image
Causality: Objectives and Assessment

Guyon, I., Janzing, D., Schölkopf, B.

In JMLR Workshop and Conference Proceedings: Volume 6 , pages: 1-42, (Editors: I Guyon and D Janzing and B Schölkopf), MIT Press, Cambridge, MA, USA, Causality: Objectives and Assessment (NIPS Workshop) , February 2010 (inproceedings)

Abstract
The NIPS 2008 workshop on causality provided a forum for researchers from different horizons to share their view on causal modeling and address the difficult question of assessing causal models. There has been a vivid debate on properly separating the notion of causality from particular models such as graphical models, which have been dominating the field in the past few years. Part of the workshop was dedicated to discussing the results of a challenge, which offered a wide variety of applications of causal modeling. We have regrouped in these proceedings the best papers presented. Most lectures were videotaped or recorded. All information regarding the challenge and the lectures are found at http://www.clopinet.com/isabelle/Projects/NIPS2008/. This introduction provides a synthesis of the findings and a gentle introduction to causality topics, which are the object of active research.

Web [BibTex]

Web [BibTex]


no image
Leveraging Sequence Classification by Taxonomy-based Multitask Learning

Widmer, C., Leiva, J., Altun, Y., Rätsch, G.

In Research in Computational Molecular Biology, LNCS, Vol. 6044, pages: 522-534, (Editors: B Berger), Springer, Berlin, Germany, 14th Annual International Conference, RECOMB, 2010 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Probabilistic latent variable models for distinguishing between cause and effect

Mooij, J., Stegle, O., Janzing, D., Zhang, K., Schölkopf, B.

In Advances in Neural Information Processing Systems 23, pages: 1687-1695, (Editors: J Lafferty and CKI Williams and J Shawe-Taylor and RS Zemel and A Culotta), Curran, Red Hook, NY, USA, 24th Annual Conference on Neural Information Processing Systems (NIPS), 2010 (inproceedings)

Abstract
We propose a novel method for inferring whether X causes Y or vice versa from joint observations of X and Y. The basic idea is to model the observed data using probabilistic latent variable models, which incorporate the effects of unobserved noise. To this end, we consider the hypothetical effect variable to be a function of the hypothetical cause variable and an independent noise term (not necessarily additive). An important novel aspect of our work is that we do not restrict the model class, but instead put general non-parametric priors on this function and on the distribution of the cause. The causal direction can then be inferred by using standard Bayesian model selection. We evaluate our approach on synthetic data and real-world data and report encouraging results.

PDF Web [BibTex]

PDF Web [BibTex]


no image
JigPheno: Semantic Feature Extraction in biological images

Karaletsos, T., Stegle, O., Winn, J., Borgwardt, K.

In NIPS, Workshop on Machine Learning in Computational Biology, 2010 (inproceedings)

[BibTex]

[BibTex]


no image
Nonparametric Tree Graphical Models

Song, L., Gretton, A., Guestrin, C.

In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, Volume 9 , pages: 765-772, (Editors: YW Teh and M Titterington ), JMLR, AISTATS, 2010 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Novel machine learning methods for MHC Class I binding prediction

Widmer, C., Toussaint, N., Altun, Y., Kohlbacher, O., Rätsch, G.

In Pattern Recognition in Bioinformatics, pages: 98-109, (Editors: TMH Dijkstra and E Tsivtsivadze and E Marchiori and T Heskes), Springer, Berlin, Germany, 5th IAPR International Conference, PRIB, 2010 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Bootstrapping Apprenticeship Learning

Boularias, A., Chaib-Draa, B.

In Advances in Neural Information Processing Systems 23, pages: 289-297, (Editors: Lafferty, J. , C. K.I. Williams, J. Shawe-Taylor, R. S. Zemel, A. Culotta), Curran, Red Hook, NY, USA, Twenty-Fourth Annual Conference on Neural Information Processing Systems (NIPS), 2010 (inproceedings)

Abstract
We consider the problem of apprenticeship learning where the examples, demonstrated by an expert, cover only a small part of a large state space. Inverse Reinforcement Learning (IRL) provides an efficient tool for generalizing the demonstration, based on the assumption that the expert is maximizing a utility function that is a linear combination of state-action features. Most IRL algorithms use a simple Monte Carlo estimation to approximate the expected feature counts under the expert's policy. In this paper, we show that the quality of the learned policies is highly sensitive to the error in estimating the feature counts. To reduce this error, we introduce a novel approach for bootstrapping the demonstration by assuming that: (i), the expert is (near-)optimal, and (ii), the dynamics of the system is known. Empirical results on gridworlds and car racing problems show that our approach is able to learn good policies from a small number of demonstrations.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models

Zhang, K., Hyvärinen, A.

In JMLR Workshop and Conference Proceedings, Volume 6, pages: 157-164, (Editors: I Guyon and D Janzing and B Schölkopf), MIT Press, Cambridge, MA, USA, Causality: Objectives and Assessment (NIPS Workshop), 2010 (inproceedings)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Clustering Based Approach to Learning Regular Expressions over Large Alphabet for Noisy Unstructured Text

Babbar, R., Singh, N.

In Proceedings of the Fourth Workshop on Analytics for Noisy Unstructured Text Data, pages: 43-50, (Editors: R Basili and DP Lopresti and C Ringlstetter and S Roy and KU Schulz and LV Subramaniam), ACM, AND (in conjunction with CIKM), 2010 (inproceedings)

Web [BibTex]

Web [BibTex]


no image
Characteristic Kernels on Structured Domains Excel in Robotics and Human Action Recognition

Danafar, S., Gretton, A., Schmidhuber, J.

In Machine Learning and Knowledge Discovery in Databases, LNCS Vol. 6321, pages: 264-279, (Editors: JL Balcázar and F Bonchi and A Gionis and M Sebag), Springer, Berlin, Germany, ECML PKDD, 2010 (inproceedings)

Abstract
Embedding probability distributions into a sufficiently rich (characteristic) reproducing kernel Hilbert space enables us to take higher order statistics into account. Characterization also retains effective statistical relation between inputs and outputs in regression and classification. Recent works established conditions for characteristic kernels on groups and semigroups. Here we study characteristic kernels on periodic domains, rotation matrices, and histograms. Such structured domains are relevant for homogeneity testing, forward kinematics, forward dynamics, inverse dynamics, etc. Our kernel-based methods with tailored characteristic kernels outperform previous methods on robotics problems and also on a widely used benchmark for recognition of human actions in videos.

DOI [BibTex]

DOI [BibTex]


no image
Movement extraction by detecting dynamics switches and repetitions

Chiappa, S., Peters, J.

In Advances in Neural Information Processing Systems 23, pages: 388-396, (Editors: Lafferty, J. , C. K.I. Williams, J. Shawe-Taylor, R. S. Zemel, A. Culotta), Curran, Red Hook, NY, USA, Twenty-Fourth Annual Conference on Neural Information Processing Systems (NIPS), 2010 (inproceedings)

Abstract
Many time-series such as human movement data consist of a sequence of basic actions, e.g., forehands and backhands in tennis. Automatically extracting and characterizing such actions is an important problem for a variety of different applications. In this paper, we present a probabilistic segmentation approach in which an observed time-series is modeled as a concatenation of segments corresponding to different basic actions. Each segment is generated through a noisy transformation of one of a few hidden trajectories representing different types of movement, with possible time re-scaling. We analyze three different approximation methods for dealing with model intractability, and demonstrate how the proposed approach can successfully segment table tennis movements recorded using a robot arm as haptic input device.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Space-Variant Single-Image Blind Deconvolution for Removing Camera Shake

Harmeling, S., Hirsch, M., Schölkopf, B.

In Advances in Neural Information Processing Systems 23, pages: 829-837, (Editors: J Lafferty and CKI Williams and J Shawe-Taylor and RS Zemel and A Culotta), Curran, Red Hook, NY, USA, 24th Annual Conference on Neural Information Processing Systems (NIPS), 2010 (inproceedings)

Abstract
Modelling camera shake as a space-invariant convolution simplifies the problem of removing camera shake, but often insufficiently models actual motion blur such as those due to camera rotation and movements outside the sensor plane or when objects in the scene have different distances to the camera. In an effort to address these limitations, (i) we introduce a taxonomy of camera shakes, (ii) we build on a recently introduced framework for space-variant filtering by Hirsch et al. and a fast algorithm for single image blind deconvolution for space-invariant filters by Cho and Lee to construct a method for blind deconvolution in the case of space-variant blur, and (iii), we present an experimental setup for evaluation that allows us to take images with real camera shake while at the same time recording the spacevariant point spread function corresponding to that blur. Finally, we demonstrate that our method is able to deblur images degraded by spatially-varying blur originating from real camera shake, even without using additionally motion sensor information.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Getting lost in space: Large sample analysis of the resistance distance

von Luxburg, U., Radl, A., Hein, M.

In Advances in Neural Information Processing Systems 23, pages: 2622-2630, (Editors: Lafferty, J. , C. K.I. Williams, J. Shawe-Taylor, R. S. Zemel, A. Culotta), Curran, Red Hook, NY, USA, Twenty-Fourth Annual Conference on Neural Information Processing Systems (NIPS), 2010 (inproceedings)

Abstract
The commute distance between two vertices in a graph is the expected time it takes a random walk to travel from the first to the second vertex and back. We study the behavior of the commute distance as the size of the underlying graph increases. We prove that the commute distance converges to an expression that does not take into account the structure of the graph at all and that is completely meaningless as a distance function on the graph. Consequently, the use of the raw commute distance for machine learning purposes is strongly discouraged for large graphs and in high dimensions. As an alternative we introduce the amplified commute distance that corrects for the undesired large sample effects.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Distinguishing between cause and effect

Mooij, J., Janzing, D.

In JMLR Workshop and Conference Proceedings: Volume 6, pages: 147-156, (Editors: Guyon, I. , D. Janzing, B. Schölkopf), MIT Press, Cambridge, MA, USA, Causality: Objectives and Assessment (NIPS Workshop) , 2010 (inproceedings)

Abstract
We describe eight data sets that together formed the CauseEffectPairs task in the Causality Challenge #2: Pot-Luck competition. Each set consists of a sample of a pair of statistically dependent random variables. One variable is known to cause the other one, but this information was hidden from the participants; the task was to identify which of the two variables was the cause and which one the effect, based upon the observed sample. The data sets were chosen such that we expect common agreement on the ground truth. Even though part of the statistical dependences may also be due to hidden common causes, common sense tells us that there is a significant cause-effect relation between the two variables in each pair. We also present baseline results using three different causal inference methods.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernel Methods for Detecting the Direction of Time Series

Peters, J., Janzing, D., Gretton, A., Schölkopf, B.

In Advances in Data Analysis, Data Handling and Business Intelligence, pages: 57-66, (Editors: A Fink and B Lausen and W Seidel and A Ultsch), Springer, Berlin, Germany, 32nd Annual Conference of the Gesellschaft f{\"u}r Klassifikation e.V. (GfKl), 2010 (inproceedings)

Abstract
We propose two kernel based methods for detecting the time direction in empirical time series. First we apply a Support Vector Machine on the finite-dimensional distributions of the time series (classification method) by embedding these distributions into a Reproducing Kernel Hilbert Space. For the ARMA method we fit the observed data with an autoregressive moving average process and test whether the regression residuals are statistically independent of the past values. Whenever the dependence in one direction is significantly weaker than in the other we infer the former to be the true one. Both approaches were able to detect the direction of the true generating model for simulated data sets. We also applied our tests to a large number of real world time series. The ARMA method made a decision for a significant fraction of them, in which it was mostly correct, while the classification method did not perform as well, but still exceeded chance level.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Switched Latent Force Models for Movement Segmentation

Alvarez, M., Peters, J., Schölkopf, B., Lawrence, N.

In Advances in neural information processing systems 23, pages: 55-63, (Editors: J Lafferty and CKI Williams and J Shawe-Taylor and RS Zemel and A Culotta), Curran, Red Hook, NY, USA, 24th Annual Conference on Neural Information Processing Systems (NIPS), 2010 (inproceedings)

Abstract
Latent force models encode the interaction between multiple related dynamical systems in the form of a kernel or covariance function. Each variable to be modeled is represented as the output of a differential equation and each differential equation is driven by a weighted sum of latent functions with uncertainty given by a Gaussian process prior. In this paper we consider employing the latent force model framework for the problem of determining robot motor primitives. To deal with discontinuities in the dynamical systems or the latent driving force we introduce an extension of the basic latent force model, that switches between different latent functions and potentially different dynamical systems. This creates a versatile representation for robot movements that can capture discrete changes and non-linearities in the dynamics. We give illustrative examples on both synthetic data and for striking movements recorded using a BarrettWAM robot as haptic input device. Our inspiration is robot motor primitives, but we expect our model to have wide application for dynamical systems including models for human motion capture data and systems biology.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Naı̈ve Security in a Wi-Fi World

Swanson, C., Urner, R., Lank, E.

In Trust Management IV - 4th IFIP WG 11.11 International Conference Proceedings, pages: 32-47, (Editors: Nishigaki, M., Josang, A., Murayama, Y., Marsh, S.), IFIPTM, 2010 (inproceedings)

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2007


no image
Towards compliant humanoids: an experimental assessment of suitable task space position/orientation controllers

Nakanishi, J., Mistry, M., Peters, J., Schaal, S.

In IROS 2007, 2007, pages: 2520-2527, (Editors: Grant, E. , T. C. Henderson), IEEE Service Center, Piscataway, NJ, USA, IEEE/RSJ International Conference on Intelligent Robots and Systems, November 2007 (inproceedings)

Abstract
Compliant control will be a prerequisite for humanoid robotics if these robots are supposed to work safely and robustly in human and/or dynamic environments. One view of compliant control is that a robot should control a minimal number of degrees-of-freedom (DOFs) directly, i.e., those relevant DOFs for the task, and keep the remaining DOFs maximally compliant, usually in the null space of the task. This view naturally leads to task space control. However, surprisingly few implementations of task space control can be found in actual humanoid robots. This paper makes a first step towards assessing the usefulness of task space controllers for humanoids by investigating which choices of controllers are available and what inherent control characteristics they have—this treatment will concern position and orientation control, where the latter is based on a quaternion formulation. Empirical evaluations on an anthropomorphic Sarcos master arm illustrate the robustness of the different controllers as well as the eas e of implementing and tuning them. Our extensive empirical results demonstrate that simpler task space controllers, e.g., classical resolved motion rate control or resolved acceleration control can be quite advantageous in face of inevitable modeling errors in model-based control, and that well chosen formulations are easy to implement and quite robust, such that they are useful for humanoids.

PDF Web DOI [BibTex]

2007

PDF Web DOI [BibTex]


no image
Sistema avanzato per la classificazione delle aree agricole in immagini ad elevata risoluzione geometrica: applicazione al territorio del Trentino

Arnoldi, E., Bruzzone, L., Carlin, L., Pedron, L., Persello, C.

In pages: 1-6, 11. Conferenza Nazionale ASITA, November 2007 (inproceedings)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Performance Stabilization and Improvement in Graph-based Semi-supervised Learning with Ensemble Method and Graph Sharpening

Choi, I., Shin, H.

In Korean Data Mining Society Conference, pages: 257-262, Korean Data Mining Society, Seoul, Korea, Korean Data Mining Society Conference, November 2007 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Discriminative Subsequence Mining for Action Classification

Nowozin, S., BakIr, G., Tsuda, K.

In ICCV 2007, pages: 1919-1923, IEEE Computer Society, Los Alamitos, CA, USA, 11th IEEE International Conference on Computer Vision, October 2007 (inproceedings)

Abstract
Recent approaches to action classification in videos have used sparse spatio-temporal words encoding local appearance around interesting movements. Most of these approaches use a histogram representation, discarding the temporal order among features. But this ordering information can contain important information about the action itself, e.g. consider the sport disciplines of hurdle race and long jump, where the global temporal order of motions (running, jumping) is important to discriminate between the two. In this work we propose to use a sequential representation which retains this temporal order. Further, we introduce Discriminative Subsequence Mining to find optimal discriminative subsequence patterns. In combination with the LPBoost classifier, this amounts to simultaneously learning a classification function and performing feature selection in the space of all possible feature sequences. The resulting classifier linearly combines a small number of interpretable decision functions, each checking for the presence of a single discriminative pattern. The classifier is benchmarked on the KTH action classification data set and outperforms the best known results in the literature.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Unsupervised Classification for non-invasive Brain-Computer-Interfaces

Eren, S., Grosse-Wentrup, M., Buss, M.

In Automed 2007, pages: 65-66, VDI Verlag, Düsseldorf, Germany, Automed Workshop, October 2007 (inproceedings)

Abstract
Non-invasive Brain-Computer-Interfaces (BCIs) are devices that infer the intention of human subjects from signals generated by the central nervous system and recorded outside the skull, e.g., by electroencephalography (EEG). They can be used to enable basic communication for patients who are not able to communicate by normal means, e.g., due to neuro-degenerative diseases such as amyotrophic lateral sclerosis (ALS) (see [Vaughan2003] for a review). One challenge in research on BCIs is minimizing the training time prior to usage of the BCI. Since EEG patterns vary across subjects, it is usually necessary to record a number of trials in which the intention of the user is known to train a classifier. This classifier is subsequently used to infer the intention of the BCI-user. In this paper, we present the application of an unsupervised classification method to a binary noninvasive BCI based on motor imagery. The result is a BCI that does not require any training, since the mapping from EEG pattern changes to the intention of the user is learned online by the BCI without any feedback. We present experimental results from six healthy subjects, three of which display classification errors below 15%. We conclude that unsupervised BCIs are a viable option, but not yet as reliable as supervised BCIs. The rest of this paper is organized as follows. In the Methods section, we first introduce the experimental paradigm. This is followed by a description of the methods used for spatial filtering, feature extraction, and unsupervised classification. We then present the experimental results, and conclude the paper with a brief discussion.

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Hilbert Space Embedding for Distributions

Smola, A., Gretton, A., Song, L., Schölkopf, B.

In Algorithmic Learning Theory, Lecture Notes in Computer Science 4754 , pages: 13-31, (Editors: M Hutter and RA Servedio and E Takimoto), Springer, Berlin, Germany, 18th International Conference on Algorithmic Learning Theory (ALT), October 2007 (inproceedings)

Abstract
We describe a technique for comparing distributions without the need for density estimation as an intermediate step. Our approach relies on mapping the distributions into a reproducing kernel Hilbert space. Applications of this technique can be found in two-sample tests, which are used for determining whether two sets of observations arise from the same distribution, covariate shift correction, local learning, measures of independence, and density estimation.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Cluster Identification in Nearest-Neighbor Graphs

Maier, M., Hein, M., von Luxburg, U.

In ALT 2007, pages: 196-210, (Editors: Hutter, M. , R. A. Servedio, E. Takimoto), Springer, Berlin, Germany, 18th International Conference on Algorithmic Learning Theory, October 2007 (inproceedings)

Abstract
Assume we are given a sample of points from some underlying distribution which contains several distinct clusters. Our goal is to construct a neighborhood graph on the sample points such that clusters are ``identified‘‘: that is, the subgraph induced by points from the same cluster is connected, while subgraphs corresponding to different clusters are not connected to each other. We derive bounds on the probability that cluster identification is successful, and use them to predict ``optimal‘‘ values of k for the mutual and symmetric k-nearest-neighbor graphs. We point out different properties of the mutual and symmetric nearest-neighbor graphs related to the cluster identification problem.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Inducing Metric Violations in Human Similarity Judgements

Laub, J., Macke, J., Müller, K., Wichmann, F.

In Advances in Neural Information Processing Systems 19, pages: 777-784, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
Attempting to model human categorization and similarity judgements is both a very interesting but also an exceedingly difficult challenge. Some of the difficulty arises because of conflicting evidence whether human categorization and similarity judgements should or should not be modelled as to operate on a mental representation that is essentially metric. Intuitively, this has a strong appeal as it would allow (dis)similarity to be represented geometrically as distance in some internal space. Here we show how a single stimulus, carefully constructed in a psychophysical experiment, introduces l2 violations in what used to be an internal similarity space that could be adequately modelled as Euclidean. We term this one influential data point a conflictual judgement. We present an algorithm of how to analyse such data and how to identify the crucial point. Thus there may not be a strict dichotomy between either a metric or a non-metric internal space but rather degrees to which potentially large subsets of stimuli are represented metrically with a small subset causing a global violation of metricity.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Cross-Validation Optimization for Large Scale Hierarchical Classification Kernel Methods

Seeger, M.

In Advances in Neural Information Processing Systems 19, pages: 1233-1240, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
We propose a highly efficient framework for kernel multi-class models with a large and structured set of classes. Kernel parameters are learned automatically by maximizing the cross-validation log likelihood, and predictive probabilities are estimated. We demonstrate our approach on large scale text classification tasks with hierarchical class structure, achieving state-of-the-art results in an order of magnitude less time than previous work.

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Local Learning Approach for Clustering

Wu, M., Schölkopf, B.

In Advances in Neural Information Processing Systems 19, pages: 1529-1536, (Editors: B Schölkopf and J Platt and T Hofmann), MIT Press, Cambridge, MA, USA, 20th Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
We present a local learning approach for clustering. The basic idea is that a good clustering result should have the property that the cluster label of each data point can be well predicted based on its neighboring data and their cluster labels, using current supervised learning methods. An optimization problem is formulated such that its solution has the above property. Relaxation and eigen-decomposition are applied to solve this optimization problem. We also briefly investigate the parameter selection issue and provide a simple parameter selection method for the proposed algorithm. Experimental results are provided to validate the effectiveness of the proposed approach.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Adaptive Spatial Filters with predefined Region of Interest for EEG based Brain-Computer-Interfaces

Grosse-Wentrup, M., Gramann, K., Buss, M.

In Advances in Neural Information Processing Systems 19, pages: 537-544, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
The performance of EEG-based Brain-Computer-Interfaces (BCIs) critically depends on the extraction of features from the EEG carrying information relevant for the classification of different mental states. For BCIs employing imaginary movements of different limbs, the method of Common Spatial Patterns (CSP) has been shown to achieve excellent classification results. The CSP-algorithm however suffers from a lack of robustness, requiring training data without artifacts for good performance. To overcome this lack of robustness, we propose an adaptive spatial filter that replaces the training data in the CSP approach by a-priori information. More specifically, we design an adaptive spatial filter that maximizes the ratio of the variance of the electric field originating in a predefined region of interest (ROI) and the overall variance of the measured EEG. Since it is known that the component of the EEG used for discriminating imaginary movements originates in the motor cortex, we design two adaptive spatial filters with the ROIs centered in the hand areas of the left and right motor cortex. We then use these to classify EEG data recorded during imaginary movements of the right and left hand of three subjects, and show that the adaptive spatial filters outperform the CSP-algorithm, enabling classification rates of up to 94.7 % without artifact rejection.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Branch and Bound for Semi-Supervised Support Vector Machines

Chapelle, O., Sindhwani, V., Keerthi, S.

In Advances in Neural Information Processing Systems 19, pages: 217-224, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
Semi-supervised SVMs (S3VMs) attempt to learn low-density separators by maximizing the margin over labeled and unlabeled examples. The associated optimization problem is non-convex. To examine the full potential of S3VMs modulo local minima problems in current implementations, we apply branch and bound techniques for obtaining exact, globally optimal solutions. Empirical evidence suggests that the globally optimal solution can return excellent generalization performance in situations where other implementations fail completely. While our current implementation is only applicable to small datasets, we discuss variants that can potentially lead to practically useful algorithms.

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Kernel Method for the Two-Sample-Problem

Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.

In Advances in Neural Information Processing Systems 19, pages: 513-520, (Editors: B Schölkopf and J Platt and T Hofmann), MIT Press, Cambridge, MA, USA, 20th Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
We propose two statistical tests to determine if two samples are from different distributions. Our test statistic is in both cases the distance between the means of the two samples mapped into a reproducing kernel Hilbert space (RKHS). The first test is based on a large deviation bound for the test statistic, while the second is based on the asymptotic distribution of this statistic. The test statistic can be computed in $O(m^2)$ time. We apply our approach to a variety of problems, including attribute matching for databases using the Hungarian marriage method, where our test performs strongly. We also demonstrate excellent performance when comparing distributions over graphs, for which no alternative tests currently exist.

PDF Web [BibTex]

PDF Web [BibTex]


no image
An Efficient Method for Gradient-Based Adaptation of Hyperparameters in SVM Models

Keerthi, S., Sindhwani, V., Chapelle, O.

In Advances in Neural Information Processing Systems 19, pages: 673-680, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
We consider the task of tuning hyperparameters in SVM models based on minimizing a smooth performance validation function, e.g., smoothed k-fold cross-validation error, using non-linear optimization techniques. The key computation in this approach is that of the gradient of the validation function with respect to hyperparameters. We show that for large-scale problems involving a wide choice of kernel-based models and validation functions, this computation can be very efficiently done; often within just a fraction of the training time. Empirical results show that a near-optimal set of hyperparameters can be identified by our approach with very few training rounds and gradient computations.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning Dense 3D Correspondence

Steinke, F., Schölkopf, B., Blanz, V.

In Advances in Neural Information Processing Systems 19, pages: 1313-1320, (Editors: B Schölkopf and J Platt and T Hofmann), MIT Press, Cambridge, MA, USA, 20th Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
Establishing correspondence between distinct objects is an important and nontrivial task: correctness of the correspondence hinges on properties which are difficult to capture in an a priori criterion. While previous work has used a priori criteria which in some cases led to very good results, the present paper explores whether it is possible to learn a combination of features that, for a given training set of aligned human heads, characterizes the notion of correct correspondence. By optimizing this criterion, we are then able to compute correspondence and morphs for novel heads.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Optimal Dominant Motion Estimation using Adaptive Search of Transformation Space

Ulges, A., Lampert, CH., Keysers, D., Breuel, TM.

In DAGM 2007, pages: 204-215, (Editors: Hamprecht, F. A., C. Schnörr, B. Jähne), Springer, Berlin, Germany, 29th Annual Symposium of the German Association for Pattern Recognition, September 2007 (inproceedings)

Abstract
The extraction of a parametric global motion from a motion field is a task with several applications in video processing. We present two probabilistic formulations of the problem and carry out optimization using the RAST algorithm, a geometric matching method novel to motion estimation in video. RAST uses an exhaustive and adaptive search of transformation space and thus gives -- in contrast to local sampling optimization techniques used in the past -- a globally optimal solution. Among other applications, our framework can thus be used as a source of ground truth for benchmarking motion estimation algorithms. Our main contributions are: first, the novel combination of a state-of- the-art MAP criterion for dominant motion estimation with a search procedure that guarantees global optimality. Second, experimental re- sults that illustrate the superior performance of our approach on synthetic flow fields as well as real-world video streams. Third, a significant speedup of the search achieved by extending the mod el with an additional smoothness prior.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Solving Deep Memory POMDPs with Recurrent Policy Gradients

Wierstra, D., Förster, A., Peters, J., Schmidhuber, J.

In ICANN‘07, pages: 697-706, Springer, Berlin, Germany, International Conference on Artificial Neural Networks, September 2007 (inproceedings)

Abstract
This paper presents Recurrent Policy Gradients, a modelfree reinforcement learning (RL) method creating limited-memory stochastic policies for partially observable Markov decision problems (POMDPs) that require long-term memories of past observations. The approach involves approximating a policy gradient for a Recurrent Neural Network (RNN) by backpropagating return-weighted characteristic eligibilities through time. Using a “Long Short-Term Memory” architecture, we are able to outperform other RL methods on two important benchmark tasks. Furthermore, we show promising results on a complex car driving simulation task.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Output Grouping using Dirichlet Mixtures of Linear Gaussian State-Space Models

Chiappa, S., Barber, D.

In ISPA 2007, pages: 446-451, IEEE Computer Society, Los Alamitos, CA, USA, 5th International Symposium on Image and Signal Processing and Analysis, September 2007 (inproceedings)

Abstract
We consider a model to cluster the components of a vector time-series. The task is to assign each component of the vector time-series to a single cluster, basing this assignment on the simultaneous dynamical similarity of the component to other components in the cluster. This is in contrast to the more familiar task of clustering a set of time-series based on global measures of their similarity. The model is based on a Dirichlet Mixture of Linear Gaussian State-Space models (LGSSMs), in which each LGSSM is treated with a prior to encourage the simplest explanation. The resulting model is approximated using a ‘collapsed’ variational Bayes implementation.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Manifold Denoising

Hein, M., Maier, M.

In Advances in Neural Information Processing Systems 19, pages: 561-568, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
We consider the problem of denoising a noisily sampled submanifold $M$ in $R^d$, where the submanifold $M$ is a priori unknown and we are only given a noisy point sample. The presented denoising algorithm is based on a graph-based diffusion process of the point sample. We analyze this diffusion process using recent results about the convergence of graph Laplacians. In the experiments we show that our method is capable of dealing with non-trivial high-dimensional noise. Moreover using the denoising algorithm as pre-processing method we can improve the results of a semi-supervised learning algorithm.

PDF Web [BibTex]

PDF Web [BibTex]


no image
How to Find Interesting Locations in Video: A Spatiotemporal Interest Point Detector Learned from Human Eye movements

Kienzle, W., Schölkopf, B., Wichmann, F., Franz, M.

In Pattern Recognition, pages: 405-414, (Editors: FA Hamprecht and C Schnörr and B Jähne), Springer, Berlin, Germany, 29th Annual Symposium of the German Association for Pattern Recognition (DAGM), September 2007 (inproceedings)

Abstract
Interest point detection in still images is a well-studied topic in computer vision. In the spatiotemporal domain, however, it is still unclear which features indicate useful interest points. In this paper we approach the problem by emph{learning} a detector from examples: we record eye movements of human subjects watching video sequences and train a neural network to predict which locations are likely to become eye movement targets. We show that our detector outperforms current spatiotemporal interest point architectures on a standard classification dataset.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Bayesian Inference for Sparse Generalized Linear Models

Seeger, M., Gerwinn, S., Bethge, M.

In ECML 2007, pages: 298-309, Lecture Notes in Computer Science ; 4701, (Editors: Kok, J. N., J. Koronacki, R. Lopez de Mantaras, S. Matwin, D. Mladenic, A. Skowron), Springer, Berlin, Germany, 18th European Conference on Machine Learning, September 2007 (inproceedings)

Abstract
We present a framework for efficient, accurate approximate Bayesian inference in generalized linear models (GLMs), based on the expectation propagation (EP) technique. The parameters can be endowed with a factorizing prior distribution, encoding properties such as sparsity or non-negativity. The central role of posterior log-concavity in Bayesian GLMs is emphasized and related to stability issues in EP. In particular, we use our technique to infer the parameters of a point process model for neuronal spiking data from multiple electrodes, demonstrating significantly superior predictive performance when a sparsity assumption is enforced via a Laplace prior distribution.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Implicit Surfaces with Globally Regularised and Compactly Supported Basis Functions

Walder, C., Schölkopf, B., Chapelle, O.

In Advances in Neural Information Processing Systems 19, pages: 273-280, (Editors: B Schölkopf and J Platt and T Hofmann), MIT Press, Cambridge, MA, USA, 20th Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
We consider the problem of constructing a function whose zero set is to represent a surface, given sample points with surface normal vectors. The contributions include a novel means of regularising multi-scale compactly supported basis functions that leads to the desirable properties previously only associated with fully supported bases, and show equivalence to a Gaussian process with modified covariance function. We also provide a regularisation framework for simpler and more direct treatment of surface normals, along with a corresponding generalisation of the representer theorem. We demonstrate the techniques on 3D problems of up to 14 million data points, as well as 4D time series data.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Comparison of Adaptive Spatial Filters with Heuristic and Optimized Region of Interest for EEG Based Brain-Computer-Interfaces

Liefhold, C., Grosse-Wentrup, M., Gramann, K., Buss, M.

In Pattern Recognition, pages: 274-283, (Editors: Hamprecht, F. A., C. Schnörr, B. Jähne), Springer, Berlin, Germany, 29th Annual Symposium of the German Association for Pattern Recognition, September 2007 (inproceedings)

Abstract
Research on EEG based brain-computer-interfaces (BCIs) aims at steering devices by thought. Even for simple applications, BCIs require an extremely effective data processing to work properly because of the low signal-to-noise-ratio (SNR) of EEG signals. Spatial filtering is one successful preprocessing method, which extracts EEG components carrying the most relevant information. Unlike spatial filtering with Common Spatial Patterns (CSP), Adaptive Spatial Filtering (ASF) can be adapted to freely selectable regions of interest (ROI) and with this, artifacts can be actively suppressed. In this context, we compare the performance of ASF with ROIs selected using anatomical a-priori information and ASF with numerically optimized ROIs. Therefore, we introduce a method for data driven spatial filter adaptation and apply the achieved filters for classification of EEG data recorded during imaginary movements of the left and right hand of four subjects. The results show, that in the case of artifact-free datasets, ASFs with numerically optimized ROIs achieve classification rates of up to 97.7 % while ASFs with ROIs defined by anatomical heuristic stay at 93.7 % for the same data. Otherwise, with noisy datasets, the former brake down (66.7 %) while the latter meet 95.7 %.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Machine Learning and Applications in Biology

Shin, H.

In BioKorea 2007, pages: 337-366, BioKorea, September 2007 (inproceedings)

Abstract
The emergence of the fields of computational biology and bioinformatics has alleviated the burden of solving many biological problems, saving the time and cost required for experiments and also providing predictions that guide new experiments. Within computational biology, machine learning algorithms have played a central role in dealing with the flood of biological data. The goal of this tutorial is to raise awareness and comprehension of machine learning so that biologists can properly match the task at hand to the corresponding analytical approach. We start by categorizing biological problem settings and introduce the general machine learning schemes that fit best to each or these categories. We then explore representative models in further detail, from traditional statistical models to recent kernel models, presenting several up-to-date research projects in bioinfomatics to exemplify how biological questions can benefit from a machine learning approach. Finally, we discuss how cooperation between biologis ts and machine learners might be made smoother.

[BibTex]

[BibTex]