Lioutikov, R., Maeda, G., Veiga, F., Kersting, K., Peters, J.
Inducing Probabilistic Context-Free Grammars for the Sequencing of Movement Primitives
IEEE International Conference on Robotics and Automation, (ICRA), pages: 1-8, IEEE, May 2018 (conference)
Mroueh, Y., Li*, C., Sercu*, T., Raj*, A., Cheng, Y.
Sobolev GAN
6th International Conference on Learning Representations (ICLR), May 2018, *equal contribution (conference)
Pong*, V., Gu*, S., Dalal, M., Levine, S.
Temporal Difference Models: Model-Free Deep RL for Model-Based Control
6th International Conference on Learning Representations (ICLR), May 2018, *equal contribution (conference)
Rubenstein, P. K., Schölkopf, B., Tolstikhin, I.
Wasserstein Auto-Encoders: Latent Dimensionality and Random Encoders
Workshop at the 6th International Conference on Learning Representations (ICLR), May 2018 (conference)
Eysenbach, B., Gu, S., Ibarz, J., Levine, S.
Leave no Trace: Learning to Reset for Safe and Autonomous Reinforcement Learning
6th International Conference on Learning Representations (ICLR), May 2018 (conference)
Sajjadi, M. S. M., Parascandolo, G., Mehrjou, A., Schölkopf, B.
Tempered Adversarial Networks
Workshop at the 6th International Conference on Learning Representations (ICLR), May 2018 (conference)
Koert, D., Maeda, G., Neumann, G., Peters, J.
Learning Coupled Forward-Inverse Models with Combined Prediction Errors
IEEE International Conference on Robotics and Automation, (ICRA), pages: 2433-2439, IEEE, May 2018 (conference)
Rubenstein, P. K., Schölkopf, B., Tolstikhin, I.
Learning Disentangled Representations with Wasserstein Auto-Encoders
Workshop at the 6th International Conference on Learning Representations (ICLR), May 2018 (conference)
Bauer, M., Volchkov, V., Hirsch, M., Schölkopf, B.
Automatic Estimation of Modulation Transfer Functions
IEEE International Conference on Computational Photography (ICCP), May 2018 (conference)
Rojas-Carulla, M., Baroni, M., Lopez-Paz, D.
Causal Discovery Using Proxy Variables
Workshop at 6th International Conference on Learning Representations (ICLR), May 2018 (conference)
Pinsler, R., Akrour, R., Osa, T., Peters, J., Neumann, G.
Sample and Feedback Efficient Hierarchical Reinforcement Learning from Human Preferences
IEEE International Conference on Robotics and Automation, (ICRA), pages: 596-601, IEEE, May 2018 (conference)
Besserve, M., Shajarisales, N., Schölkopf, B., Janzing, D.
Group invariance principles for causal generative models
Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS), 84, pages: 557-565, Proceedings of Machine Learning Research, (Editors: Amos Storkey and Fernando Perez-Cruz), PMLR, April 2018 (conference)
Locatello, F., Khanna, R., Ghosh, J., Rätsch, G.
Boosting Variational Inference: an Optimization Perspective
Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS), 84, pages: 464-472, Proceedings of Machine Learning Research, (Editors: Amos Storkey and Fernando Perez-Cruz), PMLR, April 2018 (conference)
Blöbaum, P., Janzing, D., Washio, T., Shimizu, S., Schölkopf, B.
Cause-Effect Inference by Comparing Regression Errors
Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS) , 84, pages: 900-909, Proceedings of Machine Learning Research, (Editors: Amos Storkey and Fernando Perez-Cruz), PMLR, April 2018 (conference)
Schwarz, K., Wieschollek, P., Lensch, H. P. A.
Will People Like Your Image? Learning the Aesthetic Space
2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pages: 2048-2057, March 2018 (conference)
Kim, J., Tabibian, B., Oh, A., Schölkopf, B., Gomez Rodriguez, M.
Leveraging the Crowd to Detect and Reduce the Spread of Fake News and Misinformation
Proceedings of the 11th ACM International Conference on Web Search and Data Mining (WSDM), pages: 324-332, (Editors: Yi Chang, Chengxiang Zhai, Yan Liu, and Yoelle Maarek), ACM, Febuary 2018 (conference)
Ścibior, A., Kammar, O., Ghahramani, Z.
Functional Programming for Modular Bayesian Inference
Proceedings of the ACM on Functional Programming (ICFP), 2(Article No. 83):1-29, ACM, 2018 (conference)
Vergari, A., Molina, A., Peharz, R., Ghahramani, Z., Kersting, K., Valera, I.
Automatic Bayesian Density Analysis
2018 (conference) Submitted
Kilcher*, Y., Becigneul*, G., Hofmann, T.
Magic Tunnels
ICLR 2019, 2018, *equal contribution (conference) Submitted
Babbar, R., Schölkopf, B.
Adversarial Extreme Multi-label Classification
2018 (conference) Submitted
Raj, A., Stich, S.
k–SVRG: Variance Reduction for Large Scale Optimization
In 2018 (inproceedings) Submitted
Peharz, R., Vergari, A., Stelzner, K., Molina, A., Trapp, M., Kersting, K., Ghahramani, Z.
Probabilistic Deep Learning using Random Sum-Product Networks
2018 (conference) Submitted
Raj*, A., Law*, L., Sejdinovic*, D., Park, M.
A Differentially Private Kernel Two-Sample Test
2018, *equal contribution (conference) Submitted
Besserve, M., Sun, R., Schölkopf, B.
Counterfactuals uncover the modular structure of deep generative models
2018 (conference) Submitted
Becigneul, G., Ganea, O.
Riemannian Adaptive Optimization Methods
ICLR 2019, 2018 (conference) Submitted
Ścibior, A., Kammar, O., Vákár, M., Staton, S., Yang, H., Cai, Y., Ostermann, K., Moss, S. K., Heunen, C., Ghahramani, Z.
Denotational Validation of Higher-order Bayesian Inference
Proceedings of the ACM on Principles of Programming Languages (POPL), 2(Article No. 60):1-29, ACM, 2018 (conference)
Tifrea*, A., Becigneul*, G., Ganea*, O.
Poincaré GloVe: Hyperbolic Word Embeddings
ICLR 2019, 2018, *equal contribution (conference) Submitted
Kiefel, M., Gehler, P.
Human Pose Estimation with Fields of Parts
In Computer Vision – ECCV 2014, LNCS 8693, pages: 331-346, Lecture Notes in Computer Science, (Editors: Fleet, David and Pajdla, Tomas and Schiele, Bernt and Tuytelaars, Tinne), Springer, 13th European Conference on Computer Vision, September 2014 (inproceedings)
Kiefel, M., Schuler, C., Hennig, P.
Probabilistic Progress Bars
In Conference on Pattern Recognition (GCPR), 8753, pages: 331-341, Lecture Notes in Computer Science, (Editors: Jiang, X., Hornegger, J., and Koch, R.), Springer, GCPR, September 2014 (inproceedings)
Pickup, L., Zheng, P., Donglai, W., YiChang, S., Changshui, Z., Zisserman, A., Schölkopf, B., Freeman, W.
Seeing the Arrow of Time
Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages: 2043-2050, IEEE, CVPR, June 2014 (conference)
Hennig, P., Hauberg, S.
Probabilistic Solutions to Differential Equations and their Application to Riemannian Statistics
In Proceedings of the 17th International Conference on Artificial Intelligence and Statistics, 33, pages: 347-355, JMLR: Workshop and Conference Proceedings, (Editors: S Kaski and J Corander), Microtome Publishing, Brookline, MA, AISTATS, April 2014 (inproceedings)
Hermann, M., Schunke, A., Schultz, T., Klein, R.
A Visual Analytics Approach to Study Anatomic Covariation
In Proceedings of IEEE Pacific Visualization 2014, pages: 161-168, March 2014 (inproceedings)
Sugiyama, M., Azencott, C., Grimm, D., Kawahara, Y., Borgwardt, K.
Multi-Task Feature Selection on Multiple Networks via Maximum Flows
In Proceedings of the 2014 SIAM International Conference on Data Mining , pages: 199-207, SIAM, 2014 (inproceedings)
Gomez Rodriguez, M., Gummadi, K., Schölkopf, B.
Quantifying Information Overload in Social Media and its Impact on Social Contagions
In Proceedings of the Eighth International Conference on Weblogs and Social Media, pages: 170-179, (Editors: E. Adar, P. Resnick, M. De Choudhury, B. Hogan, and A. Oh), AAAI Press, ICWSM, 2014 (inproceedings)
Daneshmand, H., Gomez Rodriguez, M., Song, L., Schölkopf, B.
Estimating Diffusion Network Structures: Recovery Conditions, Sample Complexity & Soft-thresholding Algorithm
In Proceedings of the 31st International Conference on Machine Learning, W&CP 32 (1), pages: 793-801, (Editors: Eric P. Xing and Tony Jebara), JMLR, ICML, 2014 (inproceedings)
Ben Amor, H., Neumann, G., Kamthe, S., Kroemer, O., Peters, J.
Interaction Primitives for Human-Robot Cooperation Tasks
In Proceedings of 2014 IEEE International Conference on Robotics and Automation, pages: 2831-2837, IEEE, ICRA, 2014 (inproceedings)
Kroemer, O., van Hoof, H., Neumann, G., Peters, J.
Learning to Predict Phases of Manipulation Tasks as Hidden States
In Proceedings of 2014 IEEE International Conference on Robotics and Automation, pages: 4009-4014, IEEE, ICRA, 2014 (inproceedings)
Wiens, V., Schlaffke, L., Schmidt-Wilcke, T., Schultz, T.
Visualizing Uncertainty in HARDI Tractography Using Superquadric Streamtubes
In Eurographics Conference on Visualization, Short Papers, (Editors: Elmqvist, N. and Hlawitschka, M. and Kennedy, J.), EuroVis, 2014 (inproceedings)
Doran, G., Muandet, K., Zhang, K., Schölkopf, B.
A Permutation-Based Kernel Conditional Independence Test
In Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence (UAI2014), pages: 132-141, (Editors: Nevin L. Zhang and Jin Tian), AUAI Press Corvallis, Oregon, UAI2014, 2014 (inproceedings)
Argyriou, A., Dinuzzo, F.
A unifying view of representer theorems
In Proceedings of the 31th International Conference on Machine Learning, 32, pages: 748-756, (Editors: Xing, E. P. and Jebera, T.), ICML, 2014 (inproceedings)
Cherian, A., Sra, S.
Riemannian Sparse Coding for Positive Definite Matrices
In 13th European Conference on Computer Vision, LNCS 8691, pages: 299-314, (Editors: Fleet, D., Pajdla, T., Schiele, B., and Tuytelaars, T.), Springer, ECCV, 2014 (inproceedings)
Schober, M., Duvenaud, D., Hennig, P.
Probabilistic ODE Solvers with Runge-Kutta Means
In Advances in Neural Information Processing Systems 27, pages: 739-747, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), Curran Associates, Inc., 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014 (inproceedings)
Köhler, R., Schuler, C., Schölkopf, B., Harmeling, S.
Mask-Specific Inpainting with Deep Neural Networks
In Pattern Recognition (GCPR 2014), pages: 523-534, (Editors: X Jiang, J Hornegger, and R Koch), Springer, 2014, Lecture Notes in Computer Science (inproceedings)
Lopez-Paz, D., Sra, S., Smola, A., Ghahramani, Z., Schölkopf, B.
Randomized Nonlinear Component Analysis
In Proceedings of the 31st International Conference on Machine Learning, W&CP 32 (1), pages: 1359-1367, (Editors: Eric P. Xing and Tony Jebara), JMLR, ICML, 2014 (inproceedings)
Weichwald, S., Schölkopf, B., Ball, T., Grosse-Wentrup, M.
Causal and Anti-Causal Learning in Pattern Recognition for Neuroimaging
In 4th International Workshop on Pattern Recognition in Neuroimaging (PRNI), IEEE , PRNI, 2014 (inproceedings)
Calandra, R., Gopalan, N., Seyfarth, A., Peters, J., Deisenroth, M.
Bayesian Gait Optimization for Bipedal Locomotion
In Proceedings of the 8th International Conference on Learning and Intelligent Optimization , LNCS 8426, pages: 274-290, Lecture Notes in Computer Science, (Editors: Pardalos, PM., Resende, MGC., Vogiatzis, C., and Walteros, JL.), Springer, LION, 2014 (inproceedings)
Lioutikov, R., Kroemer, O., Peters, J., Maeda, G.
Learning Manipulation by Sequencing Motor Primitives with a Two-Armed Robot
In Proceedings of the 13th International Conference on Intelligent Autonomous Systems, 302, pages: 1601-1611, Advances in Intelligent Systems and Computing, (Editors: Menegatti, E., Michael, N., Berns, K., Yamaguchi, H.), Springer, IAS, 2014 (inproceedings)
Muandet, K., Sriperumbudur, B., Schölkopf, B.
Kernel Mean Estimation via Spectral Filtering
In Advances in Neural Information Processing Systems 27, pages: 1-9, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), Curran Associates, Inc., 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014 (inproceedings)
Farajtabar, M., Du, N., Gomez Rodriguez, M., Valera, I., Zha, H., Song, L.
Shaping Social Activity by Incentivizing Users
In Advances in Neural Information Processing Systems 27, (Editors: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, ND., and Weinberger, KQ.), Curran Associates, Inc., 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014 (inproceedings)
Kpotufe, S., Sgouritsa, E., Janzing, D., Schölkopf, B.
Consistency of Causal Inference under the Additive Noise Model
In Proceedings of the 31st International Conference on Machine Learning, W&CP 32 (1), pages: 478-495, (Editors: Eric P. Xing and Tony Jebara), JMLR, ICML, 2014 (inproceedings)