Header logo is ei


2013


no image
A neural population model for visual pattern detection

Goris, R., Putzeys, T., Wagemans, J., Wichmann, F.

Psychological Review, 120(3):472–496, 2013 (article)

DOI [BibTex]

2013

DOI [BibTex]


no image
Accurate indel prediction using paired-end short reads

Grimm, D., Hagmann, J., Koenig, D., Weigel, D., Borgwardt, KM.

BMC Genomics, 14(132), 2013 (article)

Web DOI [BibTex]

Web DOI [BibTex]


no image
Counterfactual Reasoning and Learning Systems: The Example of Computational Advertising

Bottou, L., Peters, J., Quiñonero-Candela, J., Charles, D., Chickering, D., Portugualy, E., Ray, D., Simard, P., Snelson, E.

Journal of Machine Learning Research, 14, pages: 3207-3260, 2013 (article)

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
When luminance increment thresholds depend on apparent lightness

Maertens, M., Wichmann, F.

Journal of Vision, 13(6):1-11, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
Efficient network-guided multi-locus association mapping with graph cuts

Azencott, C., Grimm, D., Sugiyama, M., Kawahara, Y., Borgwardt, K.

Bioinformatics, 29(13):i171-i179, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
Quantifying causal influences

Janzing, D., Balduzzi, D., Grosse-Wentrup, M., Schölkopf, B.

Annals of Statistics, 41(5):2324-2358, 2013 (article)

Web [BibTex]

Web [BibTex]


no image
Probabilistic movement modeling for intention inference in human-robot interaction

Wang, Z., Mülling, K., Deisenroth, M., Ben Amor, H., Vogt, D., Schölkopf, B., Peters, J.

International Journal of Robotics Research, 32(7):841-858, 2013 (article)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Blind Retrospective Motion Correction of MR Images

Loktyushin, A., Nickisch, H., Pohmann, R., Schölkopf, B.

Magnetic Resonance in Medicine (MRM), 70(6):1608–1618, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
Modeling fixation locations using spatial point processes

Barthelmé, S., Trukenbrod, H., Engbert, R., Wichmann, F.

Journal of Vision, 13(12):1-34, 2013 (article)

Abstract
Whenever eye movements are measured, a central part of the analysis has to do with where subjects fixate and why they fixated where they fixated. To a first approximation, a set of fixations can be viewed as a set of points in space; this implies that fixations are spatial data and that the analysis of fixation locations can be beneficially thought of as a spatial statistics problem. We argue that thinking of fixation locations as arising from point processes is a very fruitful framework for eye-movement data, helping turn qualitative questions into quantitative ones. We provide a tutorial introduction to some of the main ideas of the field of spatial statistics, focusing especially on spatial Poisson processes. We show how point processes help relate image properties to fixation locations. In particular we show how point processes naturally express the idea that image features' predictability for fixations may vary from one image to another. We review other methods of analysis used in the literature, show how they relate to point process theory, and argue that thinking in terms of point processes substantially extends the range of analyses that can be performed and clarify their interpretation.

Web DOI [BibTex]

Web DOI [BibTex]


no image
A probabilistic model for secondary structure prediction from protein chemical shifts

Mechelke, M., Habeck, M.

Proteins: Structure, Function, and Bioinformatics, 81(6):984–993, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
Climate Extremes and the Carbon Cycle

Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M., Seneviratne, S., Zscheischler, J., Beer, C., Buchmann, N., Frank, D., Papale, D., Rammig, A., Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz, A., Wattenbach, M.

Nature, 500, pages: 287-295, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
Identification of stimulus cues in narrow-band tone-in-noise detection using sparse observer models

Schönfelder, V., Wichmann, F.

Journal of the Acoustical Society of America, 134(1):447-463, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
Probabilistic Model-based Imitation Learning

Englert, P., Paraschos, A., Peters, J., Deisenroth, M.

Adaptive Behavior Journal, 21(5):388-403, 2013 (article)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Metabolic cost as an organizing principle for cooperative learning

Balduzzi, D., Ortega, P., Besserve, M.

Advances in Complex Systems, 16(02n03):1350012, 2013 (article)

Web DOI [BibTex]

Web DOI [BibTex]


no image
MR-based PET Attenuation Correction for PET/MR Imaging

Bezrukov, I., Mantlik, F., Schmidt, H., Schölkopf, B., Pichler, B.

Seminars in Nuclear Medicine, 43(1):45-59, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
MR-based Attenuation Correction Methods for Improved PET Quantification in Lesions within Bone and Susceptibility Artifact Regions

Bezrukov, I., Schmidt, H., Mantlik, F., Schwenzer, N., Brendle, C., Schölkopf, B., Pichler, B.

Journal of Nuclear Medicine, 54(10):1768-1774, 2013 (article)

Abstract
Hybrid PET/MR systems have recently entered clinical practice. Thus, the accuracy of MR-based attenuation correction in simultaneously acquired data can now be investigated. We assessed the accuracy of 4 methods of MR-based attenuation correction in lesions within soft tissue, bone, and MR susceptibility artifacts: 2 segmentation-based methods (SEG1, provided by the manufacturer, and SEG2, a method with atlas-based susceptibility artifact correction); an atlas- and pattern recognition–based method (AT&PR), which also used artifact correction; and a new method combining AT&PR and SEG2 (SEG2wBONE). Methods: Attenuation maps were calculated for the PET/MR datasets of 10 patients acquired on a whole-body PET/MR system, allowing for simultaneous acquisition of PET and MR data. Eighty percent iso-contour volumes of interest were placed on lesions in soft tissue (n = 21), in bone (n = 20), near bone (n = 19), and within or near MR susceptibility artifacts (n = 9). Relative mean volume-of-interest differences were calculated with CT-based attenuation correction as a reference. Results: For soft-tissue lesions, none of the methods revealed a significant difference in PET standardized uptake value relative to CT-based attenuation correction (SEG1, −2.6% ± 5.8%; SEG2, −1.6% ± 4.9%; AT&PR, −4.7% ± 6.5%; SEG2wBONE, 0.2% ± 5.3%). For bone lesions, underestimation of PET standardized uptake values was found for all methods, with minimized error for the atlas-based approaches (SEG1, −16.1% ± 9.7%; SEG2, −11.0% ± 6.7%; AT&PR, −6.6% ± 5.0%; SEG2wBONE, −4.7% ± 4.4%). For lesions near bone, underestimations of lower magnitude were observed (SEG1, −12.0% ± 7.4%; SEG2, −9.2% ± 6.5%; AT&PR, −4.6% ± 7.8%; SEG2wBONE, −4.2% ± 6.2%). For lesions affected by MR susceptibility artifacts, quantification errors could be reduced using the atlas-based artifact correction (SEG1, −54.0% ± 38.4%; SEG2, −15.0% ± 12.2%; AT&PR, −4.1% ± 11.2%; SEG2wBONE, 0.6% ± 11.1%). Conclusion: For soft-tissue lesions, none of the evaluated methods showed statistically significant errors. For bone lesions, significant underestimations of −16% and −11% occurred for methods in which bone tissue was ignored (SEG1 and SEG2). In the present attenuation correction schemes, uncorrected MR susceptibility artifacts typically result in reduced attenuation values, potentially leading to highly reduced PET standardized uptake values, rendering lesions indistinguishable from background. While AT&PR and SEG2wBONE show accurate results in both soft tissue and bone, SEG2wBONE uses a two-step approach for tissue classification, which increases the robustness of prediction and can be applied retrospectively if more precision in bone areas is needed.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Learning output kernels for multi-task problems

Dinuzzo, F.

Neurocomputing, 118, pages: 119-126, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
Analytical probabilistic modeling for radiation therapy treatment planning

Bangert, M., Hennig, P., Oelfke, U.

Physics in Medicine and Biology, 58(16):5401-5419, 2013 (article)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Imaging Findings and Therapy Response Monitoring in Chronic Sclerodermatous Graft-Versus-Host Disease: Preliminary Data of a Simultaneous PET/MRI Approach

Sauter, A., Schmidt, H., Mantlik, F., Kolb, A., Federmann, B., Pfannenberg, C., Reimold, M., Pichler, B., Bethge, W., Horger, M.

Clinical Nuclear Medicine, 38(8):e309-e317, 2013 (article)

Abstract
PURPOSE: Our objective was a multifunctional imaging approach of chronic sclerodermatous graft-versus-host disease (ScGVHD) and its course during therapy using PET/MRI. METHODS: We performed partial-body PET/CT and PET/MRI of the calf in 6 consecutively recruited patients presenting with severe ScGVHD. The patients were treated with different immunosuppressive regimens and supportive therapies. PET/CT scanning started 60.5 +/- 3.3 minutes, PET/MRI imaging 139.5 +/- 16.7 minutes after F-FDG application. MRI acquisition included T1- (precontrast and postcontrast) and T2-weighted sequences. SUVmean, T1 contrast enhancement, and T2 signal intensity from region-of-interest analysis were calculated for different fascial and muscular compartments. In addition, musculoskeletal MRI findings and the modified Rodnan skin score were assessed. All patients underwent imaging follow-up. RESULTS: At baseline PET/MRI, ScGVHD-related musculoskeletal abnormalities consisted of increased signal and/or thickening of involved anatomical structures on T2-weighted and T1 postcontrast images as well as an increased FDG uptake. At follow-up, ScGVHD-related imaging findings decreased (SUVmean n = 4, mean T1 contrast enhancement n = 5, mean T2 signal intensity n = 3) or progressed (SUVmean n = 3, mean T1 contrast enhancement n = 2, mean T2 signal intensity n = 4). Clinically modified Rodnan skin score improved for 5 follow-ups and progressed for 2. SUVmean values correlated between PET/CT and PET/MRI acquisition (r = 0.660, P = 0.014), T1 contrast enhancement, and T2 signal (r = 0.668, P = 0.012), but not between the SUVmean values and the MRI parameters. CONCLUSIONS: PET/MRI as a combined morphological and functional technique seems to assess the inflammatory processes from different points of view and provides therefore in part complementary information

Web [BibTex]

Web [BibTex]


no image
A Survey on Policy Search for Robotics, Foundations and Trends in Robotics

Deisenroth, M., Neumann, G., Peters, J.

Foundations and Trends in Robotics, 2(1-2):1-142, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
Reinforcement Learning in Robotics: A Review

Kober, J., Bagnell, D., Peters, J.

International Journal of Robotics Research, 32(11):1238–1274, 2013 (article)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Multimodal information improves the rapid detection of mental fatigue

Laurent, F., Valderrama, M., Besserve, M., Guillard, M., Lachaux, J., Martinerie, J., Florence, G.

Biomedical Signal Processing and Control, 8(4):400 - 408, 2013 (article)

Web DOI [BibTex]

Web DOI [BibTex]


no image
Interactive Domain Adaptation for the Classification of Remote Sensing Images using Active Learning

Persello, C.

IEEE Geoscience and Remote Sensing Letters, 10(4):736-740, 2013 (article)

DOI [BibTex]


no image
Learning to Select and Generalize Striking Movements in Robot Table Tennis

Mülling, K., Kober, J., Kroemer, O., Peters, J.

International Journal of Robotics Research, 32(3):263-279, 2013 (article)

PDF DOI [BibTex]


no image
HiFiVE: A Hilbert Space Embedding of Fiber Variability Estimates for Uncertainty Modeling and Visualization

Schultz, T., Schlaffke, L., Schölkopf, B., Schmidt-Wilcke, T.

Computer Graphics Forum, 32(3):121-130, (Editors: B Preim, P Rheingans, and H Theisel), Blackwell Publishing, Oxford, UK, Eurographics Conference on Visualization (EuroVis), 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
Detection and attribution of large spatiotemporal extreme events in Earth observation data

Zscheischler, J., Mahecha, M., Harmeling, S., Reichstein, M.

Ecological Informatics, 15, pages: 66-73, 2013 (article)

Abstract
Latest climate projections suggest that both frequency and intensity of climate extremes will be substantially modified over the course of the coming decades. As a consequence, we need to understand to what extent and via which pathways climate extremes affect the state and functionality of terrestrial ecosystems and the associated biogeochemical cycles on a global scale. So far the impacts of climate extremes on the terrestrial biosphere were mainly investigated on the basis of case studies, while global assessments are widely lacking. In order to facilitate global analysis of this kind, we present a methodological framework that firstly detects spatiotemporally contiguous extremes in Earth observations, and secondly infers the likely pathway of the preceding climate anomaly. The approach does not require long time series, is computationally fast, and easily applicable to a variety of data sets with different spatial and temporal resolutions. The key element of our analysis strategy is to directly search in the relevant observations for spatiotemporally connected components exceeding a certain percentile threshold. We also put an emphasis on characterization of extreme event distribution, and scrutinize the attribution issue. We exemplify the analysis strategy by exploring the fraction of absorbed photosynthetically active radiation (fAPAR) from 1982 to 2011. Our results suggest that the hot spots of extremes in fAPAR lie in Northeastern Brazil, Southeastern Australia, Kenya and Tanzania. Moreover, we demonstrate that the size distribution of extremes follow a distinct power law. The attribution framework reveals that extremes in fAPAR are primarily driven by phases of water scarcity.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Simultaneous PET/MR reveals Brain Function in Activated and Resting State on Metabolic, Hemodynamic and Multiple Temporal Scales

Wehrl, H., Hossain, M., Lankes, K., Liu, C., Bezrukov, I., Martirosian, P., Schick, F., Reischl, G., Pichler, B.

Nature Medicine, 19, pages: 1184–1189, 2013 (article)

Abstract
Combined positron emission tomography (PET) and magnetic resonance imaging (MRI) is a new tool to study functional processes in the brain. Here we study brain function in response to a barrel-field stimulus simultaneously using PET, which traces changes in glucose metabolism on a slow time scale, and functional MRI (fMRI), which assesses fast vascular and oxygenation changes during activation. We found spatial and quantitative discrepancies between the PET and the fMRI activation data. The functional connectivity of the rat brain was assessed by both modalities: the fMRI approach determined a total of nine known neural networks, whereas the PET method identified seven glucose metabolism–related networks. These results demonstrate the feasibility of combined PET-MRI for the simultaneous study of the brain at activation and rest, revealing comprehensive and complementary information to further decode brain function and brain networks.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Finding Potential Support Vectors in Separable Classification Problems

Varagnolo, D., Del Favero, S., Dinuzzo, F., Schenato, L., Pillonetto, G.

IEEE Transactions on Neural Networks and Learning Systems, 24(11):1799-1813, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
Open-Box Spectral Clustering: Applications to Medical Image Analysis

Schultz, T., Kindlmann, G.

IEEE Transactions on Visualization and Computer Graphics, 19(12):2100-2108, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
im3shape: a maximum likelihood galaxy shear measurement code for cosmic gravitational lensing

Zuntz, J., Kacprzak, T., Voigt, L., Hirsch, M., Rowe, B., Bridle, S.

Monthly Notices of the Royal Astronomical Society, 434(2):1604-1618, Oxford University Press, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
Accurate detection of differential RNA processing

Drewe, P., Stegle, O., Hartmann, L., Kahles, A., Bohnert, R., Wachter, A., Borgwardt, K. M., Rätsch, G.

Nucleic Acids Research, 41(10):5189-5198, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
Detecting regulatory gene–environment interactions with unmeasured environmental factors

Fusi, N., Lippert, C., Borgwardt, K. M., Lawrence, N. D., Stegle, O.

Bioinformatics, 29(11):1382-1389, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
Fragmentation of Slow Wave Sleep after Onset of Complete Locked-In State

Soekadar, S. R., Born, J., Birbaumer, N., Bensch, M., Halder, S., Murguialday, A. R., Gharabaghi, A., Nijboer, F., Schölkopf, B., Martens, S.

Journal of Clinical Sleep Medicine, 9(9):951-953, 2013 (article)

DOI [BibTex]

DOI [BibTex]


no image
Structural learning

Braun, D

Scholarpedia, 8(10):12312, October 2013 (article)

Abstract
Structural learning in motor control refers to a metalearning process whereby an agent extracts (abstract) invariants from its sensorimotor stream when experiencing a range of environments that share similar structure. Such invariants can then be exploited for faster generalization and learning-to-learn when experiencing novel, but related task environments.

DOI [BibTex]

DOI [BibTex]


no image
The effect of model uncertainty on cooperation in sensorimotor interactions

Grau-Moya, J, Hez, E, Pezzulo, G, Braun, DA

Journal of the Royal Society Interface, 10(87):1-11, October 2013 (article)

Abstract
Decision-makers have been shown to rely on probabilistic models for perception and action. However, these models can be incorrect or partially wrong in which case the decision-maker has to cope with model uncertainty. Model uncertainty has recently also been shown to be an important determinant of sensorimotor behaviour in humans that can lead to risk-sensitive deviations from Bayes optimal behaviour towards worst-case or best-case outcomes. Here, we investigate the effect of model uncertainty on cooperation in sensorimotor interactions similar to the stag-hunt game, where players develop models about the other player and decide between a pay-off-dominant cooperative solution and a risk-dominant, non-cooperative solution. In simulations, we show that players who allow for optimistic deviations from their opponent model are much more likely to converge to cooperative outcomes. We also implemented this agent model in a virtual reality environment, and let human subjects play against a virtual player. In this game, subjects' pay-offs were experienced as forces opposing their movements. During the experiment, we manipulated the risk sensitivity of the computer player and observed human responses. We found not only that humans adaptively changed their level of cooperation depending on the risk sensitivity of the computer player but also that their initial play exhibited characteristic risk-sensitive biases. Our results suggest that model uncertainty is an important determinant of cooperation in two-player sensorimotor interactions.

DOI [BibTex]

DOI [BibTex]


no image
Thermodynamics as a theory of decision-making with information-processing costs

Ortega, PA, Braun, DA

Proceedings of the Royal Society of London A, 469(2153):1-18, May 2013 (article)

Abstract
Perfectly rational decision-makers maximize expected utility, but crucially ignore the resource costs incurred when determining optimal actions. Here, we propose a thermodynamically inspired formalization of bounded rational decision-making where information processing is modelled as state changes in thermodynamic systems that can be quantified by differences in free energy. By optimizing a free energy, bounded rational decision-makers trade off expected utility gains and information-processing costs measured by the relative entropy. As a result, the bounded rational decision-making problem can be rephrased in terms of well-known variational principles from statistical physics. In the limit when computational costs are ignored, the maximum expected utility principle is recovered. We discuss links to existing decision-making frameworks and applications to human decision-making experiments that are at odds with expected utility theory. Since most of the mathematical machinery can be borrowed from statistical physics, the main contribution is to re-interpret the formalism of thermodynamic free-energy differences in terms of bounded rational decision-making and to discuss its relationship to human decision-making experiments.

DOI [BibTex]

DOI [BibTex]

2011


no image
Causal Inference on Discrete Data using Additive Noise Models

Peters, J., Janzing, D., Schölkopf, B.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12):2436-2450, December 2011 (article)

Abstract
Inferring the causal structure of a set of random variables from a finite sample of the joint distribution is an important problem in science. The case of two random variables is particularly challenging since no (conditional) independences can be exploited. Recent methods that are based on additive noise models suggest the following principle: Whenever the joint distribution {\bf P}^{(X,Y)} admits such a model in one direction, e.g., Y=f(X)+N, N \perp\kern-6pt \perp X, but does not admit the reversed model X=g(Y)+\tilde{N}, \tilde{N} \perp\kern-6pt \perp Y, one infers the former direction to be causal (i.e., X\rightarrow Y). Up to now, these approaches only dealt with continuous variables. In many situations, however, the variables of interest are discrete or even have only finitely many states. In this work, we extend the notion of additive noise models to these cases. We prove that it almost never occurs that additive noise models can be fit in both directions. We further propose an efficient algorithm that is able to perform this way of causal inference on finite samples of discrete variables. We show that the algorithm works on both synthetic and real data sets.

PDF Web DOI [BibTex]

2011

PDF Web DOI [BibTex]


no image
Spontaneous epigenetic variation in the Arabidopsis thaliana methylome

Becker, C., Hagmann, J., Müller, J., Koenig, D., Stegle, O., Borgwardt, K., Weigel, D.

Nature, 480(7376):245-249, December 2011 (article)

Abstract
Heritable epigenetic polymorphisms, such as differential cytosine methylation, can underlie phenotypic variation1, 2. Moreover, wild strains of the plant Arabidopsis thaliana differ in many epialleles3, 4, and these can influence the expression of nearby genes1, 2. However, to understand their role in evolution5, it is imperative to ascertain the emergence rate and stability of epialleles, including those that are not due to structural variation. We have compared genome-wide DNA methylation among 10 A. thaliana lines, derived 30 generations ago from a common ancestor6. Epimutations at individual positions were easily detected, and close to 30,000 cytosines in each strain were differentially methylated. In contrast, larger regions of contiguous methylation were much more stable, and the frequency of changes was in the same low range as that of DNA mutations7. Like individual positions, the same regions were often affected by differential methylation in independent lines, with evidence for recurrent cycles of forward and reverse mutations. Transposable elements and short interfering RNAs have been causally linked to DNA methylation8. In agreement, differentially methylated sites were farther from transposable elements and showed less association with short interfering RNA expression than invariant positions. The biased distribution and frequent reversion of epimutations have important implications for the potential contribution of sequence-independent epialleles to plant evolution.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Optimization for Machine Learning

Sra, S., Nowozin, S., Wright, S.

pages: 494, Neural information processing series, MIT Press, Cambridge, MA, USA, December 2011 (book)

Abstract
The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields. Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.

Web [BibTex]

Web [BibTex]


no image
HHfrag: HMM-based fragment detection using HHpred

Kalev, I., Habeck, M.

Bioinformatics, 27(22):3110-3116, November 2011 (article)

Abstract
Motivation: Over the last decade, both static and dynamic fragment libraries for protein structure prediction have been introduced. The former are built from clusters in either sequence or structure space and aim to extract a universal structural alphabet. The latter are tailored for a particular query protein sequence and aim to provide local structural templates that need to be assembled in order to build the full-length structure. Results: Here, we introduce HHfrag, a dynamic HMM-based fragment search method built on the profile–profile comparison tool HHpred. We show that HHfrag provides advantages over existing fragment assignment methods in that it: (i) improves the precision of the fragments at the expense of a minor loss in sequence coverage; (ii) detects fragments of variable length (6–21 amino acid residues); (iii) allows for gapped fragments and (iv) does not assign fragments to regions where there is no clear sequence conservation. We illustrate the usefulness of fragments detected by HHfrag on targets from most recent CASP.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Reward-Weighted Regression with Sample Reuse for Direct Policy Search in Reinforcement Learning

Hachiya, H., Peters, J., Sugiyama, M.

Neural Computation, 23(11):2798-2832, November 2011 (article)

Abstract
Direct policy search is a promising reinforcement learning framework, in particular for controlling continuous, high-dimensional systems. Policy search often requires a large number of samples for obtaining a stable policy update estimator, and this is prohibitive when the sampling cost is expensive. In this letter, we extend an expectation-maximization-based policy search method so that previously collected samples can be efficiently reused. The usefulness of the proposed method, reward-weighted regression with sample reuse (R), is demonstrated through robot learning experiments.

Web DOI [BibTex]


no image
Model Learning in Robotics: a Survey

Nguyen-Tuong, D., Peters, J.

Cognitive Processing, 12(4):319-340, November 2011 (article)

Abstract
Models are among the most essential tools in robotics, such as kinematics and dynamics models of the robot's own body and controllable external objects. It is widely believed that intelligent mammals also rely on internal models in order to generate their actions. However, while classical robotics relies on manually generated models that are based on human insights into physics, future autonomous, cognitive robots need to be able to automatically generate models that are based on information which is extracted from the data streams accessible to the robot. In this paper, we survey the progress in model learning with a strong focus on robot control on a kinematic as well as dynamical level. Here, a model describes essential information about the behavior of the environment and the in uence of an agent on this environment. In the context of model based learning control, we view the model from three di fferent perspectives. First, we need to study the di erent possible model learning architectures for robotics. Second, we discuss what kind of problems these architecture and the domain of robotics imply for the applicable learning methods. From this discussion, we deduce future directions of real-time learning algorithms. Third, we show where these scenarios have been used successfully in several case studies.

PDF [BibTex]

PDF [BibTex]


no image
FaST linear mixed models for genome-wide association studies

Lippert, C., Listgarten, J., Liu, Y., Kadie, CM., Davidson, RI., Heckerman, D.

Nature Methods, 8(10):833–835, October 2011 (article)

Abstract
We describe factored spectrally transformed linear mixed models (FaST-LMM), an algorithm for genome-wide association studies (GWAS) that scales linearly with cohort size in both run time and memory use. On Wellcome Trust data for 15,000 individuals, FaST-LMM ran an order of magnitude faster than current efficient algorithms. Our algorithm can analyze data for 120,000 individuals in just a few hours, whereas current algorithms fail on data for even 20,000 individuals (http://mscompbio.codeplex.com/).

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
The effect of noise correlations in populations of diversely tuned neurons

Ecker, A., Berens, P., Tolias, A., Bethge, M.

Journal of Neuroscience, 31(40):14272-14283, October 2011 (article)

Abstract
The amount of information encoded by networks of neurons critically depends on the correlation structure of their activity. Neurons with similar stimulus preferences tend to have higher noise correlations than others. In homogeneous populations of neurons, this limited range correlation structure is highly detrimental to the accuracy of a population code. Therefore, reduced spike count correlations under attention, after adaptation, or after learning have been interpreted as evidence for a more efficient population code. Here, we analyze the role of limited range correlations in more realistic, heterogeneous population models. We use Fisher information and maximum-likelihood decoding to show that reduced correlations do not necessarily improve encoding accuracy. In fact, in populations with more than a few hundred neurons, increasing the level of limited range correlations can substantially improve encoding accuracy. We found that this improvement results from a decrease in noise entropy that is associated with increasing correlations if the marginal distributions are unchanged. Surprisingly, for constant noise entropy and in the limit of large populations, the encoding accuracy is independent of both structure and magnitude of noise correlations.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Analysis of Fixed-Point and Coordinate Descent Algorithms for Regularized Kernel Methods

Dinuzzo, F.

IEEE Transactions on Neural Networks, 22(10):1576-1587, October 2011 (article)

Abstract
In this paper, we analyze the convergence of two general classes of optimization algorithms for regularized kernel methods with convex loss function and quadratic norm regularization. The first methodology is a new class of algorithms based on fixed-point iterations that are well-suited for a parallel implementation and can be used with any convex loss function. The second methodology is based on coordinate descent, and generalizes some techniques previously proposed for linear support vector machines. It exploits the structure of additively separable loss functions to compute solutions of line searches in closed form. The two methodologies are both very easy to implement. In this paper, we also show how to remove non-differentiability of the objective functional by exactly reformulating a convex regularization problem as an unconstrained differentiable stabilization problem.

Web DOI [BibTex]

Web DOI [BibTex]


no image
A biomimetic approach to robot table tennis

Mülling, K., Kober, J., Peters, J.

Adaptive Behavior , 19(5):359-376 , October 2011 (article)

Abstract
Playing table tennis is a difficult motor task that requires fast movements, accurate control and adaptation to task parameters. Although human beings see and move slower than most robot systems, they significantly outperform all table tennis robots. One important reason for this higher performance is the human movement generation. In this paper, we study human movements during table tennis and present a robot system that mimics human striking behavior. Our focus lies on generating hitting motions capable of adapting to variations in environmental conditions, such as changes in ball speed and position. Therefore, we model the human movements involved in hitting a table tennis ball using discrete movement stages and the virtual hitting point hypothesis. The resulting model was evaluated both in a physically realistic simulation and on a real anthropomorphic seven degrees of freedom Barrett WAM™ robot arm.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Whole-genome sequencing of multiple Arabidopsis thaliana populations

Cao, J., Schneeberger, K., Ossowski, S., Günther, T., Bender, S., Fitz, J., Koenig, D., Lanz, C., Stegle, O., Lippert, C., Wang, X., Ott, F., Müller, J., Alonso-Blanco, C., Borgwardt, K., Schmid, K., Weigel, D.

Nature Genetics, 43(10):956–963, October 2011 (article)

Abstract
The plant Arabidopsis thaliana occurs naturally in many different habitats throughout Eurasia. As a foundation for identifying genetic variation contributing to adaptation to diverse environments, a 1001 Genomes Project to sequence geographically diverse A. thaliana strains has been initiated. Here we present the first phase of this project, based on population-scale sequencing of 80 strains drawn from eight regions throughout the species' native range. We describe the majority of common small-scale polymorphisms as well as many larger insertions and deletions in the A. thaliana pan-genome, their effects on gene function, and the patterns of local and global linkage among these variants. The action of processes other than spontaneous mutation is identified by comparing the spectrum of mutations that have accumulated since A. thaliana diverged from its closest relative 10 million years ago with the spectrum observed in the laboratory. Recent species-wide selective sweeps are rare, and potentially deleterious mutations are more common in marginal populations.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Multiple reference genomes and transcriptomes for Arabidopsis thaliana

Gan, X., Stegle, O., Behr, J., Steffen, J., Drewe, P., Hildebrand, K., Lyngsoe, R., Schultheiss, S., Osborne, E., Sreedharan, V., Kahles, A., Bohnert, R., Jean, G., Derwent, P., Kersey, P., Belfield, E., Harberd, N., Kemen, E., Toomajian, C., Kover, P., Clark, R., Rätsch, G., Mott, R.

Nature, 477(7365):419–423, September 2011 (article)

Abstract
Genetic differences between Arabidopsis thaliana accessions underlie the plant’s extensive phenotypic variation, and until now these have been interpreted largely in the context of the annotated reference accession Col-0. Here we report the sequencing, assembly and annotation of the genomes of 18 natural A. thaliana accessions, and their transcriptomes. When assessed on the basis of the reference annotation, one-third of protein-coding genes are predicted to be disrupted in at least one accession. However, re-annotation of each genome revealed that alternative gene models often restore coding potential. Gene expression in seedlings differed for nearly half of expressed genes and was frequently associated with cis variants within 5 kilobases, as were intron retention alternative splicing events. Sequence and expression variation is most pronounced in genes that respond to the biotic environment. Our data further promote evolutionary and functional studies in A. thaliana, especially the MAGIC genetic reference population descended from these accessions.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Weisfeiler-Lehman Graph Kernels

Shervashidze, N., Schweitzer, P., van Leeuwen, E., Mehlhorn, K., Borgwardt, M.

Journal of Machine Learning Research, 12, pages: 2539-2561, September 2011 (article)

Abstract
In this article, we propose a family of efficient kernels for large graphs with discrete node labels. Key to our method is a rapid feature extraction scheme based on the Weisfeiler-Lehman test of isomorphism on graphs. It maps the original graph to a sequence of graphs, whose node attributes capture topological and label information. A family of kernels can be defined based on this Weisfeiler-Lehman sequence of graphs, including a highly efficient kernel comparing subtree-like patterns. Its runtime scales only linearly in the number of edges of the graphs and the length of the Weisfeiler-Lehman graph sequence. In our experimental evaluation, our kernels outperform state-of-the-art graph kernels on several graph classification benchmark data sets in terms of accuracy and runtime. Our kernels open the door to large-scale applications of graph kernels in various disciplines such as computational biology and social network analysis.

PDF Web [BibTex]

PDF Web [BibTex]