Header logo is ei


2012


no image
A New Perceptual Bias Reveals Suboptimal Population Decoding of Sensory Responses

Putzeys, T., Bethge, M., Wichmann, F., Wagemans, J., Goris, R.

PLoS Computational Biology, 8(4):1-13, April 2012 (article)

Abstract
Several studies have reported optimal population decoding of sensory responses in two-alternative visual discrimination tasks. Such decoding involves integrating noisy neural responses into a more reliable representation of the likelihood that the stimuli under consideration evoked the observed responses. Importantly, an ideal observer must be able to evaluate likelihood with high precision and only consider the likelihood of the two relevant stimuli involved in the discrimination task. We report a new perceptual bias suggesting that observers read out the likelihood representation with remarkably low precision when discriminating grating spatial frequencies. Using spectrally filtered noise, we induced an asymmetry in the likelihood function of spatial frequency. This manipulation mainly affects the likelihood of spatial frequencies that are irrelevant to the task at hand. Nevertheless, we find a significant shift in perceived grating frequency, indicating that observers evaluate likelihoods of a broad range of irrelevant frequencies and discard prior knowledge of stimulus alternatives when performing two-alternative discrimination.

Web DOI [BibTex]

2012

Web DOI [BibTex]


no image
Patterns of cis regulatory variation in diverse human populations

Stranger, BE., Montgomery, SB., Dimas, AS., Parts, L., Stegle, O., Ingle, CE., Sekowska, M., Smith, GD., Evans, D., Gutierrez-Arcelus, M., others

PLoS genetics, 8(4):e1002639, April 2012 (article)

Abstract
he genetic basis of gene expression variation has long been studied with the aim to understand the landscape of regulatory variants, but also more recently to assist in the interpretation and elucidation of disease signals. To date, many studies have looked in specific tissues and population-based samples, but there has been limited assessment of the degree of inter-population variability in regulatory variation. We analyzed genome-wide gene expression in lymphoblastoid cell lines from a total of 726 individuals from 8 global populations from the HapMap3 project and correlated gene expression levels with HapMap3 SNPs located in cis to the genes. We describe the influence of ancestry on gene expression levels within and between these diverse human populations and uncover a non-negligible impact on global patterns of gene expression. We further dissect the specific functional pathways differentiated between populations. We also identify 5,691 expression quantitative trait loci (eQTLs) after controlling for both non-genetic factors and population admixture and observe that half of the cis-eQTLs are replicated in one or more of the populations. We highlight patterns of eQTL-sharing between populations, which are partially determined by population genetic relatedness, and discover significant sharing of eQTL effects between Asians, European-admixed, and African subpopulations. Specifically, we observe that both the effect size and the direction of effect for eQTLs are highly conserved across populations. We observe an increasing proximity of eQTLs toward the transcription start site as sharing of eQTLs among populations increases, highlighting that variants close to TSS have stronger effects and therefore are more likely to be detected across a wider panel of populations. Together these results offer a unique picture and resource of the degree of differentiation among human populations in functional regulatory variation and provide an estimate for the transferability of complex trait variants across populations.

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Kernel Two-Sample Test

Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.

Journal of Machine Learning Research, 13, pages: 723-773, March 2012 (article)

Abstract
We propose a framework for analyzing and comparing distributions, which we use to construct statistical tests to determine if two samples are drawn from different distributions. Our test statistic is the largest difference in expectations over functions in the unit ball of a reproducing kernel Hilbert space (RKHS), and is called the maximum mean discrepancy (MMD). We present two distribution-free tests based on large deviation bounds for the MMD, and a third test based on the asymptotic distribution of this statistic. The MMD can be computed in quadratic time, although efficient linear time approximations are available. Our statistic is an instance of an integral probability metric, and various classical metrics on distributions are obtained when alternative function classes are used in place of an RKHS. We apply our two-sample tests to a variety of problems, including attribute matching for databases using the Hungarian marriage method, where they perform strongly. Excellent performance is also obtained when comparing distributions over graphs, for which these are the first such tests.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Technical performance evaluation of a human brain PET/MRI system

Kolb, A., Wehrl, H., Hofmann, M., Judenhofer, M., Eriksson, L., Ladebeck, R., Lichy, M., Byars, L., Michel, C., Schlemmer, H., Schmand, M., Claussen, C., Sossi, V., Pichler, B.

European Radiology, 22(8):1776-1788, March 2012 (article)

Web DOI [BibTex]

Web DOI [BibTex]


no image
Real-time detection of colored objects in multiple camera streams with off-the-shelf hardware components

Lampert, C., Peters, J.

Journal of Real-Time Image Processing, 7(1):31-41, March 2012 (article)

Abstract
We describe RTblob, a high speed vision system that detects objects in cluttered scenes based on their color and shape at a speed of over 800 frames/s. Because the system is available as open-source software and relies only on off-the-shelf PC hardware components, it can provide the basis for multiple application scenarios. As an illustrative example, we show how RTblob can be used in a robotic table tennis scenario to estimate ball trajectories through 3D space simultaneously from four cameras images at a speed of 200 Hz.

PDF PDF DOI [BibTex]


no image
A short note on parameter approximation for von Mises-Fisher distributions: and a fast implementation of Is(x)

Sra, S.

Computational Statistics, 27(1):177-190, March 2012 (article)

Abstract
In high-dimensional directional statistics one of the most basic probability distributions is the von Mises-Fisher (vMF) distribution. Maximum likelihood estimation for the vMF distribution turns out to be surprisingly hard because of a difficult transcendental equation that needs to be solved for computing the concentration parameter κ. This paper is a followup to the recent paper of Tanabe et al. (Comput Stat 22(1):145–157, 2007), who exploited inequalities about Bessel function ratios to obtain an interval in which the parameter estimate for κ should lie; their observation lends theoretical validity to the heuristic approximation of Banerjee et al. (JMLR 6:1345–1382, 2005). Tanabe et al. (Comput Stat 22(1):145–157, 2007) also presented a fixed-point algorithm for computing improved approximations for κ. However, their approximations require (potentially significant) additional computation, and in this short paper we show that given the same amount of computation as their method, one can achieve more accurate approximations using a truncated Newton method. A more interesting contribution of this paper is a simple algorithm for computing I s (x): the modified Bessel function of the first kind. Surprisingly, our naïve implementation turns out to be several orders of magnitude faster for large arguments common to high-dimensional data, than the standard implementations in well-established software such as Mathematica ©, Maple ©, and Gp/Pari.

PDF PDF DOI [BibTex]


no image
An online brain–computer interface based on shifting attention to concurrent streams of auditory stimuli

Hill, N., Schölkopf, B.

Journal of Neural Engineering, 9(2):026011, February 2012 (article)

Abstract
We report on the development and online testing of an electroencephalogram-based brain–computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects' modulation of N1 and P3 ERP components measured during single 5 s stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare 'oddball' stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject's attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology.

PDF DOI [BibTex]


no image
A non-monotonic method for large-scale non-negative least squares

Kim, D., Sra, S., Dhillon, I. S.

Optimization Methods and Software, 28(5):1012-1039, Febuary 2012 (article)

DOI [BibTex]

DOI [BibTex]


no image
Inferring Networks of Diffusion and Influence

Gomez Rodriguez, M., Leskovec, J., Krause, A.

ACM Transactions on Knowledge Discovery from Data, 5(4:21), February 2012 (article)

Abstract
Information diffusion and virus propagation are fundamental processes taking place in networks. While it is often possible to directly observe when nodes become infected with a virus or publish the information, observing individual transmissions (who infects whom, or who influences whom) is typically very difficult. Furthermore, in many applications, the underlying network over which the diffusions and propagations spread is actually unobserved. We tackle these challenges by developing a method for tracing paths of diffusion and influence through networks and inferring the networks over which contagions propagate. Given the times when nodes adopt pieces of information or become infected, we identify the optimal network that best explains the observed infection times. Since the optimization problem is NP-hard to solve exactly, we develop an efficient approximation algorithm that scales to large datasets and finds provably near-optimal networks. We demonstrate the effectiveness of our approach by tracing information diffusion in a set of 170 million blogs and news articles over a one year period to infer how information flows through the online media space. We find that the diffusion network of news for the top 1,000 media sites and blogs tends to have a core-periphery structure with a small set of core media sites that diffuse information to the rest of the Web. These sites tend to have stable circles of influence with more general news media sites acting as connectors between them.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses

Stegle, O., Parts, L., Piipari, M., Winn, J., Durbin, R.

Nature Protocols, 7(3):500–507, February 2012 (article)

Abstract
We present PEER (probabilistic estimation of expression residuals), a software package implementing statistical models that improve the sensitivity and interpretability of genetic associations in population-scale expression data. This approach builds on factor analysis methods that infer broad variance components in the measurements. PEER takes as input transcript profiles and covariates from a set of individuals, and then outputs hidden factors that explain much of the expression variability. Optionally, these factors can be interpreted as pathway or transcription factor activations by providing prior information about which genes are involved in the pathway or targeted by the factor. The inferred factors are used in genetic association analyses. First, they are treated as additional covariates, and are included in the model to increase detection power for mapping expression traits. Second, they are analyzed as phenotypes themselves to understand the causes of global expression variability. PEER extends previous related surrogate variable models and can be implemented within hours on a desktop computer.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Context-aware brain-computer interfaces: exploring the information space of user, technical system and environment

Zander, TO., Jatzev, S.

Journal of Neural Engineering, 9(1):016003, 10, February 2012 (article)

Abstract
Brain–computer interface (BCI) systems are usually applied in highly controlled environments such as research laboratories or clinical setups. However, many BCI-based applications are implemented in more complex environments. For example, patients might want to use a BCI system at home, and users without disabilities could benefit from BCI systems in special working environments. In these contexts, it might be more difficult to reliably infer information about brain activity, because many intervening factors add up and disturb the BCI feature space. One solution for this problem would be adding context awareness to the system. We propose to augment the available information space with additional channels carrying information about the user state, the environment and the technical system. In particular, passive BCI systems seem to be capable of adding highly relevant context information—otherwise covert aspects of user state. In this paper, we present a theoretical framework based on general human–machine system research for adding context awareness to a BCI system. Building on that, we present results from a study on a passive BCI, which allows access to the covert aspect of user state related to the perceived loss of control. This study is a proof of concept and demonstrates that context awareness could beneficially be implemented in and combined with a BCI system or a general human–machine system. The EEG data from this experiment are available for public download at www.phypa.org.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
How the initialization affects the stability of the k-means algorithm

Bubeck, S., Meila, M., von Luxburg, U.

ESAIM: Probability and Statistics, 16, pages: 436-452, January 2012 (article)

Web DOI [BibTex]

Web DOI [BibTex]


no image
Joint Modelling of Confounding Factors and Prominent Genetic Regulators Provides Increased Accuracy in Genetical Genomics Studies

Fusi, N., Stegle, O., Lawrence, ND.

PLoS Computational Biology, 8(1):1-9, January 2012 (article)

Abstract
Expression quantitative trait loci (eQTL) studies are an integral tool to investigate the genetic component of gene expression variation. A major challenge in the analysis of such studies are hidden confounding factors, such as unobserved covariates or unknown subtle environmental perturbations. These factors can induce a pronounced artifactual correlation structure in the expression profiles, which may create spurious false associations or mask real genetic association signals. Here, we report PANAMA (Probabilistic ANAlysis of genoMic dAta), a novel probabilistic model to account for confounding factors within an eQTL analysis. In contrast to previous methods, PANAMA learns hidden factors jointly with the effect of prominent genetic regulators. As a result, this new model can more accurately distinguish true genetic association signals from confounding variation. We applied our model and compared it to existing methods on different datasets and biological systems. PANAMA consistently performs better than alternative methods, and finds in particular substantially more trans regulators. Importantly, our approach not only identifies a greater number of associations, but also yields hits that are biologically more plausible and can be better reproduced between independent studies. A software implementation of PANAMA is freely available online at http://ml.sheffield.ac.uk/qtl/.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Bayesian flexible fitting of biomolecular structures into EM maps

Habeck, M.

Biophysical journal, 2012 (article) Submitted

[BibTex]

[BibTex]


no image
Measurement and Calibration of Noise Bias in Weak Lensing Galaxy Shape Estimation

Kacprzak, T., Zuntz, J., Rowe, B., Bridle, S., Refregier, A., Amara, A., Voigt, L., Hirsch, M.

Monthly Notices of the Royal Astronomical Society (MNRAS), 2012 (article)

[BibTex]

[BibTex]


no image
LMM-Lasso: A Lasso Multi-Marker Mixed Model for Association Mapping with Population Structure Correction

Rakitsch, B., Lippert, C., Stegle, O., Borgwardt, KM.

Bioinformatics, 29(2):206-214, 2012 (article)

Web DOI [BibTex]

Web DOI [BibTex]


no image
Existential neuroscience: a functional magnetic resonance imaging investigation of neural responses to reminders of one’s mortality

Quirin, M., Loktyushin, A., Arndt, J., Küstermann, E., Lo, Y., Kuhl, J., Eggert, L.

Social Cognitive and Affective Neuroscience, 7(2):193-198, 2012 (article)

Web DOI [BibTex]

Web DOI [BibTex]


no image
Active learning for domain adaptation in the supervised classification of remote sensing images

Persello, C., Bruzzone, L.

IEEE Transactions on Geoscience and Remote Sensing, 50(11):4468-4483, 2012 (article)

DOI [BibTex]

DOI [BibTex]


no image
Reinforcement learning to adjust parametrized motor primitives to new situations

Kober, J., Wilhelm, A., Oztop, E., Peters, J.

Autonomous Robots, 33(4):361-379, 2012 (article)

Abstract
Humans manage to adapt learned movements very quickly to new situations by generalizing learned behaviors from similar situations. In contrast, robots currently often need to re-learn the complete movement. In this paper, we propose a method that learns to generalize parametrized motor plans by adapting a small set of global parameters, called meta-parameters. We employ reinforcement learning to learn the required meta-parameters to deal with the current situation, described by states. We introduce an appropriate reinforcement learning algorithm based on a kernelized version of the reward-weighted regression. To show its feasibility, we evaluate this algorithm on a toy example and compare it to several previous approaches. Subsequently, we apply the approach to three robot tasks, i.e., the generalization of throwing movements in darts, of hitting movements in table tennis, and of throwing balls where the tasks are learned on several different real physical robots, i.e., a Barrett WAM, a BioRob, the JST-ICORP/SARCOS CBi and a Kuka KR 6.

PDF PDF DOI [BibTex]


no image
On the Empirical Estimation of Integral Probability Metrics

Sriperumbudur, B., Fukumizu, K., Gretton, A., Schölkopf, B., Lanckriet, G.

Electronic Journal of Statistics, 6, pages: 1550-1599, 2012 (article)

Web DOI [BibTex]

Web DOI [BibTex]


no image
Effect of MR contrast agents on quantitative accuracy of PET in combined whole-body PET/MR imaging

Lois, C., Bezrukov, I., Schmidt, H., Schwenzer, N., Werner, M., Kupferschläger, J., Beyer, T.

European Journal of Nuclear Medicine and Molecular Imaging, 39(11):1756-1766, 2012 (article)

DOI [BibTex]

DOI [BibTex]


no image
Multitask Learning in Computational Biology

Widmer, C., Rätsch, G.

JMLR W\&CP. ICML 2011 Unsupervised and Transfer Learning Workshop, 27, pages: 207-216, 2012 (article)

Abstract
Computational Biology provides a wide range of applications for Multitask Learning (MTL) methods. As the generation of labels often is very costly in the biomedical domain, combining data from different related problems or tasks is a promising strategy to reduce label cost. In this paper, we present two problems from sequence biology, where MTL was successfully applied. For this, we use regularization-based MTL methods, with a special focus on the case of a hierarchical relationship between tasks. Furthermore, we propose strategies to refine the measure of task relatedness, which is of central importance in MTL and finally give some practical guidelines, when MTL strategies are likely to pay off.

PDF [BibTex]

PDF [BibTex]


no image
Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis

Windram, O., Madhou, P., McHattie, S., Hill, C., Hickman, R., Cooke, E., Jenkins, DJ., Penfold, CA., Baxter, Ll., Breeze, E., Kiddle, SJ., Rhodes, J., Atwell, S., Kliebenstein, D., Kim, Y-S., Stegle, O., Borgwardt, KM., others

The Plant Cell Online, 24(9):3530-3557, 2012, all authors: Oliver Windram,Priyadharshini Madhou,Stuart McHattie,Claire Hill,Richard Hickman,Emma Cooke,Dafyd J. Jenkins,Christopher A. Penfold,Laura Baxter,Emily Breeze,Steven J. Kiddle,Johanna Rhodes,Susanna Atwell,Daniel J. (article)

Web DOI [BibTex]

Web DOI [BibTex]


no image
Improved Linear Mixed Models for Genome-Wide Association Studies

Listgarten, J., Lippert, C., Kadie, CM., Davidson, RI., Eskin, E., Heckerman, D.

Nature Methods, 9, pages: 525–526, 2012 (article)

DOI [BibTex]

DOI [BibTex]


no image
Calibration of Boltzmann distribution priors in Bayesian data analysis

Mechelke, M., Habeck, M.

Physical Review E, 86(6):066705, 2012 (article)

DOI [BibTex]

DOI [BibTex]


no image
CSB: A Python framework for computational structural biology

Kalev, I., Mechelke, M., Kopec, K., Holder, T., Carstens, S., Habeck, M.

Bioinformatics, 28(22):2996-2997, 2012 (article)

Abstract
Summary: Computational Structural Biology Toolbox (CSB) is a cross-platform Python class library for reading, storing and analyzing biomolecular structures with rich support for statistical analyses. CSB is designed for reusability and extensibility and comes with a clean, well-documented API following good object-oriented engineering practice. Availability: Stable release packages are available for download from the Python Package Index (PyPI), as well as from the project’s web site http://csb.codeplex.com.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Significant global reduction of carbon uptake by water-cycle driven extreme vegetation anomalies

Zscheischler, J., Mahecha, M., von Buttlar, J., Harmeling, S., Jung, M., Randerson, J., Reichstein, M.

Nature Geoscience, 2012 (article) In revision

[BibTex]

[BibTex]


no image
Design of a Haptic Interface for a Gastrointestinal Endoscopy Simulation

Yu, S., Woo, H. S., Son, H. I., Ahn, W., Jung, H., Lee, D. Y., Yi, S. Y.

Advanced Robotics, 26(18):2115-2143, 2012 (article)

DOI [BibTex]

DOI [BibTex]


no image
Measurement and calibration of noise bias in weak lensing galaxy shape estimation

Kacprzak, T., Zuntz, J., Rowe, B., Bridle, S., Refregier, A., Amara, A., Voigt, L., Hirsch, M.

Monthly Notices of the Royal Astronomical Society, 427(4):2711-2722, Oxford University Press, 2012 (article)

DOI [BibTex]

DOI [BibTex]


no image
Image analysis for cosmology: results from the GREAT10 Galaxy Challenge

Kitching, T. D., Balan, S. T., Bridle, S., Cantale, N., Courbin, F., Eifler, T., Gentile, M., Gill, M. S. S., Harmeling, S., Heymans, C., others,

Monthly Notices of the Royal Astronomical Society, 423(4):3163-3208, Oxford University Press, 2012 (article)

DOI [BibTex]

DOI [BibTex]


no image
First SN Discoveries from the Dark Energy Survey

Abbott, T., Abdalla, F., Achitouv, I., Ahn, E., Aldering, G., Allam, S., Alonso, D., Amara, A., Annis, J., Antonik, M., others,

The Astronomer's Telegram, 4668, pages: 1, 2012 (article)

[BibTex]

[BibTex]


no image
A sensorimotor paradigm for Bayesian model selection

Genewein, T, Braun, DA

Frontiers in Human Neuroscience, 6(291):1-16, October 2012 (article)

Abstract
Sensorimotor control is thought to rely on predictive internal models in order to cope efficiently with uncertain environments. Recently, it has been shown that humans not only learn different internal models for different tasks, but that they also extract common structure between tasks. This raises the question of how the motor system selects between different structures or models, when each model can be associated with a range of different task-specific parameters. Here we design a sensorimotor task that requires subjects to compensate visuomotor shifts in a three-dimensional virtual reality setup, where one of the dimensions can be mapped to a model variable and the other dimension to the parameter variable. By introducing probe trials that are neutral in the parameter dimension, we can directly test for model selection. We found that model selection procedures based on Bayesian statistics provided a better explanation for subjects’ choice behavior than simple non-probabilistic heuristics. Our experimental design lends itself to the general study of model selection in a sensorimotor context as it allows to separately query model and parameter variables from subjects.

DOI [BibTex]

DOI [BibTex]


no image
Risk-Sensitivity in Bayesian Sensorimotor Integration

Grau-Moya, J, Ortega, PA, Braun, DA

PLoS Computational Biology, 8(9):1-7, sep 2012 (article)

Abstract
Information processing in the nervous system during sensorimotor tasks with inherent uncertainty has been shown to be consistent with Bayesian integration. Bayes optimal decision-makers are, however, risk-neutral in the sense that they weigh all possibilities based on prior expectation and sensory evidence when they choose the action with highest expected value. In contrast, risk-sensitive decision-makers are sensitive to model uncertainty and bias their decision-making processes when they do inference over unobserved variables. In particular, they allow deviations from their probabilistic model in cases where this model makes imprecise predictions. Here we test for risk-sensitivity in a sensorimotor integration task where subjects exhibit Bayesian information integration when they infer the position of a target from noisy sensory feedback. When introducing a cost associated with subjects' response, we found that subjects exhibited a characteristic bias towards low cost responses when their uncertainty was high. This result is in accordance with risk-sensitive decision-making processes that allow for deviations from Bayes optimal decision-making in the face of uncertainty. Our results suggest that both Bayesian integration and risk-sensitivity are important factors to understand sensorimotor integration in a quantitative fashion.

DOI [BibTex]

DOI [BibTex]

2010


no image
Causal relationships between frequency bands of extracellular signals in visual cortex revealed by an information theoretic analysis

Besserve, M., Schölkopf, B., Logothetis, N., Panzeri, S.

Journal of Computational Neuroscience, 29(3):547-566, December 2010 (article)

PDF DOI [BibTex]

2010


no image
Tackling Box-Constrained Optimization via a New Projected Quasi-Newton Approach

Kim, D., Sra, S., Dhillon, I.

SIAM Journal on Scientific Computing, 32(6):3548-3563 , December 2010 (article)

Abstract
Numerous scientific applications across a variety of fields depend on box-constrained convex optimization. Box-constrained problems therefore continue to attract research interest. We address box-constrained (strictly convex) problems by deriving two new quasi-Newton algorithms. Our algorithms are positioned between the projected-gradient [J. B. Rosen, J. SIAM, 8 (1960), pp. 181–217] and projected-Newton [D. P. Bertsekas, SIAM J. Control Optim., 20 (1982), pp. 221–246] methods. We also prove their convergence under a simple Armijo step-size rule. We provide experimental results for two particular box-constrained problems: nonnegative least squares (NNLS), and nonnegative Kullback–Leibler (NNKL) minimization. For both NNLS and NNKL our algorithms perform competitively as compared to well-established methods on medium-sized problems; for larger problems our approach frequently outperforms the competition.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Algorithmen zum Automatischen Erlernen von Motorfähigkeiten

Peters, J., Kober, J., Schaal, S.

at - Automatisierungstechnik, 58(12):688-694, December 2010 (article)

Abstract
Robot learning methods which allow autonomous robots to adapt to novel situations have been a long standing vision of robotics, artificial intelligence, and cognitive sciences. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics. If possible, scaling was usually only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general approach policy learning with the goal of an application to motor skill refinement in order to get one step closer towards human-like performance. For doing so, we study two major components for such an approach, i. e., firstly, we study policy learning algorithms which can be applied in the general setting of motor skill learning, and, secondly, we study a theoretically well-founded general approach to representing the required control structures for task representation and execution.

Web DOI [BibTex]

Web DOI [BibTex]


no image
PAC-Bayesian Analysis of Co-clustering and Beyond

Seldin, Y., Tishby, N.

Journal of Machine Learning Research, 11, pages: 3595-3646, December 2010 (article)

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Gaussian Processes for Machine Learning (GPML) Toolbox

Rasmussen, C., Nickisch, H.

Journal of Machine Learning Research, 11, pages: 3011-3015, November 2010 (article)

Abstract
The GPML toolbox provides a wide range of functionality for Gaussian process (GP) inference and prediction. GPs are specified by mean and covariance functions; we offer a library of simple mean and covariance functions and mechanisms to compose more complex ones. Several likelihood functions are supported including Gaussian and heavy-tailed for regression as well as others suitable for classification. Finally, a range of inference methods is provided, including exact and variational inference, Expectation Propagation, and Laplace's method dealing with non-Gaussian likelihoods and FITC for dealing with large regression tasks.

Web [BibTex]

Web [BibTex]


no image
Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-Å resolution

Armache, J-P., Jarasch, A., Anger, AM., Villa, E., Becker, T., Bhushan, S., Jossinet, F., Habeck, M., Dindar, G., Franckenberg, S., Marquez, V., Mielke, T., Thomm, M., Berninghausen, O., Beatrix, B., Söding, J., Westhof, E., Wilson, DN., Beckmann, R.

Proceedings of the National Academy of Sciences of the United States of America, 107(46):19748-19753, November 2010 (article)

Abstract
Protein biosynthesis, the translation of the genetic code into polypeptides, occurs on ribonucleoprotein particles called ribosomes. Although X-ray structures of bacterial ribosomes are available, high-resolution structures of eukaryotic 80S ribosomes are lacking. Using cryoelectron microscopy and single-particle reconstruction, we have determined the structure of a translating plant (Triticum aestivum) 80S ribosome at 5.5-Å resolution. This map, together with a 6.1-Å map of a Saccharomyces cerevisiae 80S ribosome, has enabled us to model ∼98% of the rRNA. Accurate assignment of the rRNA expansion segments (ES) and variable regions has revealed unique ES–ES and r-protein–ES interactions, providing insight into the structure and evolution of the eukaryotic ribosome.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Policy gradient methods

Peters, J.

Scholarpedia, 5(11):3698, November 2010 (article)

Abstract
Policy gradient methods are a type of reinforcement learning techniques that rely upon optimizing parametrized policies with respect to the expected return (long-term cumulative reward) by gradient descent. They do not suffer from many of the problems that have been marring traditional reinforcement learning approaches such as the lack of guarantees of a value function, the intractability problem resulting from uncertain state information and the complexity arising from continuous states & actions.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Localization of eukaryote-specific ribosomal proteins in a 5.5-Å cryo-EM map of the 80S eukaryotic ribosome

Armache, J-P., Jarasch, A., Anger, AM., Villa, E., Becker, T., Bhushan, S., Jossinet, F., Habeck, M., Dindar, G., Franckenberg, S., Marquez, V., Mielke, T., Thomm, M., Berninghausen, O., Beatrix, B., Söding, J., Westhof, E., Wilson, DN., Beckmann, R.

Proceedings of the National Academy of Sciences of the United States of America, 107(46):19754-19759, November 2010 (article)

Abstract
Protein synthesis in all living organisms occurs on ribonucleoprotein particles, called ribosomes. Despite the universality of this process, eukaryotic ribosomes are significantly larger in size than their bacterial counterparts due in part to the presence of 80 r proteins rather than 54 in bacteria. Using cryoelectron microscopy reconstructions of a translating plant (Triticum aestivum) 80S ribosome at 5.5-Å resolution, together with a 6.1-Å map of a translating Saccharomyces cerevisiae 80S ribosome, we have localized and modeled 74/80 (92.5%) of the ribosomal proteins, encompassing 12 archaeal/eukaryote-specific small subunit proteins as well as the complete complement of the ribosomal proteins of the eukaryotic large subunit. Near-complete atomic models of the 80S ribosome provide insights into the structure, function, and evolution of the eukaryotic translational apparatus.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Spatio-Spectral Remote Sensing Image Classification With Graph Kernels

Camps-Valls, G., Shervashidze, N., Borgwardt, K.

IEEE Geoscience and Remote Sensing Letters, 7(4):741-745, October 2010 (article)

Abstract
This letter presents a graph kernel for spatio-spectral remote sensing image classification with support vector machines (SVMs). The method considers higher order relations in the neighborhood (beyond pairwise spatial relations) to iteratively compute a kernel matrix for SVM learning. The proposed kernel is easy to compute and constitutes a powerful alternative to existing approaches. The capabilities of the method are illustrated in several multi- and hyperspectral remote sensing images acquired over both urban and agricultural areas.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Causal Inference Using the Algorithmic Markov Condition

Janzing, D., Schölkopf, B.

IEEE Transactions on Information Theory, 56(10):5168-5194, October 2010 (article)

Abstract
Inferring the causal structure that links $n$ observables is usually based upon detecting statistical dependences and choosing simple graphs that make the joint measure Markovian. Here we argue why causal inference is also possible when the sample size is one. We develop a theory how to generate causal graphs explaining similarities between single objects. To this end, we replace the notion of conditional stochastic independence in the causal Markov condition with the vanishing of conditional algorithmic mutual information and describe the corresponding causal inference rules. We explain why a consistent reformulation of causal inference in terms of algorithmic complexity implies a new inference principle that takes into account also the complexity of conditional probability densities, making it possible to select among Markov equivalent causal graphs. This insight provides a theoretical foundation of a heuristic principle proposed in earlier work. We also sketch some ideas on how to replace Kolmogorov complexity with decidable complexity criteria. This can be seen as an algorithmic analog of replacing the empirically undecidable question of statistical independence with practical independence tests that are based on implicit or explicit assumptions on the underlying distribution.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Recurrent Policy Gradients

Wierstra, D., Förster, A., Peters, J., Schmidhuber, J.

Logic Journal of the IGPL, 18(5):620-634, October 2010 (article)

Abstract
Reinforcement learning for partially observable Markov decision problems (POMDPs) is a challenge as it requires policies with an internal state. Traditional approaches suffer significantly from this shortcoming and usually make strong assumptions on the problem domain such as perfect system models, state-estimators and a Markovian hidden system. Recurrent neural networks (RNNs) offer a natural framework for dealing with policy learning using hidden state and require only few limiting assumptions. As they can be trained well using gradient descent, they are suited for policy gradient approaches. In this paper, we present a policy gradient method, the Recurrent Policy Gradient which constitutes a model-free reinforcement learning method. It is aimed at training limited-memory stochastic policies on problems which require long-term memories of past observations. The approach involves approximating a policy gradient for a recurrent neural network by backpropagating return-weighted characteristic eligibilities through time. Using a ‘‘Long Short-Term Memory’’ RNN architecture, we are able to outperform previous RL methods on three important benchmark tasks. Furthermore, we show that using history-dependent baselines helps reducing estimation variance significantly, thus enabling our approach to tackle more challenging, highly stochastic environments.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Discriminative frequent subgraph mining with optimality guarantees

Thoma, M., Cheng, H., Gretton, A., Han, J., Kriegel, H., Smola, A., Song, L., Yu, P., Yan, X., Borgwardt, K.

Journal of Statistical Analysis and Data Mining, 3(5):302–318, October 2010 (article)

Abstract
The goal of frequent subgraph mining is to detect subgraphs that frequently occur in a dataset of graphs. In classification settings, one is often interested in discovering discriminative frequent subgraphs, whose presence or absence is indicative of the class membership of a graph. In this article, we propose an approach to feature selection on frequent subgraphs, called CORK, that combines two central advantages. First, it optimizes a submodular quality criterion, which means that we can yield a near-optimal solution using greedy feature selection. Second, our submodular quality function criterion can be integrated into gSpan, the state-of-the-art tool for frequent subgraph mining, and help to prune the search space for discriminative frequent subgraphs even during frequent subgraph mining.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Combining active learning and reactive control for robot grasping

Kroemer, O., Detry, R., Piater, J., Peters, J.

Robotics and Autonomous Systems, 58(9):1105-1116, September 2010 (article)

Abstract
Grasping an object is a task that inherently needs to be treated in a hybrid fashion. The system must decide both where and how to grasp the object. While selecting where to grasp requires learning about the object as a whole, the execution only needs to reactively adapt to the context close to the grasp’s location. We propose a hierarchical controller that reflects the structure of these two sub-problems, and attempts to learn solutions that work for both. A hybrid architecture is employed by the controller to make use of various machine learning methods that can cope with the large amount of uncertainty inherent to the task. The controller’s upper level selects where to grasp the object using a reinforcement learner, while the lower level comprises an imitation learner and a vision-based reactive controller to determine appropriate grasping motions. The resulting system is able to quickly learn good grasps of a novel object in an unstructured environment, by executing smooth reaching motions and preshapin g the hand depending on the object’s geometry. The system was evaluated both in simulation and on a real robot.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Nonparametric Regression between General Riemannian Manifolds

Steinke, F., Hein, M., Schölkopf, B.

SIAM Journal on Imaging Sciences, 3(3):527-563, September 2010 (article)

Abstract
We study nonparametric regression between Riemannian manifolds based on regularized empirical risk minimization. Regularization functionals for mappings between manifolds should respect the geometry of input and output manifold and be independent of the chosen parametrization of the manifolds. We define and analyze the three most simple regularization functionals with these properties and present a rather general scheme for solving the resulting optimization problem. As application examples we discuss interpolation on the sphere, fingerprint processing, and correspondence computations between three-dimensional surfaces. We conclude with characterizing interesting and sometimes counterintuitive implications and new open problems that are specific to learning between Riemannian manifolds and are not encountered in multivariate regression in Euclidean space.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Hybrid PET/MRI of Intracranial Masses: Initial Experiences and Comparison to PET/CT

Boss, A., Bisdas, S., Kolb, A., Hofmann, M., Ernemann, U., Claussen, C., Pfannenberg, C., Pichler, B., Reimold, M., Stegger, L.

Journal of Nuclear Medicine, 51(8):1198-1205, August 2010 (article)

Web DOI [BibTex]

Web DOI [BibTex]