Header logo is ei


2010


no image
Probabilistic latent variable models for distinguishing between cause and effect

Mooij, J., Stegle, O., Janzing, D., Zhang, K., Schölkopf, B.

In Advances in Neural Information Processing Systems 23, pages: 1687-1695, (Editors: J Lafferty and CKI Williams and J Shawe-Taylor and RS Zemel and A Culotta), Curran, Red Hook, NY, USA, 24th Annual Conference on Neural Information Processing Systems (NIPS), 2010 (inproceedings)

Abstract
We propose a novel method for inferring whether X causes Y or vice versa from joint observations of X and Y. The basic idea is to model the observed data using probabilistic latent variable models, which incorporate the effects of unobserved noise. To this end, we consider the hypothetical effect variable to be a function of the hypothetical cause variable and an independent noise term (not necessarily additive). An important novel aspect of our work is that we do not restrict the model class, but instead put general non-parametric priors on this function and on the distribution of the cause. The causal direction can then be inferred by using standard Bayesian model selection. We evaluate our approach on synthetic data and real-world data and report encouraging results.

PDF Web [BibTex]

2010

PDF Web [BibTex]


no image
JigPheno: Semantic Feature Extraction in biological images

Karaletsos, T., Stegle, O., Winn, J., Borgwardt, K.

In NIPS, Workshop on Machine Learning in Computational Biology, 2010 (inproceedings)

[BibTex]

[BibTex]


no image
Nonparametric Tree Graphical Models

Song, L., Gretton, A., Guestrin, C.

In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, Volume 9 , pages: 765-772, (Editors: YW Teh and M Titterington ), JMLR, AISTATS, 2010 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Novel machine learning methods for MHC Class I binding prediction

Widmer, C., Toussaint, N., Altun, Y., Kohlbacher, O., Rätsch, G.

In Pattern Recognition in Bioinformatics, pages: 98-109, (Editors: TMH Dijkstra and E Tsivtsivadze and E Marchiori and T Heskes), Springer, Berlin, Germany, 5th IAPR International Conference, PRIB, 2010 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Bootstrapping Apprenticeship Learning

Boularias, A., Chaib-Draa, B.

In Advances in Neural Information Processing Systems 23, pages: 289-297, (Editors: Lafferty, J. , C. K.I. Williams, J. Shawe-Taylor, R. S. Zemel, A. Culotta), Curran, Red Hook, NY, USA, Twenty-Fourth Annual Conference on Neural Information Processing Systems (NIPS), 2010 (inproceedings)

Abstract
We consider the problem of apprenticeship learning where the examples, demonstrated by an expert, cover only a small part of a large state space. Inverse Reinforcement Learning (IRL) provides an efficient tool for generalizing the demonstration, based on the assumption that the expert is maximizing a utility function that is a linear combination of state-action features. Most IRL algorithms use a simple Monte Carlo estimation to approximate the expected feature counts under the expert's policy. In this paper, we show that the quality of the learned policies is highly sensitive to the error in estimating the feature counts. To reduce this error, we introduce a novel approach for bootstrapping the demonstration by assuming that: (i), the expert is (near-)optimal, and (ii), the dynamics of the system is known. Empirical results on gridworlds and car racing problems show that our approach is able to learn good policies from a small number of demonstrations.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models

Zhang, K., Hyvärinen, A.

In JMLR Workshop and Conference Proceedings, Volume 6, pages: 157-164, (Editors: I Guyon and D Janzing and B Schölkopf), MIT Press, Cambridge, MA, USA, Causality: Objectives and Assessment (NIPS Workshop), 2010 (inproceedings)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Clustering Based Approach to Learning Regular Expressions over Large Alphabet for Noisy Unstructured Text

Babbar, R., Singh, N.

In Proceedings of the Fourth Workshop on Analytics for Noisy Unstructured Text Data, pages: 43-50, (Editors: R Basili and DP Lopresti and C Ringlstetter and S Roy and KU Schulz and LV Subramaniam), ACM, AND (in conjunction with CIKM), 2010 (inproceedings)

Web [BibTex]

Web [BibTex]


no image
Characteristic Kernels on Structured Domains Excel in Robotics and Human Action Recognition

Danafar, S., Gretton, A., Schmidhuber, J.

In Machine Learning and Knowledge Discovery in Databases, LNCS Vol. 6321, pages: 264-279, (Editors: JL Balcázar and F Bonchi and A Gionis and M Sebag), Springer, Berlin, Germany, ECML PKDD, 2010 (inproceedings)

Abstract
Embedding probability distributions into a sufficiently rich (characteristic) reproducing kernel Hilbert space enables us to take higher order statistics into account. Characterization also retains effective statistical relation between inputs and outputs in regression and classification. Recent works established conditions for characteristic kernels on groups and semigroups. Here we study characteristic kernels on periodic domains, rotation matrices, and histograms. Such structured domains are relevant for homogeneity testing, forward kinematics, forward dynamics, inverse dynamics, etc. Our kernel-based methods with tailored characteristic kernels outperform previous methods on robotics problems and also on a widely used benchmark for recognition of human actions in videos.

DOI [BibTex]

DOI [BibTex]


no image
Movement extraction by detecting dynamics switches and repetitions

Chiappa, S., Peters, J.

In Advances in Neural Information Processing Systems 23, pages: 388-396, (Editors: Lafferty, J. , C. K.I. Williams, J. Shawe-Taylor, R. S. Zemel, A. Culotta), Curran, Red Hook, NY, USA, Twenty-Fourth Annual Conference on Neural Information Processing Systems (NIPS), 2010 (inproceedings)

Abstract
Many time-series such as human movement data consist of a sequence of basic actions, e.g., forehands and backhands in tennis. Automatically extracting and characterizing such actions is an important problem for a variety of different applications. In this paper, we present a probabilistic segmentation approach in which an observed time-series is modeled as a concatenation of segments corresponding to different basic actions. Each segment is generated through a noisy transformation of one of a few hidden trajectories representing different types of movement, with possible time re-scaling. We analyze three different approximation methods for dealing with model intractability, and demonstrate how the proposed approach can successfully segment table tennis movements recorded using a robot arm as haptic input device.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Space-Variant Single-Image Blind Deconvolution for Removing Camera Shake

Harmeling, S., Hirsch, M., Schölkopf, B.

In Advances in Neural Information Processing Systems 23, pages: 829-837, (Editors: J Lafferty and CKI Williams and J Shawe-Taylor and RS Zemel and A Culotta), Curran, Red Hook, NY, USA, 24th Annual Conference on Neural Information Processing Systems (NIPS), 2010 (inproceedings)

Abstract
Modelling camera shake as a space-invariant convolution simplifies the problem of removing camera shake, but often insufficiently models actual motion blur such as those due to camera rotation and movements outside the sensor plane or when objects in the scene have different distances to the camera. In an effort to address these limitations, (i) we introduce a taxonomy of camera shakes, (ii) we build on a recently introduced framework for space-variant filtering by Hirsch et al. and a fast algorithm for single image blind deconvolution for space-invariant filters by Cho and Lee to construct a method for blind deconvolution in the case of space-variant blur, and (iii), we present an experimental setup for evaluation that allows us to take images with real camera shake while at the same time recording the spacevariant point spread function corresponding to that blur. Finally, we demonstrate that our method is able to deblur images degraded by spatially-varying blur originating from real camera shake, even without using additionally motion sensor information.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Getting lost in space: Large sample analysis of the resistance distance

von Luxburg, U., Radl, A., Hein, M.

In Advances in Neural Information Processing Systems 23, pages: 2622-2630, (Editors: Lafferty, J. , C. K.I. Williams, J. Shawe-Taylor, R. S. Zemel, A. Culotta), Curran, Red Hook, NY, USA, Twenty-Fourth Annual Conference on Neural Information Processing Systems (NIPS), 2010 (inproceedings)

Abstract
The commute distance between two vertices in a graph is the expected time it takes a random walk to travel from the first to the second vertex and back. We study the behavior of the commute distance as the size of the underlying graph increases. We prove that the commute distance converges to an expression that does not take into account the structure of the graph at all and that is completely meaningless as a distance function on the graph. Consequently, the use of the raw commute distance for machine learning purposes is strongly discouraged for large graphs and in high dimensions. As an alternative we introduce the amplified commute distance that corrects for the undesired large sample effects.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Distinguishing between cause and effect

Mooij, J., Janzing, D.

In JMLR Workshop and Conference Proceedings: Volume 6, pages: 147-156, (Editors: Guyon, I. , D. Janzing, B. Schölkopf), MIT Press, Cambridge, MA, USA, Causality: Objectives and Assessment (NIPS Workshop) , 2010 (inproceedings)

Abstract
We describe eight data sets that together formed the CauseEffectPairs task in the Causality Challenge #2: Pot-Luck competition. Each set consists of a sample of a pair of statistically dependent random variables. One variable is known to cause the other one, but this information was hidden from the participants; the task was to identify which of the two variables was the cause and which one the effect, based upon the observed sample. The data sets were chosen such that we expect common agreement on the ground truth. Even though part of the statistical dependences may also be due to hidden common causes, common sense tells us that there is a significant cause-effect relation between the two variables in each pair. We also present baseline results using three different causal inference methods.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernel Methods for Detecting the Direction of Time Series

Peters, J., Janzing, D., Gretton, A., Schölkopf, B.

In Advances in Data Analysis, Data Handling and Business Intelligence, pages: 57-66, (Editors: A Fink and B Lausen and W Seidel and A Ultsch), Springer, Berlin, Germany, 32nd Annual Conference of the Gesellschaft f{\"u}r Klassifikation e.V. (GfKl), 2010 (inproceedings)

Abstract
We propose two kernel based methods for detecting the time direction in empirical time series. First we apply a Support Vector Machine on the finite-dimensional distributions of the time series (classification method) by embedding these distributions into a Reproducing Kernel Hilbert Space. For the ARMA method we fit the observed data with an autoregressive moving average process and test whether the regression residuals are statistically independent of the past values. Whenever the dependence in one direction is significantly weaker than in the other we infer the former to be the true one. Both approaches were able to detect the direction of the true generating model for simulated data sets. We also applied our tests to a large number of real world time series. The ARMA method made a decision for a significant fraction of them, in which it was mostly correct, while the classification method did not perform as well, but still exceeded chance level.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Switched Latent Force Models for Movement Segmentation

Alvarez, M., Peters, J., Schölkopf, B., Lawrence, N.

In Advances in neural information processing systems 23, pages: 55-63, (Editors: J Lafferty and CKI Williams and J Shawe-Taylor and RS Zemel and A Culotta), Curran, Red Hook, NY, USA, 24th Annual Conference on Neural Information Processing Systems (NIPS), 2010 (inproceedings)

Abstract
Latent force models encode the interaction between multiple related dynamical systems in the form of a kernel or covariance function. Each variable to be modeled is represented as the output of a differential equation and each differential equation is driven by a weighted sum of latent functions with uncertainty given by a Gaussian process prior. In this paper we consider employing the latent force model framework for the problem of determining robot motor primitives. To deal with discontinuities in the dynamical systems or the latent driving force we introduce an extension of the basic latent force model, that switches between different latent functions and potentially different dynamical systems. This creates a versatile representation for robot movements that can capture discrete changes and non-linearities in the dynamics. We give illustrative examples on both synthetic data and for striking movements recorded using a BarrettWAM robot as haptic input device. Our inspiration is robot motor primitives, but we expect our model to have wide application for dynamical systems including models for human motion capture data and systems biology.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Naı̈ve Security in a Wi-Fi World

Swanson, C., Urner, R., Lank, E.

In Trust Management IV - 4th IFIP WG 11.11 International Conference Proceedings, pages: 32-47, (Editors: Nishigaki, M., Josang, A., Murayama, Y., Marsh, S.), IFIPTM, 2010 (inproceedings)

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2002


no image
Gender Classification of Human Faces

Graf, A., Wichmann, F.

In Biologically Motivated Computer Vision, pages: 1-18, (Editors: Bülthoff, H. H., S.W. Lee, T. A. Poggio and C. Wallraven), Springer, Berlin, Germany, Second International Workshop on Biologically Motivated Computer Vision (BMCV), November 2002 (inproceedings)

Abstract
This paper addresses the issue of combining pre-processing methods—dimensionality reduction using Principal Component Analysis (PCA) and Locally Linear Embedding (LLE)—with Support Vector Machine (SVM) classification for a behaviorally important task in humans: gender classification. A processed version of the MPI head database is used as stimulus set. First, summary statistics of the head database are studied. Subsequently the optimal parameters for LLE and the SVM are sought heuristically. These values are then used to compare the original face database with its processed counterpart and to assess the behavior of a SVM with respect to changes in illumination and perspective of the face images. Overall, PCA was superior in classification performance and allowed linear separability.

PDF PDF DOI [BibTex]

2002

PDF PDF DOI [BibTex]


no image
Insect-Inspired Estimation of Self-Motion

Franz, MO., Chahl, JS.

In Biologically Motivated Computer Vision, (2525):171-180, LNCS, (Editors: Bülthoff, H.H. , S.W. Lee, T.A. Poggio, C. Wallraven), Springer, Berlin, Germany, Second International Workshop on Biologically Motivated Computer Vision (BMCV), November 2002 (inproceedings)

Abstract
The tangential neurons in the fly brain are sensitive to the typical optic flow patterns generated during self-motion. In this study, we examine whether a simplified linear model of these neurons can be used to estimate self-motion from the optic flow. We present a theory for the construction of an optimal linear estimator incorporating prior knowledge about the environment. The optimal estimator is tested on a gantry carrying an omnidirectional vision sensor. The experiments show that the proposed approach leads to accurate and robust estimates of rotation rates, whereas translation estimates turn out to be less reliable.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Combining sensory Information to Improve Visualization

Ernst, M., Banks, M., Wichmann, F., Maloney, L., Bülthoff, H.

In Proceedings of the Conference on Visualization ‘02 (VIS ‘02), pages: 571-574, (Editors: Moorhead, R. , M. Joy), IEEE, Piscataway, NJ, USA, IEEE Conference on Visualization (VIS '02), October 2002 (inproceedings)

Abstract
Seemingly effortlessly the human brain reconstructs the three-dimensional environment surrounding us from the light pattern striking the eyes. This seems to be true across almost all viewing and lighting conditions. One important factor for this apparent easiness is the redundancy of information provided by the sensory organs. For example, perspective distortions, shading, motion parallax, or the disparity between the two eyes' images are all, at least partly, redundant signals which provide us with information about the three-dimensional layout of the visual scene. Our brain uses all these different sensory signals and combines the available information into a coherent percept. In displays visualizing data, however, the information is often highly reduced and abstracted, which may lead to an altered perception and therefore a misinterpretation of the visualized data. In this panel we will discuss mechanisms involved in the combination of sensory information and their implications for simulations using computer displays, as well as problems resulting from current display technology such as cathode-ray tubes.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Sampling Techniques for Kernel Methods

Achlioptas, D., McSherry, F., Schölkopf, B.

In Advances in neural information processing systems 14 , pages: 335-342, (Editors: TG Dietterich and S Becker and Z Ghahramani), MIT Press, Cambridge, MA, USA, 15th Annual Neural Information Processing Systems Conference (NIPS), September 2002 (inproceedings)

Abstract
We propose randomized techniques for speeding up Kernel Principal Component Analysis on three levels: sampling and quantization of the Gram matrix in training, randomized rounding in evaluating the kernel expansions, and random projections in evaluating the kernel itself. In all three cases, we give sharp bounds on the accuracy of the obtained approximations.

PDF Web [BibTex]

PDF Web [BibTex]


no image
The Infinite Hidden Markov Model

Beal, MJ., Ghahramani, Z., Rasmussen, CE.

In Advances in Neural Information Processing Systems 14, pages: 577-584, (Editors: Dietterich, T.G. , S. Becker, Z. Ghahramani), MIT Press, Cambridge, MA, USA, Fifteenth Annual Neural Information Processing Systems Conference (NIPS), September 2002 (inproceedings)

Abstract
We show that it is possible to extend hidden Markov models to have a countably infinite number of hidden states. By using the theory of Dirichlet processes we can implicitly integrate out the infinitely many transition parameters, leaving only three hyperparameters which can be learned from data. These three hyperparameters define a hierarchical Dirichlet process capable of capturing a rich set of transition dynamics. The three hyperparameters control the time scale of the dynamics, the sparsity of the underlying state-transition matrix, and the expected number of distinct hidden states in a finite sequence. In this framework it is also natural to allow the alphabet of emitted symbols to be infinite - consider, for example, symbols being possible words appearing in English text.

PDF Web [BibTex]

PDF Web [BibTex]


no image
A new discriminative kernel from probabilistic models

Tsuda, K., Kawanabe, M., Rätsch, G., Sonnenburg, S., Müller, K.

In Advances in Neural Information Processing Systems 14, pages: 977-984, (Editors: Dietterich, T.G. , S. Becker, Z. Ghahramani), MIT Press, Cambridge, MA, USA, Fifteenth Annual Neural Information Processing Systems Conference (NIPS), September 2002 (inproceedings)

Abstract
Recently, Jaakkola and Haussler proposed a method for constructing kernel functions from probabilistic models. Their so called \Fisher kernel" has been combined with discriminative classi ers such as SVM and applied successfully in e.g. DNA and protein analysis. Whereas the Fisher kernel (FK) is calculated from the marginal log-likelihood, we propose the TOP kernel derived from Tangent vectors Of Posterior log-odds. Furthermore, we develop a theoretical framework on feature extractors from probabilistic models and use it for analyzing the TOP kernel. In experiments our new discriminative TOP kernel compares favorably to the Fisher kernel.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Incorporating Invariances in Non-Linear Support Vector Machines

Chapelle, O., Schölkopf, B.

In Advances in Neural Information Processing Systems 14, pages: 609-616, (Editors: TG Dietterich and S Becker and Z Ghahramani), MIT Press, Cambridge, MA, USA, 15th Annual Neural Information Processing Systems Conference (NIPS), September 2002 (inproceedings)

Abstract
The choice of an SVM kernel corresponds to the choice of a representation of the data in a feature space and, to improve performance, it should therefore incorporate prior knowledge such as known transformation invariances. We propose a technique which extends earlier work and aims at incorporating invariances in nonlinear kernels. We show on a digit recognition task that the proposed approach is superior to the Virtual Support Vector method, which previously had been the method of choice.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernel feature spaces and nonlinear blind source separation

Harmeling, S., Ziehe, A., Kawanabe, M., Müller, K.

In Advances in Neural Information Processing Systems 14, pages: 761-768, (Editors: Dietterich, T. G., S. Becker, Z. Ghahramani), MIT Press, Cambridge, MA, USA, Fifteenth Annual Neural Information Processing Systems Conference (NIPS), September 2002 (inproceedings)

Abstract
In kernel based learning the data is mapped to a kernel feature space of a dimension that corresponds to the number of training data points. In practice, however, the data forms a smaller submanifold in feature space, a fact that has been used e.g. by reduced set techniques for SVMs. We propose a new mathematical construction that permits to adapt to the intrinsic dimension and to find an orthonormal basis of this submanifold. In doing so, computations get much simpler and more important our theoretical framework allows to derive elegant kernelized blind source separation (BSS) algorithms for arbitrary invertible nonlinear mixings. Experiments demonstrate the good performance and high computational efficiency of our kTDSEP algorithm for the problem of nonlinear BSS.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Algorithms for Learning Function Distinguishable Regular Languages

Fernau, H., Radl, A.

In Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, pages: 64-73, (Editors: Caelli, T. , A. Amin, R. P.W. Duin, M. Kamel, D. de Ridder), Springer, Berlin, Germany, Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, August 2002 (inproceedings)

Abstract
Function distinguishable languages were introduced as a new methodology of defining characterizable subclasses of the regular languages which are learnable from text. Here, we give details on the implementation and the analysis of the corresponding learning algorithms. We also discuss problems which might occur in practical applications.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Decision Boundary Pattern Selection for Support Vector Machines

Shin, H., Cho, S.

In Proc. of the Korean Data Mining Conference, pages: 33-41, Korean Data Mining Conference, May 2002 (inproceedings)

[BibTex]

[BibTex]


no image
k-NN based Pattern Selection for Support Vector Classifiers

Shin, H., Cho, S.

In Proc. of the Korean Industrial Engineers Conference, pages: 645-651, Korean Industrial Engineers Conference, May 2002 (inproceedings)

[BibTex]

[BibTex]


no image
Microarrays: How Many Do You Need?

Zien, A., Fluck, J., Zimmer, R., Lengauer, T.

In RECOMB 2002, pages: 321-330, ACM Press, New York, NY, USA, Sixth Annual International Conference on Research in Computational Molecular Biology, April 2002 (inproceedings)

Abstract
We estimate the number of microarrays that is required in order to gain reliable results from a common type of study: the pairwise comparison of different classes of samples. Current knowlegde seems to suffice for the construction of models that are realistic with respect to searches for individual differentially expressed genes. Such models allow to investigate the dependence of the required number of samples on the relevant parameters: the biological variability of the samples within each class; the fold changes in expression; the detection sensitivity of the microarrays; and the acceptable error rates of the results. We supply experimentalists with general conclusions as well as a freely accessible Java applet at http://cartan.gmd.de/~zien/classsize/ for fine tuning simulations to their particular actualities. Since the situation can be assumed to be very similar for large scale proteomics and metabolomics studies, our methods and results might also apply there.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Pattern Selection for Support Vector Classifiers

Shin, H., Cho, S.

In Ideal 2002, pages: 97-103, (Editors: Yin, H. , N. Allinson, R. Freeman, J. Keane, S. Hubbard), Springer, Berlin, Germany, Third International Conference on Intelligent Data Engineering and Automated Learning, January 2002 (inproceedings)

Abstract
SVMs tend to take a very long time to train with a large data set. If "redundant" patterns are identified and deleted in pre-processing, the training time could be reduced significantly. We propose a k-nearest neighbors(k-NN) based pattern selection method. The method tries to select the patterns that are near the decision boundary and that are correctly labeled. The simulations over synthetic data sets showed promising results: (1) By converting a non-separable problem to a separable one, the search for an optimal error tolerance parameter became unnecessary. (2) SVM training time decreased by two orders of magnitude without any loss of accuracy. (3) The redundant SVs were substantially reduced.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
The leave-one-out kernel

Tsuda, K., Kawanabe, M.

In Artificial Neural Networks -- ICANN 2002, 2415, pages: 727-732, LNCS, (Editors: Dorronsoro, J. R.), Artificial Neural Networks -- ICANN, 2002 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Localized Rademacher Complexities

Bartlett, P., Bousquet, O., Mendelson, S.

In Proceedings of the 15th annual conference on Computational Learning Theory, pages: 44-58, Proceedings of the 15th annual conference on Computational Learning Theory, 2002 (inproceedings)

Abstract
We investigate the behaviour of global and local Rademacher averages. We present new error bounds which are based on the local averages and indicate how data-dependent local averages can be estimated without {it a priori} knowledge of the class at hand.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Film Cooling: A Comparative Study of Different Heaterfoil Configurations for Liquid Crystals Experiments

Vogel, G., Graf, ABA., Weigand, B.

In ASME TURBO EXPO 2002, Amsterdam, GT-2002-30552, ASME TURBO EXPO, Amsterdam, 2002 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Some Local Measures of Complexity of Convex Hulls and Generalization Bounds

Bousquet, O., Koltchinskii, V., Panchenko, D.

In Proceedings of the 15th annual conference on Computational Learning Theory, Proceedings of the 15th annual conference on Computational Learning Theory, 2002 (inproceedings)

Abstract
We investigate measures of complexity of function classes based on continuity moduli of Gaussian and Rademacher processes. For Gaussian processes, we obtain bounds on the continuity modulus on the convex hull of a function class in terms of the same quantity for the class itself. We also obtain new bounds on generalization error in terms of localized Rademacher complexities. This allows us to prove new results about generalization performance for convex hulls in terms of characteristics of the base class. As a byproduct, we obtain a simple proof of some of the known bounds on the entropy of convex hulls.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
A kernel approach for learning from almost orthogonal patterns

Schölkopf, B., Weston, J., Eskin, E., Leslie, C., Noble, W.

In Principles of Data Mining and Knowledge Discovery, Lecture Notes in Computer Science, 2430/2431, pages: 511-528, Lecture Notes in Computer Science, (Editors: T Elomaa and H Mannila and H Toivonen), Springer, Berlin, Germany, 13th European Conference on Machine Learning (ECML) and 6th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD'2002), 2002 (inproceedings)

PostScript DOI [BibTex]

PostScript DOI [BibTex]


no image
Infinite Mixtures of Gaussian Process Experts

Rasmussen, CE., Ghahramani, Z.

In (Editors: Dietterich, Thomas G.; Becker, Suzanna; Ghahramani, Zoubin), 2002 (inproceedings)

Abstract
We present an extension to the Mixture of Experts (ME) model, where the individual experts are Gaussian Process (GP) regression models. Using a input-dependent adaptation of the Dirichlet Process, we implement a gating network for an infinite number of Experts. Inference in this model may be done efficiently using a Markov Chain relying on Gibbs sampling. The model allows the effective covariance function to vary with the inputs, and may handle large datasets -- thus potentially overcoming two of the biggest hurdles with GP models. Simulations show the viability of this approach.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Marginalized kernels for RNA sequence data analysis

Kin, T., Tsuda, K., Asai, K.

In Genome Informatics 2002, pages: 112-122, (Editors: Lathtop, R. H.; Nakai, K.; Miyano, S.; Takagi, T.; Kanehisa, M.), Genome Informatics, 2002, (Best Paper Award) (inproceedings)

Web [BibTex]

Web [BibTex]


no image
Luminance Artifacts on CRT Displays

Wichmann, F.

In IEEE Visualization, pages: 571-574, (Editors: Moorhead, R.; Gross, M.; Joy, K. I.), IEEE Visualization, 2002 (inproceedings)

Abstract
Most visualization panels today are still built around cathode-ray tubes (CRTs), certainly on personal desktops at work and at home. Whilst capable of producing pleasing images for common applications ranging from email writing to TV and DVD presentation, it is as well to note that there are a number of nonlinear transformations between input (voltage) and output (luminance) which distort the digital and/or analogue images send to a CRT. Some of them are input-independent and hence easy to fix, e.g. gamma correction, but others, such as pixel interactions, depend on the content of the input stimulus and are thus harder to compensate for. CRT-induced image distortions cause problems not only in basic vision research but also for applications where image fidelity is critical, most notably in medicine (digitization of X-ray images for diagnostic purposes) and in forms of online commerce, such as the online sale of images, where the image must be reproduced on some output device which will not have the same transfer function as the customer's CRT. I will present measurements from a number of CRTs and illustrate how some of their shortcomings may be problematic for the aforementioned applications.

[BibTex]

[BibTex]

2001


no image
Pattern Selection Using the Bias and Variance of Ensemble

Shin, H., Cho, S.

In Proc. of the Korean Data Mining Conference, pages: 56-67, Korean Data Mining Conference, December 2001 (inproceedings)

[BibTex]

2001

[BibTex]


no image
Separation of post-nonlinear mixtures using ACE and temporal decorrelation

Ziehe, A., Kawanabe, M., Harmeling, S., Müller, K.

In ICA 2001, pages: 433-438, (Editors: Lee, T.-W. , T.P. Jung, S. Makeig, T. J. Sejnowski), Third International Workshop on Independent Component Analysis and Blind Signal Separation, December 2001 (inproceedings)

Abstract
We propose an efficient method based on the concept of maximal correlation that reduces the post-nonlinear blind source separation problem (PNL BSS) to a linear BSS problem. For this we apply the Alternating Conditional Expectation (ACE) algorithm – a powerful technique from nonparametric statistics – to approximately invert the (post-)nonlinear functions. Interestingly, in the framework of the ACE method convergence can be proven and in the PNL BSS scenario the optimal transformation found by ACE will coincide with the desired inverse functions. After the nonlinearities have been removed by ACE, temporal decorrelation (TD) allows us to recover the source signals. An excellent performance underlines the validity of our approach and demonstrates the ACE-TD method on realistic examples.

PDF [BibTex]

PDF [BibTex]


no image
Nonlinear blind source separation using kernel feature spaces

Harmeling, S., Ziehe, A., Kawanabe, M., Blankertz, B., Müller, K.

In ICA 2001, pages: 102-107, (Editors: Lee, T.-W. , T.P. Jung, S. Makeig, T. J. Sejnowski), Third International Workshop on Independent Component Analysis and Blind Signal Separation, December 2001 (inproceedings)

Abstract
In this work we propose a kernel-based blind source separation (BSS) algorithm that can perform nonlinear BSS for general invertible nonlinearities. For our kTDSEP algorithm we have to go through four steps: (i) adapting to the intrinsic dimension of the data mapped to feature space F, (ii) finding an orthonormal basis of this submanifold, (iii) mapping the data into the subspace of F spanned by this orthonormal basis, and (iv) applying temporal decorrelation BSS (TDSEP) to the mapped data. After demixing we get a number of irrelevant components and the original sources. To find out which ones are the components of interest, we propose a criterion that allows to identify the original sources. The excellent performance of kTDSEP is demonstrated in experiments on nonlinearly mixed speech data.

PDF [BibTex]

PDF [BibTex]


no image
Pattern Selection for ‘Regression’ using the Bias and Variance of Ensemble Network

Shin, H., Cho, S.

In Proc. of the Korean Institute of Industrial Engineers Conference, pages: 10-19, Korean Industrial Engineers Conference, November 2001 (inproceedings)

[BibTex]

[BibTex]


no image
Pattern Selection for ‘Classification’ using the Bias and Variance of Ensemble Neural Network

Shin, H., Cho, S.

In Proc. of the Korea Information Science Conference, pages: 307-309, Korea Information Science Conference, October 2001, Best Paper Award (inproceedings)

[BibTex]

[BibTex]


no image
Hybrid IDM/Impedance learning in human movements

Burdet, E., Teng, K., Chew, C., Peters, J., , B.

In ISHF 2001, 1, pages: 1-9, 1st International Symposium on Measurement, Analysis and Modeling of Human Functions (ISHF2001), September 2001 (inproceedings)

Abstract
In spite of motor output variability and the delay in the sensori-motor, humans routinely perform intrinsically un- stable tasks. The hybrid IDM/impedance learning con- troller presented in this paper enables skilful performance in strong stable and unstable environments. It consid- ers motor output variability identified from experimen- tal data, and contains two modules concurrently learning the endpoint force and impedance adapted to the envi- ronment. The simulations suggest how humans learn to skillfully perform intrinsically unstable tasks. Testable predictions are proposed.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Combining Off- and On-line Calibration of a Digital Camera

Urbanek, M., Horaud, R., Sturm, P.

In In Proceedings of Third International Conference on 3-D Digital Imaging and Modeling, pages: 99-106, In Proceedings of Third International Conference on 3-D Digital Imaging and Modeling, June 2001 (inproceedings)

Abstract
We introduce a novel outlook on the self­calibration task, by considering images taken by a camera in motion, allowing for zooming and focusing. Apart from the complex relationship between the lens control settings and the intrinsic camera parameters, a prior off­line calibration allows to neglect the setting of focus, and to fix the principal point and aspect ratio throughout distinct views. Thus, the calibration matrix is dependent only on the zoom position. Given a fully calibrated reference view, one has only one parameter to estimate for any other view of the same scene, in order to calibrate it and to be able to perform metric reconstructions. We provide a close­form solution, and validate the reliability of the algorithm with experiments on real images. An important advantage of our method is a reduced ­ to one ­ number of critical camera configurations, associated with it. Moreover, we propose a method for computing the epipolar geometry of two views, taken from different positions and with different (spatial) resolutions; the idea is to take an appropriate third view, that is "easy" to match with the other two.

ZIP [BibTex]

ZIP [BibTex]


no image
Support vector novelty detection applied to jet engine vibration spectra

Hayton, P., Schölkopf, B., Tarassenko, L., Anuzis, P.

In Advances in Neural Information Processing Systems 13, pages: 946-952, (Editors: TK Leen and TG Dietterich and V Tresp), MIT Press, Cambridge, MA, USA, 14th Annual Neural Information Processing Systems Conference (NIPS), April 2001 (inproceedings)

Abstract
A system has been developed to extract diagnostic information from jet engine carcass vibration data. Support Vector Machines applied to novelty detection provide a measure of how unusual the shape of a vibration signature is, by learning a representation of normality. We describe a novel method for Support Vector Machines of including information from a second class for novelty detection and give results from the application to Jet Engine vibration analysis.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Four-legged Walking Gait Control Using a Neuromorphic Chip Interfaced to a Support Vector Learning Algorithm

Still, S., Schölkopf, B., Hepp, K., Douglas, R.

In Advances in Neural Information Processing Systems 13, pages: 741-747, (Editors: TK Leen and TG Dietterich and V Tresp), MIT Press, Cambridge, MA, USA, 14th Annual Neural Information Processing Systems Conference (NIPS), April 2001 (inproceedings)

Abstract
To control the walking gaits of a four-legged robot we present a novel neuromorphic VLSI chip that coordinates the relative phasing of the robot's legs similar to how spinal Central Pattern Generators are believed to control vertebrate locomotion [3]. The chip controls the leg movements by driving motors with time varying voltages which are the outputs of a small network of coupled oscillators. The characteristics of the chip's output voltages depend on a set of input parameters. The relationship between input parameters and output voltages can be computed analytically for an idealized system. In practice, however, this ideal relationship is only approximately true due to transistor mismatch and offsets.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Algorithmic Stability and Generalization Performance

Bousquet, O., Elisseeff, A.

In Advances in Neural Information Processing Systems 13, pages: 196-202, (Editors: Leen, T.K. , T.G. Dietterich, V. Tresp), MIT Press, Cambridge, MA, USA, Fourteenth Annual Neural Information Processing Systems Conference (NIPS), April 2001 (inproceedings)

Abstract
We present a novel way of obtaining PAC-style bounds on the generalization error of learning algorithms, explicitly using their stability properties. A {\em stable} learner being one for which the learned solution does not change much for small changes in the training set. The bounds we obtain do not depend on any measure of the complexity of the hypothesis space (e.g. VC dimension) but rather depend on how the learning algorithm searches this space, and can thus be applied even when the VC dimension in infinite. We demonstrate that regularization networks possess the required stability property and apply our method to obtain new bounds on their generalization performance.

PDF Web [BibTex]

PDF Web [BibTex]


no image
The Kernel Trick for Distances

Schölkopf, B.

In Advances in Neural Information Processing Systems 13, pages: 301-307, (Editors: TK Leen and TG Dietterich and V Tresp), MIT Press, Cambridge, MA, USA, 14th Annual Neural Information Processing Systems Conference (NIPS), April 2001 (inproceedings)

Abstract
A method is described which, like the kernel trick in support vector machines (SVMs), lets us generalize distance-based algorithms to operate in feature spaces, usually nonlinearly related to the input space. This is done by identifying a class of kernels which can be represented as norm-based distances in Hilbert spaces. It turns out that the common kernel algorithms, such as SVMs and kernel PCA, are actually really distance based algorithms and can be run with that class of kernels, too. As well as providing a useful new insight into how these algorithms work, the present work can form the basis for conceiving new algorithms.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Vicinal Risk Minimization

Chapelle, O., Weston, J., Bottou, L., Vapnik, V.

In Advances in Neural Information Processing Systems 13, pages: 416-422, (Editors: Leen, T.K. , T.G. Dietterich, V. Tresp), MIT Press, Cambridge, MA, USA, Fourteenth Annual Neural Information Processing Systems Conference (NIPS) , April 2001 (inproceedings)

Abstract
The Vicinal Risk Minimization principle establishes a bridge between generative models and methods derived from the Structural Risk Minimization Principle such as Support Vector Machines or Statistical Regularization. We explain how VRM provides a framework which integrates a number of existing algorithms, such as Parzen windows, Support Vector Machines, Ridge Regression, Constrained Logistic Classifiers and Tangent-Prop. We then show how the approach implies new algorithms for solving problems usually associated with generative models. New algorithms are described for dealing with pattern recognition problems with very different pattern distributions and dealing with unlabeled data. Preliminary empirical results are presented.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Feature Selection for SVMs

Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., Vapnik, V.

In Advances in Neural Information Processing Systems 13, pages: 668-674, (Editors: Leen, T.K. , T.G. Dietterich, V. Tresp), MIT Press, Cambridge, MA, USA, Fourteenth Annual Neural Information Processing Systems Conference (NIPS), April 2001 (inproceedings)

Abstract
We introduce a method of feature selection for Support Vector Machines. The method is based upon finding those features which minimize bounds on the leave-one-out error. This search can be efficiently performed via gradient descent. The resulting algorithms are shown to be superior to some standard feature selection algorithms on both toy data and real-life problems of face recognition, pedestrian detection and analyzing DNA microarray data.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Occam’s Razor

Rasmussen, CE., Ghahramani, Z.

In Advances in Neural Information Processing Systems 13, pages: 294-300, (Editors: Leen, T.K. , T.G. Dietterich, V. Tresp), MIT Press, Cambridge, MA, USA, Fourteenth Annual Neural Information Processing Systems Conference (NIPS), April 2001 (inproceedings)

Abstract
The Bayesian paradigm apparently only sometimes gives rise to Occam's Razor; at other times very large models perform well. We give simple examples of both kinds of behaviour. The two views are reconciled when measuring complexity of functions, rather than of the machinery used to implement them. We analyze the complexity of functions for some linear in the parameter models that are equivalent to Gaussian Processes, and always find Occam's Razor at work.

PDF Web [BibTex]

PDF Web [BibTex]