Header logo is ei


2013


no image
Scalable Influence Estimation in Continuous-Time Diffusion Networks

Du, N., Song, L., Gomez Rodriguez, M., Zha, H.

In Advances in Neural Information Processing Systems 26, pages: 3147-3155, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

PDF PDF [BibTex]

2013

PDF PDF [BibTex]


no image
Rapid Distance-Based Outlier Detection via Sampling

Sugiyama, M., Borgwardt, KM.

In Advances in Neural Information Processing Systems 26, pages: 467-475, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Probabilistic Movement Primitives

Paraschos, A., Daniel, C., Peters, J., Neumann, G.

In Advances in Neural Information Processing Systems 26, pages: 2616-2624, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Causal Inference on Time Series using Restricted Structural Equation Models

Peters, J., Janzing, D., Schölkopf, B.

In Advances in Neural Information Processing Systems 26, pages: 154-162, (Editors: C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Regression-tree Tuning in a Streaming Setting

Kpotufe, S., Orabona, F.

In Advances in Neural Information Processing Systems 26, pages: 1788-1796, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Density estimation from unweighted k-nearest neighbor graphs: a roadmap

von Luxburg, U., Alamgir, M.

In Advances in Neural Information Processing Systems 26, pages: 225-233, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
PAC-Bayes-Empirical-Bernstein Inequality

Tolstikhin, I. O., Seldin, Y.

In Advances in Neural Information Processing Systems 26, pages: 109-117, (Editors: C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
PLAL: Cluster-based active learning

Urner, R., Wulff, S., Ben-David, S.

In Proceedings of the 26th Annual Conference on Learning Theory, 30, pages: 376-397, (Editors: Shalev-Shwartz, S. and Steinwart, I.), JMLR, COLT, 2013 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Monochromatic Bi-Clustering

Wulff, S., Urner, R., Ben-David, S.

In Proceedings of the 30th International Conference on Machine Learning, 28, pages: 145-153, (Editors: Dasgupta, S. and McAllester, D.), JMLR, ICML, 2013 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Significance of variable height-bandwidth group delay filters in the spectral reconstruction of speech

Devanshu, A., Raj, A., Hegde, R. M.

INTERSPEECH 2013, 14th Annual Conference of the International Speech Communication Association, pages: 1682-1686, 2013 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Generative Multiple-Instance Learning Models For Quantitative Electromyography

Adel, T., Smith, B., Urner, R., Stashuk, D., Lizotte, D. J.

In Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence, AUAI Press, UAI, 2013 (inproceedings)

link (url) [BibTex]

link (url) [BibTex]


no image
Automatic Malaria Diagnosis system

Mehrjou, A., Abbasian, T., Izadi, M.

In First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), pages: 205-211, 2013 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Abstraction in Decision-Makers with Limited Information Processing Capabilities

Genewein, T, Braun, DA

pages: 1-9, NIPS Workshop Planning with Information Constraints for Control, Reinforcement Learning, Computational Neuroscience, Robotics and Games, December 2013 (conference)

Abstract
A distinctive property of human and animal intelligence is the ability to form abstractions by neglecting irrelevant information which allows to separate structure from noise. From an information theoretic point of view abstractions are desirable because they allow for very efficient information processing. In artificial systems abstractions are often implemented through computationally costly formations of groups or clusters. In this work we establish the relation between the free-energy framework for decision-making and rate-distortion theory and demonstrate how the application of rate-distortion for decision-making leads to the emergence of abstractions. We argue that abstractions are induced due to a limit in information processing capacity.

link (url) [BibTex]

link (url) [BibTex]


no image
Bounded Rational Decision-Making in Changing Environments

Grau-Moya, J, Braun, DA

pages: 1-9, NIPS Workshop Planning with Information Constraints for Control, Reinforcement Learning, Computational Neuroscience, Robotics and Games, December 2013 (conference)

Abstract
A perfectly rational decision-maker chooses the best action with the highest utility gain from a set of possible actions. The optimality principles that describe such decision processes do not take into account the computational costs of finding the optimal action. Bounded rational decision-making addresses this problem by specifically trading off information-processing costs and expected utility. Interestingly, a similar trade-off between energy and entropy arises when describing changes in thermodynamic systems. This similarity has been recently used to describe bounded rational agents. Crucially, this framework assumes that the environment does not change while the decision-maker is computing the optimal policy. When this requirement is not fulfilled, the decision-maker will suffer inefficiencies in utility, that arise because the current policy is optimal for an environment in the past. Here we borrow concepts from non-equilibrium thermodynamics to quantify these inefficiencies and illustrate with simulations its relationship with computational resources.

link (url) [BibTex]

link (url) [BibTex]

2003


no image
Learning Control and Planning from the View of Control Theory and Imitation

Peters, J., Schaal, S.

NIPS Workshop "Planning for the Real World: The promises and challenges of dealing with uncertainty", December 2003 (talk)

Abstract
Learning control and planning in high dimensional continuous state-action systems, e.g., as needed in a humanoid robot, has so far been a domain beyond the applicability of generic planning techniques like reinforcement learning and dynamic programming. This talk describes an approach we have taken in order to enable complex robotics systems to learn to accomplish control tasks. Adaptive learning controllers equipped with statistical learning techniques can be used to learn tracking controllers -- missing state information and uncertainty in the state estimates are usually addressed by observers or direct adaptive control methods. Imitation learning is used as an ingredient to seed initial control policies whose output is a desired trajectory suitable to accomplish the task at hand. Reinforcement learning with stochastic policy gradients using a natural gradient forms the third component that allows refining the initial control policy until the task is accomplished. In comparison to general learning control, this approach is highly prestructured and thus more domain specific. However, it seems to be a theoretically clean and feasible strategy for control systems of the complexity that we need to address.

Web [BibTex]

2003

Web [BibTex]


no image
Recurrent neural networks from learning attractor dynamics

Schaal, S., Peters, J.

NIPS Workshop on RNNaissance: Recurrent Neural Networks, December 2003 (talk)

Abstract
Many forms of recurrent neural networks can be understood in terms of dynamic systems theory of difference equations or differential equations. Learning in such systems corresponds to adjusting some internal parameters to obtain a desired time evolution of the network, which can usually be characterized in term of point attractor dynamics, limit cycle dynamics, or, in some more rare cases, as strange attractor or chaotic dynamics. Finding a stable learning process to adjust the open parameters of the network towards shaping the desired attractor type and basin of attraction has remain a complex task, as the parameter trajectories during learning can lead the system through a variety of undesirable unstable behaviors, such that learning may never succeed. In this presentation, we review a recently developed learning framework for a class of recurrent neural networks that employs a more structured network approach. We assume that the canonical system behavior is known a priori, e.g., it is a point attractor or a limit cycle. With either supervised learning or reinforcement learning, it is possible to acquire the transformation from a simple representative of this canonical behavior (e.g., a 2nd order linear point attractor, or a simple limit cycle oscillator) to the desired highly complex attractor form. For supervised learning, one shot learning based on locally weighted regression techniques is possible. For reinforcement learning, stochastic policy gradient techniques can be employed. In any case, the recurrent network learned by these methods inherits the stability properties of the simple dynamic system that underlies the nonlinear transformation, such that stability of the learning approach is not a problem. We demonstrate the success of this approach for learning various skills on a humanoid robot, including tasks that require to incorporate additional sensory signals as coupling terms to modify the recurrent network evolution on-line.

Web [BibTex]

Web [BibTex]


no image
How to Deal with Large Dataset, Class Imbalance and Binary Output in SVM based Response Model

Shin, H., Cho, S.

In Proc. of the Korean Data Mining Conference, pages: 93-107, Korean Data Mining Conference, December 2003, Best Paper Award (inproceedings)

Abstract
[Abstract]: Various machine learning methods have made a rapid transition to response modeling in search of improved performance. And support vector machine (SVM) has also been attracting much attention lately. This paper presents an SVM response model. We are specifically focusing on the how-to’s to circumvent practical obstacles, such as how to face with class imbalance problem, how to produce the scores from an SVM classifier for lift chart analysis, and how to evaluate the models on accuracy and profit. Besides coping with the intractability problem of SVM training caused by large marketing dataset, a previously proposed pattern selection algorithm is introduced. SVM training accompanies time complexity of the cube of training set size. The pattern selection algorithm picks up important training patterns before SVM response modeling. We made comparison on SVM training results between the pattern selection algorithm and random sampling. Three aspects of SVM response models were evaluated: accuracies, lift chart analysis, and computational efficiency. The SVM trained with selected patterns showed a high accuracy, a high uplift in profit and in response rate, and a high computational efficiency.

PDF [BibTex]

PDF [BibTex]


no image
Bayesian Monte Carlo

Rasmussen, CE., Ghahramani, Z.

In Advances in Neural Information Processing Systems 15, pages: 489-496, (Editors: Becker, S. , S. Thrun, K. Obermayer), MIT Press, Cambridge, MA, USA, Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
We investigate Bayesian alternatives to classical Monte Carlo methods for evaluating integrals. Bayesian Monte Carlo (BMC) allows the incorporation of prior knowledge, such as smoothness of the integrand, into the estimation. In a simple problem we show that this outperforms any classical importance sampling method. We also attempt more challenging multidimensional integrals involved in computing marginal likelihoods of statistical models (a.k.a. partition functions and model evidences). We find that Bayesian Monte Carlo outperformed Annealed Importance Sampling, although for very high dimensional problems or problems with massive multimodality BMC may be less adequate. One advantage of the Bayesian approach to Monte Carlo is that samples can be drawn from any distribution. This allows for the possibility of active design of sample points so as to maximise information gain.

PDF Web [BibTex]

PDF Web [BibTex]


no image
On the Complexity of Learning the Kernel Matrix

Bousquet, O., Herrmann, D.

In Advances in Neural Information Processing Systems 15, pages: 399-406, (Editors: Becker, S. , S. Thrun, K. Obermayer), The MIT Press, Cambridge, MA, USA, Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
We investigate data based procedures for selecting the kernel when learning with Support Vector Machines. We provide generalization error bounds by estimating the Rademacher complexities of the corresponding function classes. In particular we obtain a complexity bound for function classes induced by kernels with given eigenvectors, i.e., we allow to vary the spectrum and keep the eigenvectors fix. This bound is only a logarithmic factor bigger than the complexity of the function class induced by a single kernel. However, optimizing the margin over such classes leads to overfitting. We thus propose a suitable way of constraining the class. We use an efficient algorithm to solve the resulting optimization problem, present preliminary experimental results, and compare them to an alignment-based approach.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Control, Planning, Learning, and Imitation with Dynamic Movement Primitives

Schaal, S., Peters, J., Nakanishi, J., Ijspeert, A.

In IROS 2003, pages: 1-21, Workshop on Bilateral Paradigms on Humans and Humanoids, IEEE International Conference on Intelligent Robots and Systems, October 2003 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Discriminative Learning for Label Sequences via Boosting

Altun, Y., Hofmann, T., Johnson, M.

In Advances in Neural Information Processing Systems 15, pages: 977-984, (Editors: Becker, S. , S. Thrun, K. Obermayer ), MIT Press, Cambridge, MA, USA, Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
This paper investigates a boosting approach to discriminative learning of label sequences based on a sequence rank loss function.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Multiple-step ahead prediction for non linear dynamic systems: A Gaussian Process treatment with propagation of the uncertainty

Girard, A., Rasmussen, CE., Quiñonero-Candela, J., Murray-Smith, R.

In Advances in Neural Information Processing Systems 15, pages: 529-536, (Editors: Becker, S. , S. Thrun, K. Obermayer), MIT Press, Cambridge, MA, USA, Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
We consider the problem of multi-step ahead prediction in time series analysis using the non-parametric Gaussian process model. k-step ahead forecasting of a discrete-time non-linear dynamic system can be performed by doing repeated one-step ahead predictions. For a state-space model of the form y_t = f(y_{t-1},...,y_{t-L}), the prediction of y at time t + k is based on the point estimates of the previous outputs. In this paper, we show how, using an analytical Gaussian approximation, we can formally incorporate the uncertainty about intermediate regressor values, thus updating the uncertainty on the current prediction.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Cluster Kernels for Semi-Supervised Learning

Chapelle, O., Weston, J., Schölkopf, B.

In Advances in Neural Information Processing Systems 15, pages: 585-592, (Editors: S Becker and S Thrun and K Obermayer), MIT Press, Cambridge, MA, USA, 16th Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
We propose a framework to incorporate unlabeled data in kernel classifier, based on the idea that two points in the same cluster are more likely to have the same label. This is achieved by modifying the eigenspectrum of the kernel matrix. Experimental results assess the validity of this approach.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Mismatch String Kernels for SVM Protein Classification

Leslie, C., Eskin, E., Weston, J., Noble, W.

In Advances in Neural Information Processing Systems 15, pages: 1417-1424, (Editors: Becker, S. , S. Thrun, K. Obermayer), MIT Press, Cambridge, MA, USA, Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
We introduce a class of string kernels, called mismatch kernels, for use with support vector machines (SVMs) in a discriminative approach to the protein classification problem. These kernels measure sequence similarity based on shared occurrences of k-length subsequences, counted with up to m mismatches, and do not rely on any generative model for the positive training sequences. We compute the kernels efficiently using a mismatch tree data structure and report experiments on a benchmark SCOP dataset, where we show that the mismatch kernel used with an SVM classifier performs as well as the Fisher kernel, the most successful method for remote homology detection, while achieving considerable computational savings.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Incremental Gaussian Processes

Quinonero Candela, J., Winther, O.

In Advances in Neural Information Processing Systems 15, pages: 1001-1008, (Editors: Becker, S. , S. Thrun, K. Obermayer), MIT Press, Cambridge, MA, USA, Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
In this paper, we consider Tipping‘s relevance vector machine (RVM) and formalize an incremental training strategy as a variant of the expectation-maximization (EM) algorithm that we call subspace EM. Working with a subset of active basis functions, the sparsity of the RVM solution will ensure that the number of basis functions and thereby the computational complexity is kept low. We also introduce a mean field approach to the intractable classification model that is expected to give a very good approximation to exact Bayesian inference and contains the Laplace approximation as a special case. We test the algorithms on two large data sets with O(10^3-10^4) examples. The results indicate that Bayesian learning of large data sets, e.g. the MNIST database is realistic.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernel Dependency Estimation

Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B., Vapnik, V.

In Advances in Neural Information Processing Systems 15, pages: 873-880, (Editors: S Becker and S Thrun and K Obermayer), MIT Press, Cambridge, MA, USA, 16th Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Derivative observations in Gaussian Process models of dynamic systems

Solak, E., Murray-Smith, R., Leithead, WE., Leith, D., Rasmussen, CE.

In Advances in Neural Information Processing Systems 15, pages: 1033-1040, (Editors: Becker, S., S. Thrun and K. Obermayer), MIT Press, Cambridge, MA, USA, Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
Gaussian processes provide an approach to nonparametric modelling which allows a straightforward combination of function and derivative observations in an empirical model. This is of particular importance in identification of nonlinear dynamic systems from experimental data. 1) It allows us to combine derivative information, and associated uncertainty with normal function observations into the learning and inference process. This derivative information can be in the form of priors specified by an expert or identified from perturbation data close to equilibrium. 2) It allows a seamless fusion of multiple local linear models in a consistent manner, inferring consistent models and ensuring that integrability constraints are met. 3) It improves dramatically the computational efficiency of Gaussian process models for dynamic system identification, by summarising large quantities of near-equilibrium data by a handful of linearisations, reducing the training set size - traditionally a problem for Gaussian process models.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Linear Combinations of Optic Flow Vectors for Estimating Self-Motion: a Real-World Test of a Neural Model

Franz, MO., Chahl, JS.

In Advances in Neural Information Processing Systems 15, pages: 1319-1326, (Editors: Becker, S., S. Thrun and K. Obermayer), MIT Press, Cambridge, MA, USA, Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
The tangential neurons in the fly brain are sensitive to the typical optic flow patterns generated during self-motion. In this study, we examine whether a simplified linear model of these neurons can be used to estimate self-motion from the optic flow. We present a theory for the construction of an estimator consisting of a linear combination of optic flow vectors that incorporates prior knowledge both about the distance distribution of the environment, and about the noise and self-motion statistics of the sensor. The estimator is tested on a gantry carrying an omnidirectional vision sensor. The experiments show that the proposed approach leads to accurate and robust estimates of rotation rates, whereas translation estimates turn out to be less reliable.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Clustering with the Fisher score

Tsuda, K., Kawanabe, M., Müller, K.

In Advances in Neural Information Processing Systems 15, pages: 729-736, (Editors: Becker, S. , S. Thrun, K. Obermayer), MIT Press, Cambridge, MA, USA, Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
Recently the Fisher score (or the Fisher kernel) is increasingly used as a feature extractor for classification problems. The Fisher score is a vector of parameter derivatives of loglikelihood of a probabilistic model. This paper gives a theoretical analysis about how class information is preserved in the space of the Fisher score, which turns out that the Fisher score consists of a few important dimensions with class information and many nuisance dimensions. When we perform clustering with the Fisher score, K-Means type methods are obviously inappropriate because they make use of all dimensions. So we will develop a novel but simple clustering algorithm specialized for the Fisher score, which can exploit important dimensions. This algorithm is successfully tested in experiments with artificial data and real data (amino acid sequences).

PDF Web [BibTex]

PDF Web [BibTex]


no image
Large Margin Methods for Label Sequence Learning

Altun, Y., Hofmann, T.

In pages: 993-996, International Speech Communication Association, Bonn, Germany, 8th European Conference on Speech Communication and Technology (EuroSpeech), September 2003 (inproceedings)

Web [BibTex]

Web [BibTex]


no image
Fast Pattern Selection Algorithm for Support Vector Classifiers: "Time Complexity Analysis"

Shin, H., Cho, S.

In Lecture Notes in Computer Science (LNCS 2690), LNCS 2690, pages: 1008-1015, Springer-Verlag, Heidelberg, The 4th International Conference on Intelligent Data Engineering (IDEAL), September 2003 (inproceedings)

Abstract
Training SVM requires large memory and long cpu time when the pattern set is large. To alleviate the computational burden in SVM training, we propose a fast preprocessing algorithm which selects only the patterns near the decision boundary. The time complexity of the proposed algorithm is much smaller than that of the naive M^2 algorithm

PDF [BibTex]

PDF [BibTex]


no image
Marginalized Kernels between Labeled Graphs

Kashima, H., Tsuda, K., Inokuchi, A.

In 20th International Conference on Machine Learning, pages: 321-328, (Editors: Faucett, T. and N. Mishra), 20th International Conference on Machine Learning, August 2003 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Sparse Gaussian Processes: inference, subspace identification and model selection

Csato, L., Opper, M.

In Proceedings, pages: 1-6, (Editors: Van der Hof, , Wahlberg), The Netherlands, 13th IFAC Symposium on System Identifiaction, August 2003, electronical version; Index ThA02-2 (inproceedings)

Abstract
Gaussian Process (GP) inference is a probabilistic kernel method where the GP is treated as a latent function. The inference is carried out using the Bayesian online learning and its extension to the more general iterative approach which we call TAP/EP learning. Sparsity is introduced in this context to make the TAP/EP method applicable to large datasets. We address the prohibitive scaling of the number of parameters by defining a subset of the training data that is used as the support the GP, thus the number of required parameters is independent of the training set, similar to the case of ``Support--‘‘ or ``Relevance--Vectors‘‘. An advantage of the full probabilistic treatment is that allows the computation of the marginal data likelihood or evidence, leading to hyper-parameter estimation within the GP inference. An EM algorithm to choose the hyper-parameters is proposed. The TAP/EP learning is the E-step and the M-step then updates the hyper-parameters. Due to the sparse E-step the resulting algorithm does not involve manipulation of large matrices. The presented algorithm is applicable to a wide variety of likelihood functions. We present results of applying the algorithm on classification and nonstandard regression problems for artificial and real datasets.

PDF GZIP [BibTex]

PDF GZIP [BibTex]


no image
Adaptive, Cautious, Predictive control with Gaussian Process Priors

Murray-Smith, R., Sbarbaro, D., Rasmussen, CE., Girard, A.

In Proceedings of the 13th IFAC Symposium on System Identification, pages: 1195-1200, (Editors: Van den Hof, P., B. Wahlberg and S. Weiland), Proceedings of the 13th IFAC Symposium on System Identification, August 2003 (inproceedings)

Abstract
Nonparametric Gaussian Process models, a Bayesian statistics approach, are used to implement a nonlinear adaptive control law. Predictions, including propagation of the state uncertainty are made over a k-step horizon. The expected value of a quadratic cost function is minimised, over this prediction horizon, without ignoring the variance of the model predictions. The general method and its main features are illustrated on a simulation example.

PDF [BibTex]

PDF [BibTex]


no image
Statistical Learning Theory

Bousquet, O.

Machine Learning Summer School, August 2003 (talk)

PDF [BibTex]

PDF [BibTex]


no image
Generative Model-based Clustering of Directional Data

Banerjee, A., Dhillon, I., Ghosh, J., Sra, S.

In Proc. ACK SIGKDD, pages: 00-00, KDD, August 2003 (inproceedings)

GZIP [BibTex]

GZIP [BibTex]


no image
Hidden Markov Support Vector Machines

Altun, Y., Tsochantaridis, I., Hofmann, T.

In pages: 4-11, (Editors: Fawcett, T. , N. Mishra), AAAI Press, Menlo Park, CA, USA, Twentieth International Conference on Machine Learning (ICML), August 2003 (inproceedings)

Web [BibTex]

Web [BibTex]


no image
Remarks on Statistical Learning Theory

Bousquet, O.

Machine Learning Summer School, August 2003 (talk)

PDF [BibTex]

PDF [BibTex]


no image
How Many Neighbors To Consider in Pattern Pre-selection for Support Vector Classifiers?

Shin, H., Cho, S.

In Proc. of INNS-IEEE International Joint Conference on Neural Networks (IJCNN 2003), pages: 565-570, IJCNN, July 2003 (inproceedings)

Abstract
Training support vector classifiers (SVC) requires large memory and long cpu time when the pattern set is large. To alleviate the computational burden in SVC training, we previously proposed a preprocessing algorithm which selects only the patterns in the overlap region around the decision boundary, based on neighborhood properties [8], [9], [10]. The k-nearest neighbors’ class label entropy for each pattern was used to estimate the pattern’s proximity to the decision boundary. The value of parameter k is critical, yet has been determined by a rather ad-hoc fashion. We propose in this paper a systematic procedure to determine k and show its effectiveness through experiments.

PDF [BibTex]

PDF [BibTex]


no image
On the Representation, Learning and Transfer of Spatio-Temporal Movement Characteristics

Ilg, W., Bakir, GH., Mezger, J., Giese, MA.

In Humanoids Proceedings, pages: 0-0, Humanoids Proceedings, July 2003, electronical version (inproceedings)

Abstract
In this paper we present a learning-based approach for the modelling of complex movement sequences. Based on the method of Spatio-Temporal Morphable Models (STMMS. We derive a hierarchical algorithm that, in a first step, identifies automatically movement elements in movement sequences based on a coarse spatio-temporal description, and in a second step models these movement primitives by approximation through linear combinations of learned example movement trajectories. We describe the different steps of the algorithm and show how it can be applied for modelling and synthesis of complex sequences of human movements that contain movement elements with variable style. The proposed method is demonstrated on different applications of movement representation relevant for imitation learning of movement styles in humanoid robotics.

PDF [BibTex]

PDF [BibTex]


no image
Loss Functions and Optimization Methods for Discriminative Learning of Label Sequences

Altun, Y., Johnson, M., Hofmann, T.

In pages: 145-152, (Editors: Collins, M. , M. Steedman), ACL, East Stroudsburg, PA, USA, Conference on Empirical Methods in Natural Language Processing (EMNLP) , July 2003 (inproceedings)

Abstract
Discriminative models have been of interest in the NLP community in recent years. Previous research has shown that they are advantageous over generative models. In this paper, we investigate how different objective functions and optimization methods affect the performance of the classifiers in the discriminative learning framework. We focus on the sequence labelling problem, particularly POS tagging and NER tasks. Our experiments show that changing the objective function is not as effective as changing the features included in the model.

Web [BibTex]

Web [BibTex]


no image
Time Complexity Analysis of Fast Pattern Selection Algorithm for SVM

Shin, H., Cho, S.

In Proc. of the Korean Data Mining Conference, pages: 221-231, Korean Data Mining Conference, June 2003 (inproceedings)

[BibTex]

[BibTex]


no image
Fast Pattern Selection for Support Vector Classifiers

Shin, H., Cho, S.

In PAKDD 2003, pages: 376-387, (Editors: Whang, K.-Y. , J. Jeon, K. Shim, J. Srivastava), Springer, Berlin, Germany, 7th Pacific-Asia Conference on Knowledge Discovery and Data Mining, May 2003 (inproceedings)

Abstract
Training SVM requires large memory and long cpu time when the pattern set is large. To alleviate the computational burden in SVM training, we propose a fast preprocessing algorithm which selects only the patterns near the decision boundary. Preliminary simulation results were promising: Up to two orders of magnitude, training time reduction was achieved including the preprocessing, without any loss in classification accuracies.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Scaling Reinforcement Learning Paradigms for Motor Control

Peters, J., Vijayakumar, S., Schaal, S.

In JSNC 2003, 10, pages: 1-7, 10th Joint Symposium on Neural Computation (JSNC), May 2003 (inproceedings)

Abstract
Reinforcement learning offers a general framework to explain reward related learning in artificial and biological motor control. However, current reinforcement learning methods rarely scale to high dimensional movement systems and mainly operate in discrete, low dimensional domains like game-playing, artificial toy problems, etc. This drawback makes them unsuitable for application to human or bio-mimetic motor control. In this poster, we look at promising approaches that can potentially scale and suggest a novel formulation of the actor-critic algorithm which takes steps towards alleviating the current shortcomings. We argue that methods based on greedy policies are not likely to scale into high-dimensional domains as they are problematic when used with function approximation – a must when dealing with continuous domains. We adopt the path of direct policy gradient based policy improvements since they avoid the problems of unstabilizing dynamics encountered in traditional value iteration based updates. While regular policy gradient methods have demonstrated promising results in the domain of humanoid notor control, we demonstrate that these methods can be significantly improved using the natural policy gradient instead of the regular policy gradient. Based on this, it is proved that Kakade’s ‘average natural policy gradient’ is indeed the true natural gradient. A general algorithm for estimating the natural gradient, the Natural Actor-Critic algorithm, is introduced. This algorithm converges with probability one to the nearest local minimum in Riemannian space of the cost function. The algorithm outperforms nonnatural policy gradients by far in a cart-pole balancing evaluation, and offers a promising route for the development of reinforcement learning for truly high-dimensionally continuous state-action systems. Keywords: Reinforcement learning, neurodynamic programming, actorcritic methods, policy gradient methods, natural policy gradient

PDF Web [BibTex]

PDF Web [BibTex]


no image
A case based comparison of identification with neural network and Gaussian process models.

Kocijan, J., Banko, B., Likar, B., Girard, A., Murray-Smith, R., Rasmussen, CE.

In Proceedings of the International Conference on Intelligent Control Systems and Signal Processing ICONS 2003, 1, pages: 137-142, (Editors: Ruano, E.A.), Proceedings of the International Conference on Intelligent Control Systems and Signal Processing ICONS, April 2003 (inproceedings)

Abstract
In this paper an alternative approach to black-box identification of non-linear dynamic systems is compared with the more established approach of using artificial neural networks. The Gaussian process prior approach is a representative of non-parametric modelling approaches. It was compared on a pH process modelling case study. The purpose of modelling was to use the model for control design. The comparison revealed that even though Gaussian process models can be effectively used for modelling dynamic systems caution has to be axercised when signals are selected.

PDF [BibTex]

PDF [BibTex]


no image
On-Line One-Class Support Vector Machines. An Application to Signal Segmentation

Gretton, A., Desobry, ..

In IEEE ICASSP Vol. 2, pages: 709-712, IEEE ICASSP, April 2003 (inproceedings)

Abstract
In this paper, we describe an efficient algorithm to sequentially update a density support estimate obtained using one-class support vector machines. The solution provided is an exact solution, which proves to be far more computationally attractive than a batch approach. This deterministic technique is applied to the problem of audio signal segmentation, with simulations demonstrating the computational performance gain on toy data sets, and the accuracy of the segmentation on audio signals.

PostScript [BibTex]

PostScript [BibTex]


no image
Blind separation of post-nonlinear mixtures using gaussianizing transformations and temporal decorrelation

Ziehe, A., Kawanabe, M., Harmeling, S., Müller, K.

In ICA 2003, pages: 269-274, (Editors: Amari, S.-I. , A. Cichocki, S. Makino, N. Murata), 4th International Symposium on Independent Component Analysis and Blind Signal Separation, April 2003 (inproceedings)

Abstract
At the previous workshop (ICA2001) we proposed the ACE-TD method that reduces the post-nonlinear blind source separation problem (PNL BSS) to a linear BSS problem. The method utilizes the Alternating Conditional Expectation (ACE) algorithm to approximately invert the (post-){non-linear} functions. In this contribution, we propose an alternative procedure called Gaussianizing transformation, which is motivated by the fact that linearly mixed signals before nonlinear transformation are approximately Gaussian distributed. This heuristic, but simple and efficient procedure yields similar results as the ACE method and can thus be used as a fast and effective equalization method. After equalizing the nonlinearities, temporal decorrelation separation (TDSEP) allows us to recover the source signals. Numerical simulations on realistic examples are performed to compare "Gauss-TD" with "ACE-TD".

PDF Web [BibTex]

PDF Web [BibTex]


no image
The Kernel Mutual Information

Gretton, A., Herbrich, R., Smola, A.

In IEEE ICASSP Vol. 4, pages: 880-883, IEEE ICASSP, April 2003 (inproceedings)

Abstract
We introduce a new contrast function, the kernel mutual information (KMI), to measure the degree of independence of continuous random variables. This contrast function provides an approximate upper bound on the mutual information, as measured near independence, and is based on a kernel density estimate of the mutual information between a discretised approximation of the continuous random variables. We show that Bach and Jordan‘s kernel generalised variance (KGV) is also an upper bound on the same kernel density estimate, but is looser. Finally, we suggest that the addition of a regularising term in the KGV causes it to approach the KMI, which motivates the introduction of this regularisation.

PostScript [BibTex]

PostScript [BibTex]


no image
Analysing ICA component by injection noise

Harmeling, S., Meinecke, F., Müller, K.

In ICA 2003, pages: 149-154, (Editors: Amari, S.-I. , A. Cichocki, S. Makino, N. Murata), 4th International Symposium on Independent Component Analysis and Blind Signal Separation, April 2003 (inproceedings)

Abstract
Usually, noise is considered to be destructive. We present a new method that constructively injects noise to assess the reliability and the group structure of empirical ICA components. Simulations show that the true root-mean squared angle distances between the real sources and some source estimates can be approximated by our method. In a toy experiment, we see that we are also able to reveal the underlying group structure of extracted ICA components. Furthermore, an experiment with fetal ECG data demonstrates that our approach is useful for exploratory data analysis of real-world data.

PDF Web [BibTex]

PDF Web [BibTex]