Header logo is ei


2018


Thumb xl 2017 frvsr
Frame-Recurrent Video Super-Resolution

Sajjadi, M. S. M., Vemulapalli, R., Brown, M.

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , June 2018 (conference)

ArXiv link (url) [BibTex]

2018

ArXiv link (url) [BibTex]


no image
Learning Face Deblurring Fast and Wide

Jin, M., Hirsch, M., Favaro, P.

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pages: 745-753, June 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Wasserstein Auto-Encoders

Tolstikhin, I., Bousquet, O., Gelly, S., Schölkopf, B.

6th International Conference on Learning Representations (ICLR), May 2018 (conference)

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Fidelity-Weighted Learning

Dehghani, M., Mehrjou, A., Gouws, S., Kamps, J., Schölkopf, B.

6th International Conference on Learning Representations (ICLR), May 2018 (conference)

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Inducing Probabilistic Context-Free Grammars for the Sequencing of Movement Primitives

Lioutikov, R., Maeda, G., Veiga, F., Kersting, K., Peters, J.

IEEE International Conference on Robotics and Automation, (ICRA), pages: 1-8, IEEE, May 2018 (conference)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Sobolev GAN

Mroueh, Y., Li*, C., Sercu*, T., Raj*, A., Cheng, Y.

6th International Conference on Learning Representations (ICLR), May 2018, *equal contribution (conference)

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Assisting Movement Training and Execution With Visual and Haptic Feedback

Ewerton, M., Rother, D., Weimar, J., Kollegger, G., Wiemeyer, J., Peters, J., Maeda, G.

Frontiers in Neurorobotics, 12, May 2018 (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Temporal Difference Models: Model-Free Deep RL for Model-Based Control

Pong*, V., Gu*, S., Dalal, M., Levine, S.

6th International Conference on Learning Representations (ICLR), May 2018, *equal contribution (conference)

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Wasserstein Auto-Encoders: Latent Dimensionality and Random Encoders

Rubenstein, P. K., Schölkopf, B., Tolstikhin, I.

Workshop at the 6th International Conference on Learning Representations (ICLR), May 2018 (conference)

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Leave no Trace: Learning to Reset for Safe and Autonomous Reinforcement Learning

Eysenbach, B., Gu, S., Ibarz, J., Levine, S.

6th International Conference on Learning Representations (ICLR), May 2018 (conference)

Videos link (url) Project Page [BibTex]

Videos link (url) Project Page [BibTex]


Thumb xl 2018 tgan
Tempered Adversarial Networks

Sajjadi, M. S. M., Parascandolo, G., Mehrjou, A., Schölkopf, B.

Workshop at the 6th International Conference on Learning Representations (ICLR), May 2018 (conference)

arXiv [BibTex]

arXiv [BibTex]


no image
Learning Coupled Forward-Inverse Models with Combined Prediction Errors

Koert, D., Maeda, G., Neumann, G., Peters, J.

IEEE International Conference on Robotics and Automation, (ICRA), pages: 2433-2439, IEEE, May 2018 (conference)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Learning Disentangled Representations with Wasserstein Auto-Encoders

Rubenstein, P. K., Schölkopf, B., Tolstikhin, I.

Workshop at the 6th International Conference on Learning Representations (ICLR), May 2018 (conference)

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Automatic Estimation of Modulation Transfer Functions

Bauer, M., Volchkov, V., Hirsch, M., Schölkopf, B.

IEEE International Conference on Computational Photography (ICCP), May 2018 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Causal Discovery Using Proxy Variables

Rojas-Carulla, M., Baroni, M., Lopez-Paz, D.

Workshop at 6th International Conference on Learning Representations (ICLR), May 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Sample and Feedback Efficient Hierarchical Reinforcement Learning from Human Preferences

Pinsler, R., Akrour, R., Osa, T., Peters, J., Neumann, G.

IEEE International Conference on Robotics and Automation, (ICRA), pages: 596-601, IEEE, May 2018 (conference)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Group invariance principles for causal generative models

Besserve, M., Shajarisales, N., Schölkopf, B., Janzing, D.

Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS), 84, pages: 557-565, Proceedings of Machine Learning Research, (Editors: Amos Storkey and Fernando Perez-Cruz), PMLR, April 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Boosting Variational Inference: an Optimization Perspective

Locatello, F., Khanna, R., Ghosh, J., Rätsch, G.

Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS), 84, pages: 464-472, Proceedings of Machine Learning Research, (Editors: Amos Storkey and Fernando Perez-Cruz), PMLR, April 2018 (conference)

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


no image
Mixture of Attractors: A Novel Movement Primitive Representation for Learning Motor Skills From Demonstrations

Manschitz, S., Gienger, M., Kober, J., Peters, J.

IEEE Robotics and Automation Letters, 3(2):926-933, April 2018 (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Probabilistic movement primitives under unknown system dynamics

Paraschos, A., Rueckert, E., Peters, J., Neumann, G.

Advanced Robotics, 32(6):297-310, April 2018 (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Cause-Effect Inference by Comparing Regression Errors

Blöbaum, P., Janzing, D., Washio, T., Shimizu, S., Schölkopf, B.

Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS) , 84, pages: 900-909, Proceedings of Machine Learning Research, (Editors: Amos Storkey and Fernando Perez-Cruz), PMLR, April 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Will People Like Your Image? Learning the Aesthetic Space

Schwarz, K., Wieschollek, P., Lensch, H. P. A.

2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pages: 2048-2057, March 2018 (conference)

DOI [BibTex]

DOI [BibTex]


no image
An Algorithmic Perspective on Imitation Learning

Osa, T., Pajarinen, J., Neumann, G., Bagnell, J., Abbeel, P., Peters, J.

Foundations and Trends in Robotics, 7(1-2):1-179, March 2018 (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Using Probabilistic Movement Primitives in Robotics

Paraschos, A., Daniel, C., Peters, J., Neumann, G.

Autonomous Robots, 42(3):529-551, March 2018 (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Representation of sensory uncertainty in macaque visual cortex

Goris, R., Henaff, O., Meding, K.

Computational and Systems Neuroscience (COSYNE) 2018, March 2018 (poster)

[BibTex]

[BibTex]


no image
A kernel-based approach to learning contact distributions for robot manipulation tasks

Kroemer, O., Leischnig, S., Luettgen, S., Peters, J.

Autonomous Robots, 42(3):581-600, March 2018 (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Leveraging the Crowd to Detect and Reduce the Spread of Fake News and Misinformation

Kim, J., Tabibian, B., Oh, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the 11th ACM International Conference on Web Search and Data Mining (WSDM), pages: 324-332, (Editors: Yi Chang, Chengxiang Zhai, Yan Liu, and Yoelle Maarek), ACM, Febuary 2018 (conference)

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


no image
Approximate Value Iteration Based on Numerical Quadrature

Vinogradska, J., Bischoff, B., Peters, J.

IEEE Robotics and Automation Letters, 3(2):1330-1337, January 2018 (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Biomimetic Tactile Sensors and Signal Processing with Spike Trains: A Review

Yi, Z., Zhang, Y., Peters, J.

Sensors and Actuators A: Physical, 269, pages: 41-52, January 2018 (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Impact of the AIF Recording Method on Kinetic Parameters in Small Animal PET

Napieczynska, H., Kolb, A., Katiyar, P., Tonietto, M., Ud-Dean, M., Stumm, R., Herfert, K., Calaminus, C., Pichler, B.

Journal of Nuclear Medicine, 2018 (article)

DOI [BibTex]

DOI [BibTex]


no image
Die kybernetische Revolution

Schölkopf, B.

15-Mar-2018, Süddeutsche Zeitung, 2018 (misc)

link (url) [BibTex]

link (url) [BibTex]


no image
Functional Programming for Modular Bayesian Inference

Ścibior, A., Kammar, O., Ghahramani, Z.

Proceedings of the ACM on Functional Programming (ICFP), 2(Article No. 83):1-29, ACM, 2018 (conference)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Nonclassical states of light with a smooth P function

Damanet, F., Kübler, J. M., Martin, J., Braun, D.

Physical Review A, 97(2):023832, 2018 (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Design and Analysis of the NIPS 2016 Review Process

Shah*, N., Tabibian*, B., Muandet, K., Guyon, I., von Luxburg, U.

Journal of Machine Learning Research, 19(49):1-34, 2018, *equal contribution (article)

arXiv link (url) Project Page Project Page [BibTex]

arXiv link (url) Project Page Project Page [BibTex]


no image
A Flexible Approach for Fair Classification

Zafar, M. B., Valera, I., Gomez Rodriguez, M., Gummadi, K.

Journal of Machine Learning, 2018 (article) Accepted

Project Page [BibTex]

Project Page [BibTex]


no image
Automatic Bayesian Density Analysis

Vergari, A., Molina, A., Peharz, R., Ghahramani, Z., Kersting, K., Valera, I.

2018 (conference) Submitted

arXiv [BibTex]

arXiv [BibTex]


no image
A virtual reality environment for experiments in assistive robotics and neural interfaces

Bustamante, S.

Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)

PDF [BibTex]

PDF [BibTex]


no image
Magic Tunnels

Kilcher*, Y., Becigneul*, G., Hofmann, T.

ICLR 2019, 2018, *equal contribution (conference) Submitted

[BibTex]

[BibTex]


no image
Does universal controllability of physical systems prohibit thermodynamic cycles?

Janzing, D., Wocjan, P.

Open Systems and Information Dynamics, 25(3):1850016, 2018 (article)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Optimal Trajectory Generation and Learning Control for Robot Table Tennis

Koc, O.

Technical University Darmstadt, Germany, 2018 (phdthesis)

[BibTex]

[BibTex]


no image
Pathway-based subnetworks enable cross-disease biomarker discovery

Haider, S., Yao, C., Sabine, V., Grzadkowski, M., Stimper, V., Starmans, M., Wang, J., Nguyen, F., Moon, N., Lin, X., Drake, C., Crozier, C., Brookes, C., van de Velde, C., Hasenburg, A., Kieback, D., Markopoulos, C., Dirix, L., Seynaeve, C., Rea, D., Kasprzyk, A., Lambin, P., Lio’, P., Bartlett, J., Boutros, P.

Nature Communications, 9, 2018, Article number: 4746 (article)

DOI [BibTex]

DOI [BibTex]


no image
Learning Causality and Causality-Related Learning: Some Recent Progress

Zhang, K., Schölkopf, B., Spirtes, P., Glymour, C.

National Science Review, 5(1):26-29, 2018 (article)

DOI [BibTex]

DOI [BibTex]


no image
Online optimal trajectory generation for robot table tennis

Koc, O., Maeda, G., Peters, J.

Robotics and Autonomous Systems, 105, pages: 121-137, 2018 (article)

PDF link (url) DOI Project Page [BibTex]

PDF link (url) DOI Project Page [BibTex]


no image
Counterfactual Mean Embedding: A Kernel Method for Nonparametric Causal Inference

Muandet, K., Kanagawa, M., Saengkyongam, S., Marukata, S.

Arxiv e-prints, arXiv:1805.08845v1 [stat.ML], 2018 (article)

Abstract
This paper introduces a novel Hilbert space representation of a counterfactual distribution---called counterfactual mean embedding (CME)---with applications in nonparametric causal inference. Counterfactual prediction has become an ubiquitous tool in machine learning applications, such as online advertisement, recommendation systems, and medical diagnosis, whose performance relies on certain interventions. To infer the outcomes of such interventions, we propose to embed the associated counterfactual distribution into a reproducing kernel Hilbert space (RKHS) endowed with a positive definite kernel. Under appropriate assumptions, the CME allows us to perform causal inference over the entire landscape of the counterfactual distribution. The CME can be estimated consistently from observational data without requiring any parametric assumption about the underlying distributions. We also derive a rate of convergence which depends on the smoothness of the conditional mean and the Radon-Nikodym derivative of the underlying marginal distributions. Our framework can deal with not only real-valued outcome, but potentially also more complex and structured outcomes such as images, sequences, and graphs. Lastly, our experimental results on off-policy evaluation tasks demonstrate the advantages of the proposed estimator.

arXiv [BibTex]

arXiv [BibTex]


no image
Probabilistic Deep Learning using Random Sum-Product Networks

Peharz, R., Vergari, A., Stelzner, K., Molina, A., Trapp, M., Kersting, K., Ghahramani, Z.

2018 (conference) Submitted

arXiv [BibTex]

arXiv [BibTex]