Lioutikov, R., Maeda, G., Veiga, F., Kersting, K., Peters, J.
Inducing Probabilistic Context-Free Grammars for the Sequencing of Movement Primitives
IEEE International Conference on Robotics and Automation, (ICRA), pages: 1-8, IEEE, May 2018 (conference)
Mroueh, Y., Li*, C., Sercu*, T., Raj*, A., Cheng, Y.
Sobolev GAN
6th International Conference on Learning Representations (ICLR), May 2018, *equal contribution (conference)
Pong*, V., Gu*, S., Dalal, M., Levine, S.
Temporal Difference Models: Model-Free Deep RL for Model-Based Control
6th International Conference on Learning Representations (ICLR), May 2018, *equal contribution (conference)
Rubenstein, P. K., Schölkopf, B., Tolstikhin, I.
Wasserstein Auto-Encoders: Latent Dimensionality and Random Encoders
Workshop at the 6th International Conference on Learning Representations (ICLR), May 2018 (conference)
Eysenbach, B., Gu, S., Ibarz, J., Levine, S.
Leave no Trace: Learning to Reset for Safe and Autonomous Reinforcement Learning
6th International Conference on Learning Representations (ICLR), May 2018 (conference)
Sajjadi, M. S. M., Parascandolo, G., Mehrjou, A., Schölkopf, B.
Tempered Adversarial Networks
Workshop at the 6th International Conference on Learning Representations (ICLR), May 2018 (conference)
Koert, D., Maeda, G., Neumann, G., Peters, J.
Learning Coupled Forward-Inverse Models with Combined Prediction Errors
IEEE International Conference on Robotics and Automation, (ICRA), pages: 2433-2439, IEEE, May 2018 (conference)
Rubenstein, P. K., Schölkopf, B., Tolstikhin, I.
Learning Disentangled Representations with Wasserstein Auto-Encoders
Workshop at the 6th International Conference on Learning Representations (ICLR), May 2018 (conference)
Bauer, M., Volchkov, V., Hirsch, M., Schölkopf, B.
Automatic Estimation of Modulation Transfer Functions
IEEE International Conference on Computational Photography (ICCP), May 2018 (conference)
Rojas-Carulla, M., Baroni, M., Lopez-Paz, D.
Causal Discovery Using Proxy Variables
Workshop at 6th International Conference on Learning Representations (ICLR), May 2018 (conference)
Pinsler, R., Akrour, R., Osa, T., Peters, J., Neumann, G.
Sample and Feedback Efficient Hierarchical Reinforcement Learning from Human Preferences
IEEE International Conference on Robotics and Automation, (ICRA), pages: 596-601, IEEE, May 2018 (conference)
Besserve, M., Shajarisales, N., Schölkopf, B., Janzing, D.
Group invariance principles for causal generative models
Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS), 84, pages: 557-565, Proceedings of Machine Learning Research, (Editors: Amos Storkey and Fernando Perez-Cruz), PMLR, April 2018 (conference)
Locatello, F., Khanna, R., Ghosh, J., Rätsch, G.
Boosting Variational Inference: an Optimization Perspective
Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS), 84, pages: 464-472, Proceedings of Machine Learning Research, (Editors: Amos Storkey and Fernando Perez-Cruz), PMLR, April 2018 (conference)
Blöbaum, P., Janzing, D., Washio, T., Shimizu, S., Schölkopf, B.
Cause-Effect Inference by Comparing Regression Errors
Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS) , 84, pages: 900-909, Proceedings of Machine Learning Research, (Editors: Amos Storkey and Fernando Perez-Cruz), PMLR, April 2018 (conference)
Schwarz, K., Wieschollek, P., Lensch, H. P. A.
Will People Like Your Image? Learning the Aesthetic Space
2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pages: 2048-2057, March 2018 (conference)
Kim, J., Tabibian, B., Oh, A., Schölkopf, B., Gomez Rodriguez, M.
Leveraging the Crowd to Detect and Reduce the Spread of Fake News and Misinformation
Proceedings of the 11th ACM International Conference on Web Search and Data Mining (WSDM), pages: 324-332, (Editors: Yi Chang, Chengxiang Zhai, Yan Liu, and Yoelle Maarek), ACM, Febuary 2018 (conference)
Ścibior, A., Kammar, O., Ghahramani, Z.
Functional Programming for Modular Bayesian Inference
Proceedings of the ACM on Functional Programming (ICFP), 2(Article No. 83):1-29, ACM, 2018 (conference)
Vergari, A., Molina, A., Peharz, R., Ghahramani, Z., Kersting, K., Valera, I.
Automatic Bayesian Density Analysis
2018 (conference) Submitted
Bustamante, S.
A virtual reality environment for experiments in assistive robotics and neural interfaces
Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)
Kilcher*, Y., Becigneul*, G., Hofmann, T.
Magic Tunnels
ICLR 2019, 2018, *equal contribution (conference) Submitted
Koc, O.
Optimal Trajectory Generation and Learning Control for Robot Table Tennis
Technical University Darmstadt, Germany, 2018 (phdthesis)
Babbar, R., Schölkopf, B.
Adversarial Extreme Multi-label Classification
2018 (conference) Submitted
Raj, A., Stich, S.
k–SVRG: Variance Reduction for Large Scale Optimization
In 2018 (inproceedings) Submitted
Gebhard, T.
On the Applicability of Machine Learning to Aid the Search for Gravitational Waves at the LIGO Experiment
Karlsruhe Institute of Technology, Germany, 2018 (mastersthesis)
Simon-Gabriel, C. J.
Distribution-Dissimilarities in Machine Learning
Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)
Peharz, R., Vergari, A., Stelzner, K., Molina, A., Trapp, M., Kersting, K., Ghahramani, Z.
Probabilistic Deep Learning using Random Sum-Product Networks
2018 (conference) Submitted
Lechner, T.
Domain Adaptation Under Causal Assumptions
Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)
Raj*, A., Law*, L., Sejdinovic*, D., Park, M.
A Differentially Private Kernel Two-Sample Test
2018, *equal contribution (conference) Submitted
Suter, R.
A Causal Perspective on Deep Representation Learning
ETH Zurich, 2018 (mastersthesis)
Besserve, M., Sun, R., Schölkopf, B.
Counterfactuals uncover the modular structure of deep generative models
2018 (conference) Submitted
Becigneul, G., Ganea, O.
Riemannian Adaptive Optimization Methods
ICLR 2019, 2018 (conference) Submitted
Mahsereci, M.
Probabilistic Approaches to Stochastic Optimization
Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)
Zabel, S.
Improving Tissue Differentiation based on Optical Emission Spectroscopy for Guided Electrosurgical Tumor Resection with Machine Learning
Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)
Guist, S.
Reinforcement Learning for High-Speed Robotics with Muscular Actuation
Ruprecht-Karls-Universität Heidelberg , 2018 (mastersthesis)
Ścibior, A., Kammar, O., Vákár, M., Staton, S., Yang, H., Cai, Y., Ostermann, K., Moss, S. K., Heunen, C., Ghahramani, Z.
Denotational Validation of Higher-order Bayesian Inference
Proceedings of the ACM on Principles of Programming Languages (POPL), 2(Article No. 60):1-29, ACM, 2018 (conference)
Tifrea*, A., Becigneul*, G., Ganea*, O.
Poincaré GloVe: Hyperbolic Word Embeddings
ICLR 2019, 2018, *equal contribution (conference) Submitted
Schober, M.
Probabilistic Ordinary Differential Equation Solvers — Theory and Applications
Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)
Jayaram, V.
A machine learning approach to taking EEG-based computer interfaces out of the lab
Graduate Training Centre of Neuroscience, IMPRS, Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)
Schober, M.
Camera-specific Image Denoising
Eberhard Karls Universität Tübingen, Germany, October 2013 (diplomathesis)
Logothetis, N., Eschenko, O., Murayama, Y., Augath, M., Steudel, T., Evrard, H., Besserve, M., Oeltermann, A.
Studying large-scale brain networks: electrical stimulation and neural-event-triggered fMRI
Twenty-Second Annual Computational Neuroscience Meeting (CNS*2013), July 2013, journal = {BMC Neuroscience},
year = {2013},
month = {7},
volume = {14},
number = {Supplement 1},
pages = {A1}, (talk)
Balduzzi, D.
Falsification and future performance
In Algorithmic Probability and Friends. Bayesian Prediction and Artificial Intelligence, 7070, pages: 65-78, Lecture Notes in Computer Science, Springer, Berlin, Germany, Solomonoff 85th Memorial Conference, January 2013 (inproceedings)
Gopalan, N., Deisenroth, M., Peters, J.
Feedback Error Learning for Rhythmic Motor Primitives
In Proceedings of 2013 IEEE International Conference on Robotics and Automation (ICRA 2013), pages: 1317-1322, 2013 (inproceedings)
Lopez-Paz, D., Hernandez-Lobato, J., Ghahramani, Z.
Gaussian Process Vine Copulas for Multivariate Dependence
In Proceedings of the 30th International Conference on Machine Learning, W&CP 28(2), pages: 10-18, (Editors: S Dasgupta and D McAllester), JMLR, ICML, 2013, Poster:
http://people.tuebingen.mpg.de/dlopez/papers/icml2013_gpvine_poster.pdf (inproceedings)
Lopez-Paz, D., Hennig, P., Schölkopf, B.
The Randomized Dependence Coefficient
In Advances in Neural Information Processing Systems 26, pages: 1-9, (Editors: C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)
Harmeling, S., Hirsch, M., Schölkopf, B.
On a link between kernel mean maps and Fraunhofer diffraction, with an application to super-resolution beyond the diffraction limit
In IEEE Conference on Computer Vision and Pattern Recognition, pages: 1083-1090, IEEE, CVPR, 2013 (inproceedings)
Dinuzzo, F., Ong, C., Fukumizu, K.
Output Kernel Learning Methods
In International Workshop on Advances in Regularization,
Optimization, Kernel Methods and Support Vector Machines: theory and applications, ROKS, 2013 (inproceedings)
Bocsi, B., Csato, L., Peters, J.
Alignment-based Transfer Learning for Robot Models
In Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN 2013), pages: 1-7, 2013 (inproceedings)
Chen, Z., Zhang, K., Chan, L.
Nonlinear Causal Discovery for High Dimensional Data: A Kernelized Trace Method
In 13th International Conference on Data Mining, pages: 1003-1008, (Editors: H. Xiong, G. Karypis, B. M. Thuraisingham, D. J. Cook and X. Wu), IEEE Computer Society, ICDM, 2013 (inproceedings)
Paraschos, A., Neumann, G., Peters, J.
A probabilistic approach to robot trajectory generation
In Proceedings of the 13th IEEE International Conference on Humanoid Robots (HUMANOIDS), pages: 477-483, IEEE, 13th IEEE-RAS International Conference on Humanoid Robots, 2013 (inproceedings)
Sra, S., Hosseini, R.
Geometric optimisation on positive definite matrices for elliptically contoured distributions
In Advances in Neural Information Processing Systems 26, pages: 2562-2570, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)