Sajjadi, M. S. M., Vemulapalli, R., Brown, M.
Frame-Recurrent Video Super-Resolution
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , June 2018 (conference)
Jin, M., Hirsch, M., Favaro, P.
Learning Face Deblurring Fast and Wide
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pages: 745-753, June 2018 (conference)
Tolstikhin, I., Bousquet, O., Gelly, S., Schölkopf, B.
Wasserstein Auto-Encoders
6th International Conference on Learning Representations (ICLR), May 2018 (conference)
Dehghani, M., Mehrjou, A., Gouws, S., Kamps, J., Schölkopf, B.
Fidelity-Weighted Learning
6th International Conference on Learning Representations (ICLR), May 2018 (conference)
Lioutikov, R., Maeda, G., Veiga, F., Kersting, K., Peters, J.
Inducing Probabilistic Context-Free Grammars for the Sequencing of Movement Primitives
IEEE International Conference on Robotics and Automation, (ICRA), pages: 1-8, IEEE, May 2018 (conference)
Mroueh, Y., Li*, C., Sercu*, T., Raj*, A., Cheng, Y.
Sobolev GAN
6th International Conference on Learning Representations (ICLR), May 2018, *equal contribution (conference)
Ewerton, M., Rother, D., Weimar, J., Kollegger, G., Wiemeyer, J., Peters, J., Maeda, G.
Assisting Movement Training and Execution With Visual and Haptic Feedback
Frontiers in Neurorobotics, 12, May 2018 (article)
Pong*, V., Gu*, S., Dalal, M., Levine, S.
Temporal Difference Models: Model-Free Deep RL for Model-Based Control
6th International Conference on Learning Representations (ICLR), May 2018, *equal contribution (conference)
Rubenstein, P. K., Schölkopf, B., Tolstikhin, I.
Wasserstein Auto-Encoders: Latent Dimensionality and Random Encoders
Workshop at the 6th International Conference on Learning Representations (ICLR), May 2018 (conference)
Eysenbach, B., Gu, S., Ibarz, J., Levine, S.
Leave no Trace: Learning to Reset for Safe and Autonomous Reinforcement Learning
6th International Conference on Learning Representations (ICLR), May 2018 (conference)
Sajjadi, M. S. M., Parascandolo, G., Mehrjou, A., Schölkopf, B.
Tempered Adversarial Networks
Workshop at the 6th International Conference on Learning Representations (ICLR), May 2018 (conference)
Koert, D., Maeda, G., Neumann, G., Peters, J.
Learning Coupled Forward-Inverse Models with Combined Prediction Errors
IEEE International Conference on Robotics and Automation, (ICRA), pages: 2433-2439, IEEE, May 2018 (conference)
Rubenstein, P. K., Schölkopf, B., Tolstikhin, I.
Learning Disentangled Representations with Wasserstein Auto-Encoders
Workshop at the 6th International Conference on Learning Representations (ICLR), May 2018 (conference)
Bauer, M., Volchkov, V., Hirsch, M., Schölkopf, B.
Automatic Estimation of Modulation Transfer Functions
IEEE International Conference on Computational Photography (ICCP), May 2018 (conference)
Rojas-Carulla, M., Baroni, M., Lopez-Paz, D.
Causal Discovery Using Proxy Variables
Workshop at 6th International Conference on Learning Representations (ICLR), May 2018 (conference)
Pinsler, R., Akrour, R., Osa, T., Peters, J., Neumann, G.
Sample and Feedback Efficient Hierarchical Reinforcement Learning from Human Preferences
IEEE International Conference on Robotics and Automation, (ICRA), pages: 596-601, IEEE, May 2018 (conference)
Besserve, M., Shajarisales, N., Schölkopf, B., Janzing, D.
Group invariance principles for causal generative models
Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS), 84, pages: 557-565, Proceedings of Machine Learning Research, (Editors: Amos Storkey and Fernando Perez-Cruz), PMLR, April 2018 (conference)
Locatello, F., Khanna, R., Ghosh, J., Rätsch, G.
Boosting Variational Inference: an Optimization Perspective
Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS), 84, pages: 464-472, Proceedings of Machine Learning Research, (Editors: Amos Storkey and Fernando Perez-Cruz), PMLR, April 2018 (conference)
Manschitz, S., Gienger, M., Kober, J., Peters, J.
Mixture of Attractors: A Novel Movement Primitive Representation for Learning Motor Skills From Demonstrations
IEEE Robotics and Automation Letters, 3(2):926-933, April 2018 (article)
Paraschos, A., Rueckert, E., Peters, J., Neumann, G.
Probabilistic movement primitives under unknown system dynamics
Advanced Robotics, 32(6):297-310, April 2018 (article)
Blöbaum, P., Janzing, D., Washio, T., Shimizu, S., Schölkopf, B.
Cause-Effect Inference by Comparing Regression Errors
Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS) , 84, pages: 900-909, Proceedings of Machine Learning Research, (Editors: Amos Storkey and Fernando Perez-Cruz), PMLR, April 2018 (conference)
Schwarz, K., Wieschollek, P., Lensch, H. P. A.
Will People Like Your Image? Learning the Aesthetic Space
2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pages: 2048-2057, March 2018 (conference)
Osa, T., Pajarinen, J., Neumann, G., Bagnell, J., Abbeel, P., Peters, J.
An Algorithmic Perspective on Imitation Learning
Foundations and Trends in Robotics, 7(1-2):1-179, March 2018 (article)
Paraschos, A., Daniel, C., Peters, J., Neumann, G.
Using Probabilistic Movement Primitives in Robotics
Autonomous Robots, 42(3):529-551, March 2018 (article)
Goris, R., Henaff, O., Meding, K.
Representation of sensory uncertainty in macaque visual cortex
Computational and Systems Neuroscience (COSYNE) 2018, March 2018 (poster)
Kroemer, O., Leischnig, S., Luettgen, S., Peters, J.
A kernel-based approach to learning contact distributions for robot manipulation tasks
Autonomous Robots, 42(3):581-600, March 2018 (article)
Kim, J., Tabibian, B., Oh, A., Schölkopf, B., Gomez Rodriguez, M.
Leveraging the Crowd to Detect and Reduce the Spread of Fake News and Misinformation
Proceedings of the 11th ACM International Conference on Web Search and Data Mining (WSDM), pages: 324-332, (Editors: Yi Chang, Chengxiang Zhai, Yan Liu, and Yoelle Maarek), ACM, Febuary 2018 (conference)
Vinogradska, J., Bischoff, B., Peters, J.
Approximate Value Iteration Based on Numerical Quadrature
IEEE Robotics and Automation Letters, 3(2):1330-1337, January 2018 (article)
Yi, Z., Zhang, Y., Peters, J.
Biomimetic Tactile Sensors and Signal Processing with Spike Trains: A Review
Sensors and Actuators A: Physical, 269, pages: 41-52, January 2018 (article)
Napieczynska, H., Kolb, A., Katiyar, P., Tonietto, M., Ud-Dean, M., Stumm, R., Herfert, K., Calaminus, C., Pichler, B.
Impact of the AIF Recording Method on Kinetic Parameters in Small Animal PET
Journal of Nuclear Medicine, 2018 (article)
Schölkopf, B.
Die kybernetische Revolution
15-Mar-2018, Süddeutsche Zeitung, 2018 (misc)
Ścibior, A., Kammar, O., Ghahramani, Z.
Functional Programming for Modular Bayesian Inference
Proceedings of the ACM on Functional Programming (ICFP), 2(Article No. 83):1-29, ACM, 2018 (conference)
Damanet, F., Kübler, J. M., Martin, J., Braun, D.
Nonclassical states of light with a smooth P function
Physical Review A, 97(2):023832, 2018 (article)
Shah*, N., Tabibian*, B., Muandet, K., Guyon, I., von Luxburg, U.
Design and Analysis of the NIPS 2016 Review Process
Journal of Machine Learning Research, 19(49):1-34, 2018, *equal contribution (article)
Tanneberg, D., Peters, J., Rueckert, E.
Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks
Neural Networks, 109, pages: 67-80, 2018 (article)
Zafar, M. B., Valera, I., Gomez Rodriguez, M., Gummadi, K.
A Flexible Approach for Fair Classification
Journal of Machine Learning, 2018 (article) Accepted
Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.
Adaptation and Robust Learning of Probabilistic Movement Primitives
IEEE Transactions on Robotics, 2018 (article) In revision
Vergari, A., Molina, A., Peharz, R., Ghahramani, Z., Kersting, K., Valera, I.
Automatic Bayesian Density Analysis
2018 (conference) Submitted
Bustamante, S.
A virtual reality environment for experiments in assistive robotics and neural interfaces
Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)
Kilcher*, Y., Becigneul*, G., Hofmann, T.
Magic Tunnels
ICLR 2019, 2018, *equal contribution (conference) Submitted
Janzing, D., Wocjan, P.
Does universal controllability of physical systems prohibit thermodynamic cycles?
Open Systems and Information Dynamics, 25(3):1850016, 2018 (article)
Koc, O.
Optimal Trajectory Generation and Learning Control for Robot Table Tennis
Technical University Darmstadt, Germany, 2018 (phdthesis)
Haider, S., Yao, C., Sabine, V., Grzadkowski, M., Stimper, V., Starmans, M., Wang, J., Nguyen, F., Moon, N., Lin, X., Drake, C., Crozier, C., Brookes, C., van de Velde, C., Hasenburg, A., Kieback, D., Markopoulos, C., Dirix, L., Seynaeve, C., Rea, D., Kasprzyk, A., Lambin, P., Lio’, P., Bartlett, J., Boutros, P.
Pathway-based subnetworks enable cross-disease biomarker discovery
Nature Communications, 9, 2018, Article number: 4746 (article)
Zhang, K., Schölkopf, B., Spirtes, P., Glymour, C.
Learning Causality and Causality-Related Learning: Some Recent Progress
National Science Review, 5(1):26-29, 2018 (article)
Babbar, R., Schölkopf, B.
Adversarial Extreme Multi-label Classification
2018 (conference) Submitted
Koc, O., Maeda, G., Peters, J.
Online optimal trajectory generation for robot table tennis
Robotics and Autonomous Systems, 105, pages: 121-137, 2018 (article)
Pfister*, N., Weichwald*, S., Bülmann, P., Schölkopf, B.
Robustifying Independent Component Analysis by Adjusting for Group-Wise Stationary Noise
2018, *equal contribution (article) Submitted
Muandet, K., Kanagawa, M., Saengkyongam, S., Marukata, S.
Counterfactual Mean Embedding: A Kernel Method for Nonparametric Causal Inference
Arxiv e-prints, arXiv:1805.08845v1 [stat.ML], 2018 (article)
Osa, T., Peters, J., Neumann, G.
Hierarchical Reinforcement Learning of Multiple Grasping Strategies with Human Instructions
Advanced Robotics, 32(18):955-968, 2018 (article)
Raj, A., Stich, S.
k–SVRG: Variance Reduction for Large Scale Optimization
In 2018 (inproceedings) Submitted