Header logo is ei


2007


no image
Common Sequence Polymorphisms Shaping Genetic Diversity in Arabidopsis thaliana

Clark, R., Schweikert, G., Toomajian, C., Ossowski, S., Zeller, G., Shinn, P., Warthmann, N., Hu, T., Fu, G., Hinds, D., Chen, H., Frazer, K., Huson, D., Schölkopf, B., Nordborg, M., Rätsch, G., Ecker, J., Weigel, D.

Science, 317(5836):338-342, July 2007 (article)

Abstract
The genomes of individuals from the same species vary in sequence as a result of different evolutionary processes. To examine the patterns of, and the forces shaping, sequence variation in Arabidopsis thaliana, we performed high-density array resequencing of 20 diverse strains (accessions). More than 1 million nonredundant single-nucleotide polymorphisms (SNPs) were identified at moderate false discovery rates (FDRs), and ~4% of the genome was identified as being highly dissimilar or deleted relative to the reference genome sequence. Patterns of polymorphism are highly nonrandom among gene families, with genes mediating interaction with the biotic environment having exceptional polymorphism levels. At the chromosomal scale, regional variation in polymorphism was readily apparent. A scan for recent selective sweeps revealed several candidate regions, including a notable example in which almost all variation was removed in a 500-kilobase window. Analyzing the polymorphisms we describe in larger sets of accessions will enable a detailed understanding of forces shaping population-wide sequence variation in A. thaliana.

PDF DOI [BibTex]

2007

PDF DOI [BibTex]


no image
Graph Laplacians and their Convergence on Random Neighborhood Graphs

Hein, M., Audibert, J., von Luxburg, U.

Journal of Machine Learning Research, 8, pages: 1325-1370, June 2007 (article)

Abstract
Given a sample from a probability measure with support on a submanifold in Euclidean space one can construct a neighborhood graph which can be seen as an approximation of the submanifold. The graph Laplacian of such a graph is used in several machine learning methods like semi-supervised learning, dimensionality reduction and clustering. In this paper we determine the pointwise limit of three different graph Laplacians used in the literature as the sample size increases and the neighborhood size approaches zero. We show that for a uniform measure on the submanifold all graph Laplacians have the same limit up to constants. However in the case of a non-uniform measure on the submanifold only the so called random walk graph Laplacian converges to the weighted Laplace-Beltrami operator.

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Dirichlet Process Mixtures of Factor Analysers

Görür, D., Rasmussen, C.

Fifth Workshop on Bayesian Inference in Stochastic Processes (BSP5), June 2007 (talk)

Abstract
Mixture of factor analysers (MFA) is a well-known model that combines the dimensionality reduction technique of Factor Analysis (FA) with mixture modeling. The key issue in MFA is deciding on the latent dimension and the number of mixture components to be used. The Bayesian treatment of MFA has been considered by Beal and Ghahramani (2000) using variational approximation and by Fokoué and Titterington (2003) using birth-and –death Markov chain Monte Carlo (MCMC). Here, we present the nonparametric MFA model utilizing a Dirichlet process (DP) prior on the component parameters (that is, the factor loading matrix and the mean vector of each component) and describe an MCMC scheme for inference. The clustering property of the DP provides automatic selection of the number of mixture components. The latent dimensionality of each component is inferred by automatic relevance determination (ARD). Identifying the action potentials of individual neurons from extracellular recordings, known as spike sorting, is a challenging clustering problem. We apply our model for clustering the waveforms recorded from the cortex of a macaque monkey.

Web [BibTex]

Web [BibTex]


no image
New BCI approaches: Selective Attention to Auditory and Tactile Stimulus Streams

Hill, N., Raths, C.

Invited talk at the PASCAL Workshop on Methods of Data Analysis in Computational Neuroscience and Brain Computer Interfaces, June 2007 (talk)

Abstract
When considering Brain-Computer Interface (BCI) development for patients in the most severely paralysed states, there is considerable motivation to move away from BCI systems based on either motor cortex activity, or on visual stimuli. Together these account for most of current BCI research. I present the results of our recent exploration of new auditory- and tactile-stimulus-driven BCIs. The talk includes a tutorial on the construction and interpretation of classifiers which extract spatio-temporal features from event-related potential data. The effects and implications of whitening are discussed, and preliminary results on the effectiveness of a low-rank constraint (Tomioka and Aihara 2007) are shown.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Towards Motor Skill Learning in Robotics

Peters, J.

Interactive Robot Learning - RSS workshop, June 2007 (talk)

Web [BibTex]

Web [BibTex]


no image
Transductive Support Vector Machines for Structured Variables

Zien, A., Brefeld, U., Scheffer, T.

International Conference on Machine Learning (ICML), June 2007 (talk)

Abstract
We study the problem of learning kernel machines transductively for structured output variables. Transductive learning can be reduced to combinatorial optimization problems over all possible labelings of the unlabeled data. In order to scale transductive learning to structured variables, we transform the corresponding non-convex, combinatorial, constrained optimization problems into continuous, unconstrained optimization problems. The discrete optimization parameters are eliminated and the resulting differentiable problems can be optimized efficiently. We study the effectiveness of the generalized TSVM on multiclass classification and label-sequence learning problems empirically.

PDF PDF Web [BibTex]

PDF PDF Web [BibTex]


no image
Pattern detection

Blake, A., Romdhani, S., Schölkopf, B., Torr, P. H. S.

United States Patent, No 7236626, June 2007 (patent)

[BibTex]

[BibTex]


no image
Asymptotic stability of the solution of the M/MB/1 queueing model

Haji, A., Radl, A.

Computers and Mathematics with Applications, 53(9):1411-1420, May 2007 (article)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
MR Angiography of Dural Arteriovenous Fistulas: Diagnosis and Follow-Up after Treatment Using a Time-Resolved 3D Contrast-Enhanced Technique

Meckel, S., Maier, M., San Millan Ruiz, D., Yilmaz, H., Scheffler, K., Radü, E., Wetzel, S.

American Journal of Neuroradiology, 28(5):877-884, May 2007 (article)

Abstract
BACKGROUND AND PURPOSE: Digital subtraction angiography (DSA) is the method of reference for imaging of dural arteriovenous fistula (DAVF). The goal of this study was to analyze the value of different MR images including 3D contrast-enhanced MR angiography (MRA) with a high temporal resolution in diagnostic and follow-up imaging of DAVFs. MATERIALS AND METHODS: A total of 18 MR/MRA examinations from 14 patients with untreated (n = 9) and/or treated (n = 9) DAVFs were evaluated. Two observers assessed all MR and MRA investigations for signs indicating the presence of a DAVF, for fistula characteristics such as fistula grading, location of fistulous point, and fistula obliteration after treatment. All results were compared with DSA findings. RESULTS: On time-resolved 3D contrast-enhanced (TR 3D) MRA, the side and presence of all patent fistulas (n = 13) were correctly indicated, and no false-positive findings were observed in occluded DAVFs (n = 5). Grading of fistulas with this imaging technique was correct in 77% and 85% of patent fistulas for both readers, respectively. On T2-weighted images, signs indicative of a DAVF were encountered only in fistulas with cortical venous reflux (56%), whereas on 3D time-of-flight (TOF) MRA, most fistulas (88%) were correctly detected. In complete fistula occlusion, false-positive findings were encountered on both T2-weighted images and on TOF MRA images. CONCLUSION: In this study, TR 3D MRA proved reliable in detecting DAVFs and suitable for follow-up imaging. The technique allowed—within limitations—to grade DAVFs. Although 3D TOF MRA can depict signs of DAVFs, its value for follow-up imaging is limited.

Web [BibTex]

Web [BibTex]


no image
Bayesian Reconstruction of the Density of States

Habeck, M.

Physical Review Letters, 98(20, 200601):1-4, May 2007 (article)

Abstract
A Bayesian framework is developed to reconstruct the density of states from multiple canonical simulations. The framework encompasses the histogram reweighting method of Ferrenberg and Swendsen. The new approach applies to nonparametric as well as parametric models and does not require simulation data to be discretized. It offers a means to assess the precision of the reconstructed density of states and of derived thermodynamic quantities.

Web DOI [BibTex]

Web DOI [BibTex]


no image
PALMA: mRNA to Genome Alignments using Large Margin Algorithms

Schulze, U., Hepp, B., Ong, C., Rätsch, G.

Bioinformatics, 23(15):1892-1900, May 2007 (article)

Abstract
Motivation: Despite many years of research on how to properly align sequences in the presence of sequencing errors, alternative splicing and micro-exons, the correct alignment of mRNA sequences to genomic DNA is still a challenging task. Results: We present a novel approach based on large margin learning that combines accurate plice site predictions with common sequence alignment techniques. By solving a convex optimization problem, our algorithm – called PALMA – tunes the parameters of the model such that true alignments score higher than other alignments. We study the accuracy of alignments of mRNAs containing artificially generated micro-exons to genomic DNA. In a carefully designed experiment, we show that our algorithm accurately identifies the intron boundaries as well as boundaries of the optimal local alignment. It outperforms all other methods: for 5702 artificially shortened EST sequences from C. elegans and human it correctly identifies the intron boundaries in all except two cases. The best other method is a recently proposed method called exalin which misaligns 37 of the sequences. Our method also demonstrates robustness to mutations, insertions and deletions, retaining accuracy even at high noise levels. Availability: Datasets for training, evaluation and testing, additional results and a stand-alone alignment tool implemented in C++ and python are available at http://www.fml.mpg.de/raetsch/projects/palma.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Impact of target-to-target interval on classification performance in the P300 speller

Martens, S., Hill, J., Farquhar, J., Schölkopf, B.

Scientific Meeting "Applied Neuroscience for Healthy Brain Function", May 2007 (talk)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Cluster Identification in Nearest-Neighbor Graphs

Maier, M., Hein, M., von Luxburg, U.

(163), Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany, May 2007 (techreport)

Abstract
Assume we are given a sample of points from some underlying distribution which contains several distinct clusters. Our goal is to construct a neighborhood graph on the sample points such that clusters are ``identified‘‘: that is, the subgraph induced by points from the same cluster is connected, while subgraphs corresponding to different clusters are not connected to each other. We derive bounds on the probability that cluster identification is successful, and use them to predict ``optimal‘‘ values of k for the mutual and symmetric k-nearest-neighbor graphs. We point out different properties of the mutual and symmetric nearest-neighbor graphs related to the cluster identification problem.

PDF [BibTex]

PDF [BibTex]


no image
The role of the striatum in adaptation learning: a computational model

Grosse-Wentrup, M., Contreras-Vidal, J.

Biological Cybernetics, 96(4):377-388, April 2007 (article)

Abstract
To investigate the functional role of the striatum in visuo-motor adaptation, we extend the DIRECT-model for visuo-motor reaching movements formulated by Bullock et al.(J Cogn Neurosci 5:408–435,1993) through two parallel loops, each modeling a distinct contribution of the cortico–cerebellar–thalamo–cortical and the cortico–striato–thalamo–cortical networks to visuo-motor adaptation. Based on evidence of Robertson and Miall(Neuroreport 10(5): 1029–1034, 1999), we implement the function of the cortico–cerebellar–thalamo–cortical loop as a module that gradually adapts to small changes in sensorimotor relationships. The cortico–striato–thalamo–cortical loop on the other hand is hypothesized to act as an adaptive search element, guessing new sensorimotor-transformations and reinforcing successful guesses while punishing unsuccessful ones. In a first step, we show that the model reproduces trajectories and error curves of healthy subjects in a two dimensional center-out reaching task with rotated screen cursor visual feedback. In a second step, we disable learning processes in the cortico–striato– thalamo–cortical loop to simulate subjects with Parkinson’s disease (PD), and show that this leads to error curves typical of subjects with PD. We conclude that the results support our hypothesis, i.e., that the role of the cortico–striato–thalamo–cortical loop in visuo-motor adaptation is that of an adaptive search element.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Benchmarking of Policy Gradient Methods

Peters, J.

ADPRL Workshop, April 2007 (talk)

[BibTex]

[BibTex]


no image
Nonparametric Bayesian Discrete Latent Variable Models for Unsupervised Learning

Görür, D.

Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, April 2007, published online (phdthesis)

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
A robust fetal ECG detection method for abdominal recordings

Martens, SMM., Rabotti, C., Mischi, M., Sluijter, RJ.

Physiological Measurement, 28(4):373-388, April 2007, Martin Black Prize for best paper Physiological Measurement 2007 (article)

Abstract
In this paper, we propose a new method for FECG detection in abdominal recordings. The method consists of a sequential analysis approach, in which the a priori information about the interference signals is used for the detection of the FECG. Our method is evaluated on a set of 20 abdominal recordings from pregnant women with different gestational ages. Its performance in terms of fetal heart rate (FHR) detection success is compared with that of independent component analysis (ICA). The results show that our sequential estimation method outperforms ICA with a FHR detection rate of 85% versus 60% of ICA. The superior performance of our method is especially evident in recordings with a low signal-to-noise ratio (SNR). This indicates that our method is more robust than ICA for FECG detection.

DOI [BibTex]

DOI [BibTex]


no image
Exploring model selection techniques for nonlinear dimensionality reduction

Harmeling, S.

(EDI-INF-RR-0960), School of Informatics, University of Edinburgh, March 2007 (techreport)

Abstract
Nonlinear dimensionality reduction (NLDR) methods have become useful tools for practitioners who are faced with the analysis of high-dimensional data. Of course, not all NLDR methods are equally applicable to a particular dataset at hand. Thus it would be useful to come up with model selection criteria that help to choose among different NLDR algorithms. This paper explores various approaches to this problem and evaluates them on controlled data sets. Comprehensive experiments will show that model selection scores based on stability are not useful, while scores based on Gaussian processes are helpful for the NLDR problem.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Neighborhood Property based Pattern Selection for Support Vector Machines

Shin, H., Cho, S.

Neural Computation, 19(3):816-855, March 2007 (article)

Abstract
The support vector machine (SVM) has been spotlighted in the machine learning community because of its theoretical soundness and practical performance. When applied to a large data set, however, it requires a large memory and a long time for training. To cope with the practical difficulty, we propose a pattern selection algorithm based on neighborhood properties. The idea is to select only the patterns that are likely to be located near the decision boundary. Those patterns are expected to be more informative than the randomly selected patterns. The experimental results provide promising evidence that it is possible to successfully employ the proposed algorithm ahead of SVM training.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Training a Support Vector Machine in the Primal

Chapelle, O.

Neural Computation, 19(5):1155-1178, March 2007 (article)

Abstract
Most literature on Support Vector Machines (SVMs) concentrate on the dual optimization problem. In this paper, we would like to point out that the primal problem can also be solved efficiently, both for linear and non-linear SVMs, and that there is no reason for ignoring this possibilty. On the contrary, from the primal point of view new families of algorithms for large scale SVM training can be investigated.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Dirichlet Mixtures of Bayesian Linear Gaussian State-Space Models: a Variational Approach

Chiappa, S., Barber, D.

(161), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, March 2007 (techreport)

Abstract
We describe two related models to cluster multidimensional time-series under the assumption of an underlying linear Gaussian dynamical process. In the first model, times-series are assigned to the same cluster when they show global similarity in their dynamics, while in the second model times-series are assigned to the same cluster when they show simultaneous similarity. Both models are based on Dirichlet Mixtures of Bayesian Linear Gaussian State-Space Models in order to (semi) automatically determine an appropriate number of components in the mixture, and to additionally bias the components to a parsimonious parameterization. The resulting models are formally intractable and to deal with this we describe a deterministic approximation based on a novel implementation of Variational Bayes.

PDF [BibTex]

PDF [BibTex]


no image
Applications of Kernel Machines to Structured Data

Eichhorn, J.

Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, March 2007, passed with "sehr gut", published online (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
A priori Knowledge from Non-Examples

Sinz, FH.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, March 2007 (diplomathesis)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Improving the Caenorhabditis elegans Genome Annotation Using Machine Learning

Rätsch, G., Sonnenburg, S., Srinivasan, J., Witte, H., Müller, K., Sommer, R., Schölkopf, B.

PLoS Computational Biology, 3(2, e20):0313-0322, February 2007 (article)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Modeling data using directional distributions: Part II

Sra, S., Jain, P., Dhillon, I.

(TR-07-05), University of Texas, Austin, TX, USA, February 2007 (techreport)

Abstract
High-dimensional data is central to most data mining applications, and only recently has it been modeled via directional distributions. In [Banerjee et al., 2003] the authors introduced the use of the von Mises-Fisher (vMF) distribution for modeling high-dimensional directional data, particularly for text and gene expression analysis. The vMF distribution is one of the simplest directional distributions. TheWatson, Bingham, and Fisher-Bingham distributions provide distri- butions with an increasing number of parameters and thereby commensurately increased modeling power. This report provides a followup study to the initial development in [Banerjee et al., 2003] by presenting Expectation Maximization (EM) procedures for estimating parameters of a mixture of Watson (moW) distributions. The numerical challenges associated with parameter estimation for both of these distributions are significantly more difficult than for the vMF distribution. We develop new numerical approximations for estimating the parameters permitting us to model real- life data more accurately. Our experimental results establish that for certain data sets improved modeling power translates into better results.

PDF [BibTex]

PDF [BibTex]


no image
Automatic 3D Face Reconstruction from Single Images or Video

Breuer, P., Kim, K., Kienzle, W., Blanz, V., Schölkopf, B.

(160), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, February 2007 (techreport)

Abstract
This paper presents a fully automated algorithm for reconstructing a textured 3D model of a face from a single photograph or a raw video stream. The algorithm is based on a combination of Support Vector Machines (SVMs) and a Morphable Model of 3D faces. After SVM face detection, individual facial features are detected using a novel regression-and classification-based approach, and probabilistically plausible configurations of features are selected to produce a list of candidates for several facial feature positions. In the next step, the configurations of feature points are evaluated using a novel criterion that is based on a Morphable Model and a combination of linear projections. Finally, the feature points initialize a model-fitting procedure of the Morphable Model. The result is a high-resolution 3D surface model.

PDF [BibTex]

PDF [BibTex]


no image
Statistical Consistency of Kernel Canonical Correlation Analysis

Fukumizu, K., Bach, F., Gretton, A.

Journal of Machine Learning Research, 8, pages: 361-383, February 2007 (article)

Abstract
While kernel canonical correlation analysis (CCA) has been applied in many contexts, the convergence of finite sample estimates of the associated functions to their population counterparts has not yet been established. This paper gives a mathematical proof of the statistical convergence of kernel CCA, providing a theoretical justification for the method. The proof uses covariance operators defined on reproducing kernel Hilbert spaces, and analyzes the convergence of their empirical estimates of finite rank to their population counterparts, which can have infinite rank. The result also gives a sufficient condition for convergence on the regularization coefficient involved in kernel CCA: this should decrease as n^{-1/3}, where n is the number of data.

PDF [BibTex]

PDF [BibTex]


no image
Machine Learning for Mass Production and Industrial Engineering

Pfingsten, T.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, February 2007 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
New Margin- and Evidence-Based Approaches for EEG Signal Classification

Hill, N., Farquhar, J.

Invited talk at the FaSor Jahressymposium, February 2007 (talk)

PDF [BibTex]

PDF [BibTex]


no image
Some observations on the pedestal effect

Henning, G., Wichmann, F.

Journal of Vision, 7(1:3):1-15, January 2007 (article)

Abstract
The pedestal or dipper effect is the large improvement in the detectability of a sinusoidal grating observed when it is added to a masking or pedestal grating of the same spatial frequency, orientation, and phase. We measured the pedestal effect in both broadband and notched noiseVnoise from which a 1.5-octave band centered on the signal frequency had been removed. Although the pedestal effect persists in broadband noise, it almost disappears in the notched noise. Furthermore, the pedestal effect is substantial when either high- or low-pass masking noise is used. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies different from that of the signal and the pedestal. We speculate that the spatial-frequency components of the notched noise above and below the spatial frequency of the signal and the pedestal prevent ‘‘off-frequency looking,’’ that is, prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and the pedestal. Thus, the pedestal or dipper effect measured without notched noise appears not to be a characteristic of individual spatial-frequency-tuned channels.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Development of a Brain-Computer Interface Approach Based on Covert Attention to Tactile Stimuli

Raths, C.

University of Tübingen, Germany, University of Tübingen, Germany, January 2007 (diplomathesis)

[BibTex]

[BibTex]


no image
Cue Combination and the Effect of Horizontal Disparity and Perspective on Stereoacuity

Zalevski, AM., Henning, GB., Hill, NJ.

Spatial Vision, 20(1):107-138, January 2007 (article)

Abstract
Relative depth judgments of vertical lines based on horizontal disparity deteriorate enormously when the lines form part of closed configurations (Westheimer, 1979). In studies showing this effect, perspective was not manipulated and thus produced inconsistency between horizontal disparity and perspective. We show that stereoacuity improves dramatically when perspective and horizontal disparity are made consistent. Observers appear to use unhelpful perspective cues in judging the relative depth of the vertical sides of rectangles in a way not incompatible with a form of cue weighting. However, 95% confidence intervals for the weights derived for cues usually exceed the a-priori [0-1] range.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
A Machine Learning Approach for Estimating the Attenuation Map for a Combined PET/MR Scanner

Hofmann, M.

Biologische Kybernetik, Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, 2007 (diplomathesis)

[BibTex]

[BibTex]


no image
Classificazione di immagini telerilevate satellitari per agricoltura di precisione

Arnoldi, E., Bruzzone, L., Carlin, L., Pedron, L., Persello, C.

MondoGis: Il Mondo dei Sistemi Informativi Geografici, 63, pages: 13-17, 2007 (article)

[BibTex]

[BibTex]


no image
Separating convolutive mixtures by pairwise mutual information minimization", IEEE Signal Processing Letters

Zhang, K., Chan, L.

IEEE Signal Processing Letters, 14(12):992-995, 2007 (article)

Abstract
Blind separation of convolutive mixtures by minimizing the mutual information between output sequences can avoid the side effect of temporally whitening the outputs, but it involves the score function difference, whose estimation may be problematic when the data dimension is greater than two. This greatly limits the application of this method. Fortunately, for separating convolutive mixtures, pairwise independence of outputs leads to their mutual independence. As an implementation of this idea, we propose a way to separate convolutive mixtures by enforcing pairwise independence. This approach can be applied to separate convolutive mixtures of a moderate number of sources.

Web [BibTex]


no image
Machine Learning of Motor Skills for Robotics

Peters, J.

University of Southern California, Los Angeles, CA, USA, University of Southern California, Los Angeles, CA, USA, 2007, clmc (phdthesis)

Abstract
Autonomous robots that can assist humans in situations of daily life have been a long standing vision of robotics, artificial intelligence, and cognitive sciences. A first step towards this goal is to create robots that can accomplish a multitude of different tasks, triggered by environmental context or higher level instruction. Early approaches to this goal during the heydays of artificial intelligence research in the late 1980s, however, made it clear that an approach purely based on reasoning and human insights would not be able to model all the perceptuomotor tasks that a robot should fulfill. Instead, new hope was put in the growing wake of machine learning that promised fully adaptive control algorithms which learn both by observation and trial-and-error. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics, and usually scaling was only achieved in precisely pre-structured domains. In this thesis, we investigate the ingredients for a general approach to motor skill learning in order to get one step closer towards human-like performance. For doing so, we study two major components for such an approach, i.e., firstly, a theoretically well-founded general approach to representing the required control structures for task representation and execution and, secondly, appropriate learning algorithms which can be applied in this setting. As a theoretical foundation, we first study a general framework to generate control laws for real robots with a particular focus on skills represented as dynamical systems in differential constraint form. We present a point-wise optimal control framework resulting from a generalization of Gauss' principle and show how various well-known robot control laws can be derived by modifying the metric of the employed cost function. The framework has been successfully applied to task space tracking control for holonomic systems for several different metrics on the anthropomorphic SARCOS Master Arm. In order to overcome the limiting requirement of accurate robot models, we first employ learning methods to find learning controllers for task space control. However, when learning to execute a redundant control problem, we face the general problem of the non-convexity of the solution space which can force the robot to steer into physically impossible configurations if supervised learning methods are employed without further consideration. This problem can be resolved using two major insights, i.e., the learning problem can be treated as locally convex and the cost function of the analytical framework can be used to ensure global consistency. Thus, we derive an immediate reinforcement learning algorithm from the expectation-maximization point of view which leads to a reward-weighted regression technique. This method can be used both for operational space control as well as general immediate reward reinforcement learning problems. We demonstrate the feasibility of the resulting framework on the problem of redundant end-effector tracking for both a simulated 3 degrees of freedom robot arm as well as for a simulated anthropomorphic SARCOS Master Arm. While learning to execute tasks in task space is an essential component to a general framework to motor skill learning, learning the actual task is of even higher importance, particularly as this issue is more frequently beyond the abilities of analytical approaches than execution. We focus on the learning of elemental tasks which can serve as the "building blocks of movement generation", called motor primitives. Motor primitives are parameterized task representations based on splines or nonlinear differential equations with desired attractor properties. While imitation learning of parameterized motor primitives is a relatively well-understood problem, the self-improvement by interaction of the system with the environment remains a challenging problem, tackled in the fourth chapter of this thesis. For pursuing this goal, we highlight the difficulties with current reinforcement learning methods, and outline both established and novel algorithms for the gradient-based improvement of parameterized policies. We compare these algorithms in the context of motor primitive learning, and show that our most modern algorithm, the Episodic Natural Actor-Critic outperforms previous algorithms by at least an order of magnitude. We demonstrate the efficiency of this reinforcement learning method in the application of learning to hit a baseball with an anthropomorphic robot arm. In conclusion, in this thesis, we have contributed a general framework for analytically computing robot control laws which can be used for deriving various previous control approaches and serves as foundation as well as inspiration for our learning algorithms. We have introduced two classes of novel reinforcement learning methods, i.e., the Natural Actor-Critic and the Reward-Weighted Regression algorithm. These algorithms have been used in order to replace the analytical components of the theoretical framework by learned representations. Evaluations have been performed on both simulated and real robot arms.

[BibTex]

[BibTex]


no image
Relative Entropy Policy Search

Peters, J.

CLMC Technical Report: TR-CLMC-2007-2, Computational Learning and Motor Control Lab, Los Angeles, CA, 2007, clmc (techreport)

Abstract
This technical report describes a cute idea of how to create new policy search approaches. It directly relates to the Natural Actor-Critic methods but allows the derivation of one shot solutions. Future work may include the application to interesting problems.

PDF link (url) [BibTex]

PDF link (url) [BibTex]

2003


no image
Learning Control and Planning from the View of Control Theory and Imitation

Peters, J., Schaal, S.

NIPS Workshop "Planning for the Real World: The promises and challenges of dealing with uncertainty", December 2003 (talk)

Abstract
Learning control and planning in high dimensional continuous state-action systems, e.g., as needed in a humanoid robot, has so far been a domain beyond the applicability of generic planning techniques like reinforcement learning and dynamic programming. This talk describes an approach we have taken in order to enable complex robotics systems to learn to accomplish control tasks. Adaptive learning controllers equipped with statistical learning techniques can be used to learn tracking controllers -- missing state information and uncertainty in the state estimates are usually addressed by observers or direct adaptive control methods. Imitation learning is used as an ingredient to seed initial control policies whose output is a desired trajectory suitable to accomplish the task at hand. Reinforcement learning with stochastic policy gradients using a natural gradient forms the third component that allows refining the initial control policy until the task is accomplished. In comparison to general learning control, this approach is highly prestructured and thus more domain specific. However, it seems to be a theoretically clean and feasible strategy for control systems of the complexity that we need to address.

Web [BibTex]

2003

Web [BibTex]


no image
Molecular phenotyping of human chondrocyte cell lines T/C-28a2, T/C-28a4, and C-28/I2

Finger, F., Schorle, C., Zien, A., Gebhard, P., Goldring, M., Aigner, T.

Arthritis & Rheumatism, 48(12):3395-3403, December 2003 (article)

[BibTex]

[BibTex]


no image
A Study on Rainfall - Runoff Models for Improving Ensemble Streamflow Prediction: 1. Rainfallrunoff Models Using Artificial Neural Networks

Jeong, D., Kim, Y., Cho, S., Shin, H.

Journal of the Korean Society of Civil Engineers, 23(6B):521-530, December 2003 (article)

Abstract
The previous ESP (Ensemble Streamflow Prediction) studies conducted in Korea reported that the modeling error is a major source of the ESP forecast error in winter and spring (i.e. dry seasons), and thus suggested that improving the rainfall-runoff model would be critical to obtain more accurate probabilistic forecasts with ESP. This study used two types of Artificial Neural Networks (ANN), such as a Single Neural Network (SNN) and an Ensemble Neural Networks (ENN), to improve the simulation capability of the rainfall-runoff model of the ESP forecasting system for the monthly inflow to the Daecheong dam. Applied for the first time to Korean hydrology, ENN combines the outputs of member models so that it can control the generalization error better than SNN. Because the dry and the flood season in Korea shows considerably different streamflow characteristics, this study calibrated the rainfall-runoff model separately for each season. Therefore, four rainfall-runoff models were developed according to the ANN types and the seasons. This study compared the ANN models with a conceptual rainfall-runoff model called TANK and verified that the ANN models were superior to TANK. Among the ANN models, ENN was more accurate than SNN. The ANN model performance was improved when the model was calibrated separately for the dry and the flood season. The best ANN model developed in this article will be incorporated into the ESP system to increase the forecast capability of ESP for the monthly inflow to the Daecheong dam.

[BibTex]

[BibTex]


no image
Quantitative Cerebral Blood Flow Measurements in the Rat Using a Beta-Probe and H215O

Weber, B., Spaeth, N., Wyss, M., Wild, D., Burger, C., Stanley, R., Buck, A.

Journal of Cerebral Blood Flow and Metabolism, 23(12):1455-1460, December 2003 (article)

Abstract
Beta-probes are a relatively new tool for tracer kinetic studies in animals. They are highly suited to evaluate new positron emission tomography tracers or measure physiologic parameters at rest and after some kind of stimulation or intervention. In many of these experiments, the knowledge of CBF is highly important. Thus, the purpose of this study was to evaluate the method of CBF measurements using a beta-probe and H215O. CBF was measured in the barrel cortex of eight rats at baseline and after acetazolamide challenge. Trigeminal nerve stimulation was additionally performed in five animals. In each category, three injections of 250 to 300 MBq H215O were performed at 10-minute intervals. Data were analyzed using a standard one-tissue compartment model (K1 = CBF, k2 = CBF/p, where p is the partition coefficient). Values for K1 were 0.35 plusminus 0.09, 0.58 plusminus 0.16, and 0.49 plusminus 0.03 mL dot min-1 dot mL-1 at rest, after acetazolamide challenge, and during trigeminal nerve stimulation, respectively. The corresponding values for k2 were 0.55 plusminus 0.12, 0.94 plusminus 0.16, and 0.85 plusminus 0.12 min-7, and for p were 0.64 plusminus 0.05, 0.61 plusminus 0.07, and 0.59 plusminus 0.06.The standard deviation of the difference between two successive experiments, a measure for the reproducibility of the method, was 10.1%, 13.0%, and 5.7% for K1, k2, and p, respectively. In summary, beta-probes in conjunction with H215O allow the reproducible quantitative measurement of CBF, although some systematic underestimation seems to occur, probably because of partial volume effects.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Recurrent neural networks from learning attractor dynamics

Schaal, S., Peters, J.

NIPS Workshop on RNNaissance: Recurrent Neural Networks, December 2003 (talk)

Abstract
Many forms of recurrent neural networks can be understood in terms of dynamic systems theory of difference equations or differential equations. Learning in such systems corresponds to adjusting some internal parameters to obtain a desired time evolution of the network, which can usually be characterized in term of point attractor dynamics, limit cycle dynamics, or, in some more rare cases, as strange attractor or chaotic dynamics. Finding a stable learning process to adjust the open parameters of the network towards shaping the desired attractor type and basin of attraction has remain a complex task, as the parameter trajectories during learning can lead the system through a variety of undesirable unstable behaviors, such that learning may never succeed. In this presentation, we review a recently developed learning framework for a class of recurrent neural networks that employs a more structured network approach. We assume that the canonical system behavior is known a priori, e.g., it is a point attractor or a limit cycle. With either supervised learning or reinforcement learning, it is possible to acquire the transformation from a simple representative of this canonical behavior (e.g., a 2nd order linear point attractor, or a simple limit cycle oscillator) to the desired highly complex attractor form. For supervised learning, one shot learning based on locally weighted regression techniques is possible. For reinforcement learning, stochastic policy gradient techniques can be employed. In any case, the recurrent network learned by these methods inherits the stability properties of the simple dynamic system that underlies the nonlinear transformation, such that stability of the learning approach is not a problem. We demonstrate the success of this approach for learning various skills on a humanoid robot, including tasks that require to incorporate additional sensory signals as coupling terms to modify the recurrent network evolution on-line.

Web [BibTex]

Web [BibTex]


no image
Support Vector Channel Selection in BCI

Lal, T., Schröder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N., Schölkopf, B.

(120), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, December 2003 (techreport)

Abstract
Designing a Brain Computer Interface (BCI) system one can choose from a variety of features that may be useful for classifying brain activity during a mental task. For the special case of classifying EEG signals we propose the usage of the state of the art feature selection algorithms Recursive Feature Elimination [3] and Zero-Norm Optimization [13] which are based on the training of Support Vector Machines (SVM) [11]. These algorithms can provide more accurate solutions than standard filter methods for feature selection [14]. We adapt the methods for the purpose of selecting EEG channels. For a motor imagery paradigm we show that the number of used channels can be reduced significantly without increasing the classification error. The resulting best channels agree well with the expected underlying cortical activity patterns during the mental tasks. Furthermore we show how time dependent task specific information can be visualized.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Blind separation of post-nonlinear mixtures using linearizing transformations and temporal decorrelation

Ziehe, A., Kawanabe, M., Harmeling, S., Müller, K.

Journal of Machine Learning Research, 4(7-8):1319-1338, November 2003 (article)

Abstract
We propose two methods that reduce the post-nonlinear blind source separation problem (PNL-BSS) to a linear BSS problem. The first method is based on the concept of maximal correlation: we apply the alternating conditional expectation (ACE) algorithm--a powerful technique from non-parametric statistics--to approximately invert the componentwise nonlinear functions. The second method is a Gaussianizing transformation, which is motivated by the fact that linearly mixed signals before nonlinear transformation are approximately Gaussian distributed. This heuristic, but simple and efficient procedure works as good as the ACE method. Using the framework provided by ACE, convergence can be proven. The optimal transformations obtained by ACE coincide with the sought-after inverse functions of the nonlinearities. After equalizing the nonlinearities, temporal decorrelation separation (TDSEP) allows us to recover the source signals. Numerical simulations testing "ACE-TD" and "Gauss-TD" on realistic examples are performed with excellent results.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Correlated stage- and subfield-associated hippocampal gene expression patterns in experimental and human temporal lobe epilepsy

Becker, A., Chen, J., Zien, A., Sochivko, D., Normann, S., Schramm, J., Elger, C., Wiestler, O., Blumcke, I.

European Journal of Neuroscience, 18(10):2792-2802, November 2003 (article)

Abstract
Epileptic activity evokes profound alterations of hippocampal organization and function. Genomic responses may reflect immediate consequences of excitatory stimulation as well as sustained molecular processes related to neuronal plasticity and structural remodeling. Using oligonucleotide microarrays with 8799 sequences, we determined subregional gene expression profiles in rats subjected to pilocarpine-induced epilepsy (U34A arrays, Affymetrix, Santa Clara, CA, USA; P < 0.05, twofold change, n = 3 per stage). Patterns of gene expression corresponded to distinct stages of epilepsy development. The highest number of differentially expressed genes (dentate gyrus, approx. 400 genes and CA1, approx. 700 genes) was observed 3 days after status epilepticus. The majority of up-regulated genes was associated with mechanisms of cellular stress and injury - 14 days after status epilepticus, numerous transcription factors and genes linked to cytoskeletal and synaptic reorganization were differentially expressed and, in the stage of chronic spontaneous seizures, distinct changes were observed in the transcription of genes involved in various neurotransmission pathways and between animals with low vs. high seizure frequency. A number of genes (n = 18) differentially expressed during the chronic epileptic stage showed corresponding expression patterns in hippocampal subfields of patients with pharmacoresistant temporal lobe epilepsy (n = 5 temporal lobe epilepsy patients; U133A microarrays, Affymetrix; covering 22284 human sequences). These data provide novel insights into the molecular mechanisms of epileptogenesis and seizure-associated cellular and structural remodeling of the hippocampus.

[BibTex]

[BibTex]


no image
Concentration Inequalities for Sub-Additive Functions Using the Entropy Method

Bousquet, O.

Stochastic Inequalities and Applications, 56, pages: 213-247, Progress in Probability, (Editors: Giné, E., C. Houdré and D. Nualart), November 2003 (article)

Abstract
We obtain exponential concentration inequalities for sub-additive functions of independent random variables under weak conditions on the increments of those functions, like the existence of exponential moments for these increments. As a consequence of these general inequalities, we obtain refinements of Talagrand's inequality for empirical processes and new bounds for randomized empirical processes. These results are obtained by further developing the entropy method introduced by Ledoux.

PostScript [BibTex]

PostScript [BibTex]


no image
Learning Theory and Kernel Machines: 16th Annual Conference on Learning Theory and 7th Kernel Workshop (COLT/Kernel 2003), LNCS Vol. 2777

Schölkopf, B., Warmuth, M.

Proceedings of the 16th Annual Conference on Learning Theory and 7th Kernel Workshop (COLT/Kernel 2003), COLT/Kernel 2003, pages: 746, Springer, Berlin, Germany, 16th Annual Conference on Learning Theory and 7th Kernel Workshop, November 2003, Lecture Notes in Computer Science ; 2777 (proceedings)

DOI [BibTex]

DOI [BibTex]


no image
Technical report on Separation methods for nonlinear mixtures

Jutten, C., Karhunen, J., Almeida, L., Harmeling, S.

(D29), EU-Project BLISS, October 2003 (techreport)

PDF [BibTex]

PDF [BibTex]