Header logo is ei


2388 results (BibTeX)

2016


no image
Multi-task logistic regression in brain-computer interfaces

Fiebig, K., Jayaram, V., Peters, J., Grosse-Wentrup, M.

Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC 2016), pages: 002307-002312, IEEE, 2016 (conference)

link (url) DOI [BibTex]

2016

link (url) DOI [BibTex]


no image
Jointly Learning Trajectory Generation and Hitting Point Prediction in Robot Table Tennis

Huang, Y., Büchler, D., Koc, O., Schölkopf, B., Peters, J.

16th IEEE-RAS International Conference on Humanoid Robots, pages: 650-655, Humanoids, 2016 (conference)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Using Probabilistic Movement Primitives for Striking Movements

Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.

16th IEEE-RAS International Conference on Humanoid Robots, pages: 502-508, Humanoids, 2016 (conference)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl 2016 lightfield depth
Depth Estimation Through a Generative Model of Light Field Synthesis

Sajjadi, M. S. M., Köhler, R., Schölkopf, B., Hirsch, M.

Pattern Recognition: 38th German Conference, GCPR 2016, Hannover, Germany, September 12-15, 2016, Proceedings, 9796, pages: 426-438, Lecture Notes in Computer Science, (Editors: Rosenhahn, B. and Andres, B.), Springer International Publishing, 2016 (conference)

Arxiv Project link (url) DOI [BibTex]

Arxiv Project link (url) DOI [BibTex]


no image
A New Trajectory Generation Framework in Robotic Table Tennis

Koc, O., Maeda, G., Peters, J.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 3750-3756, IROS, 2016 (conference)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Probabilistic Inference for Determining Options in Reinforcement Learning

Daniel, C., van Hoof, H., Peters, J., Neumann, G.

Machine Learning, Special Issue, 104(2):337-357, (Editors: Gärtner, T., Nanni, M., Passerini, A. and Robardet, C.), European Conference on Machine Learning im Machine Learning, Journal Track, 2016, Best Student Paper Award of ECMLPKDD 2016 (article)

DOI [BibTex]

DOI [BibTex]


no image
Active Nearest-Neighbor Learning in Metric Spaces

Kontorovich, A., Sabato, S., Urner, R.

Advances in Neural Information Processing Systems 29, pages: 856-864, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems (NIPS), 2016 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Lifelong Learning with Weighted Majority Votes

Pentina, A., Urner, R.

Advances in Neural Information Processing Systems 29, pages: 3612-3620, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems (NIPS), 2016 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
A Causal, Data-driven Approach to Modeling the Kepler Data

Wang, D., Hogg, D. W., Foreman-Mackey, D., Schölkopf, B.

Publications of the Astronomical Society of the Pacific, 128(967):094503, 2016 (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
The Arrow of Time in Multivariate Time Serie

Bauer, S., Schölkopf, B., Peters, J.

Proceedings of the 33rd International Conference on Machine Learning, 48, pages: 2043-2051, JMLR Workshop and Conference Proceedings, (Editors: Balcan, M. F. and Weinberger, K. Q.), JMLR, ICML, 2016 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Batch Bayesian Optimization via Local Penalization

González, J., Dai, Z., Hennig, P., Lawrence, N.

Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS 2016), 51, pages: 648-657, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C.), 2016 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Active Uncertainty Calibration in Bayesian ODE Solvers

Kersting, H., Hennig, P.

Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI 2016), pages: 309-318, (Editors: Ihler, A. and Janzing, D.), AUAI Press, 2016 (conference)

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
On Version Space Compression

Ben-David, S., Urner, R.

Algorithmic Learning Theory - 27th International Conference (ALT 2016), 9925, pages: 50-64, Lecture Notes in Computer Science, (Editors: Ortner, R., Simon, H. U., and Zilles, S.), 2016 (conference)

DOI [BibTex]

DOI [BibTex]


Thumb xl untitled
Probabilistic Approximate Least-Squares

Bartels, S., Hennig, P.

Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS 2016), 51, pages: 676-684, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C. ), 2016 (conference)

Abstract
Least-squares and kernel-ridge / Gaussian process regression are among the foundational algorithms of statistics and machine learning. Famously, the worst-case cost of exact nonparametric regression grows cubically with the data-set size; but a growing number of approximations have been developed that estimate good solutions at lower cost. These algorithms typically return point estimators, without measures of uncertainty. Leveraging recent results casting elementary linear algebra operations as probabilistic inference, we propose a new approximate method for nonparametric least-squares that affords a probabilistic uncertainty estimate over the error between the approximate and exact least-squares solution (this is not the same as the posterior variance of the associated Gaussian process regressor). This allows estimating the error of the least-squares solution on a subset of the data relative to the full-data solution. The uncertainty can be used to control the computational effort invested in the approximation. Our algorithm has linear cost in the data-set size, and a simple formal form, so that it can be implemented with a few lines of code in programming languages with linear algebra functionality.

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
On the Identifiability and Estimation of Functional Causal Models in the Presence of Outcome-Dependent Selection

Zhang, K., Zhang, J., Huang, B., Schölkopf, B., Glymour, C.

Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI 2016), pages: 825-834, (Editors: Ihler, A. and Janzing, D.), AUAI Press, 2016, plenary presentation (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Learning Causal Interaction Network of Multivariate Hawkes Processes

Etesami, S., Kiyavash, N., Zhang, K., Singhal, K.

Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI 2016), 2016, poster presentation (conference)

[BibTex]

[BibTex]


no image
Causal discovery and inference: concepts and recent methodological advances

Spirtes, P., Zhang, K.

Applied Informatics, 3(3):1-28, 2016 (article)

DOI [BibTex]

DOI [BibTex]


no image
Recovery of non-linear cause-effect relationships from linearly mixed neuroimaging data

Weichwald, S., Gretton, A., Schölkopf, B., Grosse-Wentrup, M.

Proceedings of the 6th International Workshop on Pattern Recognition in NeuroImaging (PRNI 2016), 2016 (conference)

PDF Arxiv Code DOI [BibTex]

PDF Arxiv Code DOI [BibTex]


no image
Pymanopt: A Python Toolbox for Optimization on Manifolds using Automatic Differentiation

Townsend, J., Koep, N., Weichwald, S.

Journal of Machine Learning Research, 17(137):1-5, 2016 (article)

PDF Arxiv Code Project page link (url) [BibTex]


no image
Domain Adaptation with Conditional Transferable Components

Gong, M., Zhang, K., Liu, T., Tao, D., Glymour, C., Schölkopf, B.

Proceedings of the 33nd International Conference on Machine Learning (ICML 2016), 48, pages: 2839-2848, JMLR Workshop and Conference Proceedings, (Editors: Balcan, M.-F. and Weinberger, K. Q.), 2016 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Special Issue on Causal Discovery and Inference

Zhang, K., Li, J., Bareinboim, E., Schölkopf, B., Pearl, J.

ACM Transactions on Intelligent Systems and Technology (TIST), 7(2), January 2016, (Guest Editors) (misc)

[BibTex]

[BibTex]


no image
Empirical Inference (2010-2015)
Scientific Advisory Board Report, 2016 (misc)

pdf [BibTex]

pdf [BibTex]


no image
An Improved Cognitive Brain-Computer Interface for Patients with Amyotrophic Lateral Sclerosis

Hohmann, M. R., Fomina, T., Jayaram, V., Förster, C., Just, J., M., S., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

Proceedings of the Sixth International BCI Meeting, pages: 44, (Editors: Müller-Putz, G. R. and Huggins, J. E. and Steyrl, D.), BCI, 2016 (conference)

DOI [BibTex]

DOI [BibTex]


Thumb xl 2016 peer grading
Peer Grading in a Course on Algorithms and Data Structures: Machine Learning Algorithms do not Improve over Simple Baselines

Sajjadi, M. S. M., Alamgir, M., von Luxburg, U.

Proceedings of the 3rd ACM conference on Learning @ Scale, pages: 369-378, (Editors: Haywood, J. and Aleven, V. and Kay, J. and Roll, I.), ACM, L@S, 2016, (An earlier version of this paper had been presented at the ICML 2015 workshop for Machine Learning for Education.) (conference)

Arxiv Peer-Grading dataset request [BibTex]

Arxiv Peer-Grading dataset request [BibTex]


no image
Unifying distillation and privileged information

Lopez-Paz, D., Schölkopf, B., Bottou, L., Vapnik, V.

International Conference on Learning Representations, ICLR, 2016 (conference)

Arxiv [BibTex]

Arxiv [BibTex]


no image
A Population Based Gaussian Mixture Model Incorporating 18F-FDG-PET and DW-MRI Quantifies Tumor Tissue Classes

Divine, M. R., Katiyar, P., Kohlhofer, U., Quintanilla-Martinez, L., Disselhorst, J. A., Pichler, B. J.

Journal of Nuclear Medicine, 57(3):473-479, 2016 (article)

DOI [BibTex]

DOI [BibTex]


Thumb xl 2pamcompressed
A Lightweight Robotic Arm with Pneumatic Muscles for Robot Learning

Büchler, D., Ott, H., Peters, J.

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, pages: 4086-4092, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (conference)

ICRA16final DOI [BibTex]

ICRA16final DOI [BibTex]


no image
Causal inference using invariant prediction: identification and confidence intervals

Peters, J., Bühlmann, P., Meinshausen, N.

Journal of the Royal Statistical Society, Series B (Statistical Methodology), 78(5):947-1012, 2016, (with discussion) (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
MERLiN: Mixture Effect Recovery in Linear Networks

Weichwald, S., Grosse-Wentrup, M., Gretton, A.

IEEE Journal of Selected Topics in Signal Processing, 10(7):1254-1266, 2016 (article)

Arxiv Code PDF DOI [BibTex]

Arxiv Code PDF DOI [BibTex]


no image
TerseSVM : A Scalable Approach for Learning Compact Models in Large-scale Classification

Babbar, R., Muandet, K., Schölkopf, B.

Proceedings of the 2016 SIAM International Conference on Data Mining, pages: 234-242, (Editors: Sanjay Chawla Venkatasubramanian and Wagner Meira), SDM, 2016 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Transfer Learning in Brain-Computer Interfaces

Jayaram, V., Alamgir, M., Altun, Y., Schölkopf, B., Grosse-Wentrup, M.

IEEE Computational Intelligence Magazine, 11(1):20-31, 2016 (article)

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Learning to Deblur

Schuler, C. J., Hirsch, M., Harmeling, S., Schölkopf, B.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(7):1439-1451, IEEE, 2016 (article)

DOI [BibTex]

DOI [BibTex]


no image
Learning Taxonomy Adaptation in Large-scale Classification

Babbar, R., Partalas, I., Gaussier, E., Amini, M., Amblard, C.

Journal of Machine Learning Research, 17(98):1-37, 2016 (article)

link (url) [BibTex]

link (url) [BibTex]


no image
Modeling Confounding by Half-Sibling Regression

Schölkopf, B., Hogg, D., Wang, D., Foreman-Mackey, D., Janzing, D., Simon-Gabriel, C., Peters, J.

Proceedings of the National Academy of Science, 113(27):7391-7398, 2016 (article)

Code link (url) DOI [BibTex]

Code link (url) DOI [BibTex]


no image
On estimation of functional causal models: General results and application to post-nonlinear causal model

Zhang, K., Wang, Z., Zhang, J., Schölkopf, B.

ACM Transactions on Intelligent Systems and Technologies, 7(2):article no. 13, January 2016 (article)

PDF DOI [BibTex]

PDF DOI [BibTex]

2015


no image
The search for single exoplanet transits in the Kepler light curves

Foreman-Mackey, D., Hogg, D. W., Schölkopf, B.

IAU General Assembly, 22, pages: 2258352, 2015 (article)

link (url) [BibTex]

2015

link (url) [BibTex]


no image
Particle Gibbs for Infinite Hidden Markov Models

Tripuraneni*, N., Gu*, S., Ge, H., Ghahramani, Z.

Advances in Neural Information Processing Systems 28, pages: 2395-2403, (Editors: Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett), 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015, *equal contribution (conference)

PDF [BibTex]

PDF [BibTex]


no image
Neural Adaptive Sequential Monte Carlo

Gu, S., Ghahramani, Z., Turner, R. E.

Advances in Neural Information Processing Systems 28, pages: 2629-2637, (Editors: Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett), 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015 (conference)

PDF Supplementary [BibTex]

PDF Supplementary [BibTex]


no image
Practical Probabilistic Programming with Monads

Ścibior, A., Ghahramani, Z., Gordon, A. D.

Proceedings of the 2015 ACM SIGPLAN Symposium on Haskell, pages: 165-176, Haskell ’15, ACM, 2015 (conference)

DOI [BibTex]

DOI [BibTex]