Header logo is ei


2018


no image
Inducing Probabilistic Context-Free Grammars for the Sequencing of Movement Primitives

Lioutikov, R., Maeda, G., Veiga, F., Kersting, K., Peters, J.

IEEE International Conference on Robotics and Automation, (ICRA), pages: 1-8, IEEE, May 2018 (conference)

DOI Project Page [BibTex]

2018

DOI Project Page [BibTex]


no image
Sobolev GAN

Mroueh, Y., Li*, C., Sercu*, T., Raj*, A., Cheng, Y.

6th International Conference on Learning Representations (ICLR), May 2018, *equal contribution (conference)

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Temporal Difference Models: Model-Free Deep RL for Model-Based Control

Pong*, V., Gu*, S., Dalal, M., Levine, S.

6th International Conference on Learning Representations (ICLR), May 2018, *equal contribution (conference)

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Wasserstein Auto-Encoders: Latent Dimensionality and Random Encoders

Rubenstein, P. K., Schölkopf, B., Tolstikhin, I.

Workshop at the 6th International Conference on Learning Representations (ICLR), May 2018 (conference)

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Leave no Trace: Learning to Reset for Safe and Autonomous Reinforcement Learning

Eysenbach, B., Gu, S., Ibarz, J., Levine, S.

6th International Conference on Learning Representations (ICLR), May 2018 (conference)

Videos link (url) Project Page [BibTex]

Videos link (url) Project Page [BibTex]


Thumb xl 2018 tgan
Tempered Adversarial Networks

Sajjadi, M. S. M., Parascandolo, G., Mehrjou, A., Schölkopf, B.

Workshop at the 6th International Conference on Learning Representations (ICLR), May 2018 (conference)

arXiv [BibTex]

arXiv [BibTex]


no image
Learning Coupled Forward-Inverse Models with Combined Prediction Errors

Koert, D., Maeda, G., Neumann, G., Peters, J.

IEEE International Conference on Robotics and Automation, (ICRA), pages: 2433-2439, IEEE, May 2018 (conference)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Learning Disentangled Representations with Wasserstein Auto-Encoders

Rubenstein, P. K., Schölkopf, B., Tolstikhin, I.

Workshop at the 6th International Conference on Learning Representations (ICLR), May 2018 (conference)

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Automatic Estimation of Modulation Transfer Functions

Bauer, M., Volchkov, V., Hirsch, M., Schölkopf, B.

IEEE International Conference on Computational Photography (ICCP), May 2018 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Causal Discovery Using Proxy Variables

Rojas-Carulla, M., Baroni, M., Lopez-Paz, D.

Workshop at 6th International Conference on Learning Representations (ICLR), May 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Sample and Feedback Efficient Hierarchical Reinforcement Learning from Human Preferences

Pinsler, R., Akrour, R., Osa, T., Peters, J., Neumann, G.

IEEE International Conference on Robotics and Automation, (ICRA), pages: 596-601, IEEE, May 2018 (conference)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Group invariance principles for causal generative models

Besserve, M., Shajarisales, N., Schölkopf, B., Janzing, D.

Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS), 84, pages: 557-565, Proceedings of Machine Learning Research, (Editors: Amos Storkey and Fernando Perez-Cruz), PMLR, April 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Boosting Variational Inference: an Optimization Perspective

Locatello, F., Khanna, R., Ghosh, J., Rätsch, G.

Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS), 84, pages: 464-472, Proceedings of Machine Learning Research, (Editors: Amos Storkey and Fernando Perez-Cruz), PMLR, April 2018 (conference)

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


no image
Cause-Effect Inference by Comparing Regression Errors

Blöbaum, P., Janzing, D., Washio, T., Shimizu, S., Schölkopf, B.

Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS) , 84, pages: 900-909, Proceedings of Machine Learning Research, (Editors: Amos Storkey and Fernando Perez-Cruz), PMLR, April 2018 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Will People Like Your Image? Learning the Aesthetic Space

Schwarz, K., Wieschollek, P., Lensch, H. P. A.

2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pages: 2048-2057, March 2018 (conference)

DOI [BibTex]

DOI [BibTex]


no image
Leveraging the Crowd to Detect and Reduce the Spread of Fake News and Misinformation

Kim, J., Tabibian, B., Oh, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the 11th ACM International Conference on Web Search and Data Mining (WSDM), pages: 324-332, (Editors: Yi Chang, Chengxiang Zhai, Yan Liu, and Yoelle Maarek), ACM, Febuary 2018 (conference)

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


no image
Functional Programming for Modular Bayesian Inference

Ścibior, A., Kammar, O., Ghahramani, Z.

Proceedings of the ACM on Functional Programming (ICFP), 2(Article No. 83):1-29, ACM, 2018 (conference)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Automatic Bayesian Density Analysis

Vergari, A., Molina, A., Peharz, R., Ghahramani, Z., Kersting, K., Valera, I.

2018 (conference) Submitted

arXiv [BibTex]

arXiv [BibTex]


no image
A virtual reality environment for experiments in assistive robotics and neural interfaces

Bustamante, S.

Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)

PDF [BibTex]

PDF [BibTex]


no image
Magic Tunnels

Kilcher*, Y., Becigneul*, G., Hofmann, T.

ICLR 2019, 2018, *equal contribution (conference) Submitted

[BibTex]

[BibTex]


no image
Optimal Trajectory Generation and Learning Control for Robot Table Tennis

Koc, O.

Technical University Darmstadt, Germany, 2018 (phdthesis)

[BibTex]

[BibTex]


no image
k–SVRG: Variance Reduction for Large Scale Optimization

Raj, A., Stich, S.

In 2018 (inproceedings) Submitted

[BibTex]

[BibTex]


no image
Distribution-Dissimilarities in Machine Learning

Simon-Gabriel, C. J.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

[BibTex]

[BibTex]


no image
Probabilistic Deep Learning using Random Sum-Product Networks

Peharz, R., Vergari, A., Stelzner, K., Molina, A., Trapp, M., Kersting, K., Ghahramani, Z.

2018 (conference) Submitted

arXiv [BibTex]

arXiv [BibTex]


no image
Domain Adaptation Under Causal Assumptions

Lechner, T.

Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)

[BibTex]

[BibTex]


no image
A Differentially Private Kernel Two-Sample Test

Raj*, A., Law*, L., Sejdinovic*, D., Park, M.

2018, *equal contribution (conference) Submitted

[BibTex]

[BibTex]


no image
Riemannian Adaptive Optimization Methods

Becigneul, G., Ganea, O.

ICLR 2019, 2018 (conference) Submitted

[BibTex]

[BibTex]


no image
Probabilistic Approaches to Stochastic Optimization

Mahsereci, M.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Reinforcement Learning for High-Speed Robotics with Muscular Actuation

Guist, S.

Ruprecht-Karls-Universität Heidelberg , 2018 (mastersthesis)

[BibTex]

[BibTex]


no image
Denotational Validation of Higher-order Bayesian Inference

Ścibior, A., Kammar, O., Vákár, M., Staton, S., Yang, H., Cai, Y., Ostermann, K., Moss, S. K., Heunen, C., Ghahramani, Z.

Proceedings of the ACM on Principles of Programming Languages (POPL), 2(Article No. 60):1-29, ACM, 2018 (conference)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Poincaré GloVe: Hyperbolic Word Embeddings

Tifrea*, A., Becigneul*, G., Ganea*, O.

ICLR 2019, 2018, *equal contribution (conference) Submitted

[BibTex]

[BibTex]


no image
Probabilistic Ordinary Differential Equation Solvers — Theory and Applications

Schober, M.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

[BibTex]

[BibTex]


no image
A machine learning approach to taking EEG-based computer interfaces out of the lab

Jayaram, V.

Graduate Training Centre of Neuroscience, IMPRS, Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

[BibTex]

[BibTex]

2009


no image
A computational model of human table tennis for robot application

Mülling, K., Peters, J.

In AMS 2009, pages: 57-64, (Editors: Dillmann, R. , J. Beyerer, C. Stiller, M. Zöllner, T. Gindele), Springer, Berlin, Germany, Autonome Mobile Systeme, December 2009 (inproceedings)

Abstract
Table tennis is a difficult motor skill which requires all basic components of a general motor skill learning system. In order to get a step closer to such a generic approach to the automatic acquisition and refinement of table tennis, we study table tennis from a human motor control point of view. We make use of the basic models of discrete human movement phases, virtual hitting points, and the operational timing hypothesis. Using these components, we create a computational model which is aimed at reproducing human-like behavior. We verify the functionality of this model in a physically realistic simulation of a BarrettWAM.

Web DOI [BibTex]

2009

Web DOI [BibTex]


no image
A second order sliding mode controller with polygonal constraints

Dinuzzo, F.

In pages: 6715-6719, IEEE, Piscataway, NJ, USA, 48th IEEE Conference on Decision and Control (CDC), December 2009 (inproceedings)

Abstract
It is presented a discontinuous controller that ensure uniform finite-time zero stabilization of the output for uncertain SISO systems of relative degree two, while keeping the auxiliary system state within a prescribed convex polygon. The proposed method extends applicability of second order sliding modes controllers to the case of uncertain dynamical systems with constraints.

Web DOI [BibTex]

Web DOI [BibTex]


no image
A PAC-Bayesian Approach to Formulation of Clustering Objectives

Seldin, Y., Tishby, N.

In Proceedings of the NIPS 2009 Workshop "Clustering: Science or Art? Towards Principled Approaches", pages: 1-4, NIPS Workshop "Clustering: Science or Art? Towards Principled Approaches", December 2009 (inproceedings)

Abstract
Clustering is a widely used tool for exploratory data analysis. However, the theoretical understanding of clustering is very limited. We still do not have a well-founded answer to the seemingly simple question of “how many clusters are present in the data?”, and furthermore a formal comparison of clusterings based on different optimization objectives is far beyond our abilities. The lack of good theoretical support gives rise to multiple heuristics that confuse the practitioners and stall development of the field. We suggest that the ill-posed nature of clustering problems is caused by the fact that clustering is often taken out of its subsequent application context. We argue that one does not cluster the data just for the sake of clustering it, but rather to facilitate the solution of some higher level task. By evaluation of the clustering’s contribution to the solution of the higher level task it is possible to compare different clusterings, even those obtained by different optimization objectives. In the preceding work it was shown that such an approach can be applied to evaluation and design of co-clustering solutions. Here we suggest that this approach can be extended to other settings, where clustering is applied.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Notes on Graph Cuts with Submodular Edge Weights

Jegelka, S., Bilmes, J.

In pages: 1-6, NIPS Workshop on Discrete Optimization in Machine Learning: Submodularity, Sparsity & Polyhedra (DISCML), December 2009 (inproceedings)

Abstract
Generalizing the cost in the standard min-cut problem to a submodular cost function immediately makes the problem harder. Not only do we prove NP hardness even for nonnegative submodular costs, but also show a lower bound of (|V |1/3) on the approximation factor for the (s, t) cut version of the problem. On the positive side, we propose and compare three approximation algorithms with an overall approximation factor of O(min{|V |,p|E| log |V |}) that appear to do well in practice.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning new basic Movements for Robotics

Kober, J., Peters, J.

In AMS 2009, pages: 105-112, (Editors: Dillmann, R. , J. Beyerer, C. Stiller, M. Zöllner, T. Gindele), Springer, Berlin, Germany, Autonome Mobile Systeme, December 2009 (inproceedings)

Abstract
Obtaining novel skills is one of the most important problems in robotics. Machine learning techniques may be a promising approach for automatic and autonomous acquisition of movement policies. However, this requires both an appropriate policy representation and suitable learning algorithms. Employing the most recent form of the dynamical systems motor primitives originally introduced by Ijspeert et al. [1], we show how both discrete and rhythmic tasks can be learned using a concerted approach of both imitation and reinforcement learning, and present our current best performing learning algorithms. Finally, we show that it is possible to include a start-up phase in rhythmic primitives. We apply our approach to two elementary movements, i.e., Ball-in-a-Cup and Ball-Paddling, which can be learned on a real Barrett WAM robot arm at a pace similar to human learning.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
From Motor Learning to Interaction Learning in Robots

Sigaud, O., Peters, J.

In Proceedings of 7ème Journées Nationales de la Recherche en Robotique, pages: 189-195, JNRR, November 2009 (inproceedings)

Abstract
The number of advanced robot systems has been increasing in recent years yielding a large variety of versatile designs with many degrees of freedom. These robots have the potential of being applicable in uncertain tasks outside well-structured industrial settings. However, the complexity of both systems and tasks is often beyond the reach of classical robot programming methods. As a result, a more autonomous solution for robot task acquisition is needed where robots adaptively adjust their behaviour to the encountered situations and required tasks. Learning approaches pose one of the most appealing ways to achieve this goal. However, while learning approaches are of high importance for robotics, we cannot simply use off-the-shelf methods from the machine learning community as these usually do not scale into the domains of robotics due to excessive computational cost as well as a lack of scalability. Instead, domain appropriate approaches are needed. We focus here on several core domains of robot learning. For accurate task execution, we need motor learning capabilities. For fast learning of the motor tasks, imitation learning offers the most promising approach. Self improvement requires reinforcement learning approaches that scale into the domain of complex robots. Finally, for efficient interaction of humans with robot systems, we will need a form of interaction learning. This contribution provides a general introduction to these issues and briefly presents the contributions of the related book chapters to the corresponding research topics.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Detecting Objects in Large Image Collections and Videos by Efficient Subimage Retrieval

Lampert, CH.

In ICCV 2009, pages: 987-994, IEEE Computer Society, Piscataway, NJ, USA, Twelfth IEEE International Conference on Computer Vision, October 2009 (inproceedings)

Abstract
We study the task of detecting the occurrence of objects in large image collections or in videos, a problem that combines aspects of content based image retrieval and object localization. While most previous approaches are either limited to special kinds of queries, or do not scale to large image sets, we propose a new method, efficient subimage retrieval (ESR), which is at the same time very flexible and very efficient. Relying on a two-layered branch-and-bound setup, ESR performs object-based image retrieval in sets of 100,000 or more images within seconds. An extensive evaluation on several datasets shows that ESR is not only very fast, but it also achieves detection accuracies that are on par with or superior to previously published methods for object-based image retrieval.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A new non-monotonic algorithm for PET image reconstruction

Sra, S., Kim, D., Dhillon, I., Schölkopf, B.

In IEEE - Nuclear Science Symposium Conference Record (NSS/MIC), 2009, pages: 2500-2502, (Editors: B Yu), IEEE, Piscataway, NJ, USA, IEEE Nuclear Science Symposium and Medical Imaging Conference, October 2009 (inproceedings)

Abstract
Maximizing some form of Poisson likelihood (either with or without penalization) is central to image reconstruction algorithms in emission tomography. In this paper we introduce NMML, a non-monotonic algorithm for maximum likelihood PET image reconstruction. NMML offers a simple and flexible procedure that also easily incorporates standard convex regular-ization for doing penalized likelihood estimation. A vast number image reconstruction algorithms have been developed for PET, and new ones continue to be designed. Among these, methods based on the expectation maximization (EM) and ordered-subsets (OS) framework seem to have enjoyed the greatest popularity. Our method NMML differs fundamentally from methods based on EM: i) it does not depend on the concept of optimization transfer (or surrogate functions); and ii) it is a rapidly converging nonmonotonic descent procedure. The greatest strengths of NMML, however, are its simplicity, efficiency, and scalability, which make it especially attractive for tomograph ic reconstruction. We provide a theoretical analysis NMML, and empirically observe it to outperform standard EM based methods, sometimes by orders of magnitude. NMML seamlessly allows integreation of penalties (regularizers) in the likelihood. This ability can prove to be crucial, especially because with the rapidly rising importance of combined PET/MR scanners, one will want to include more “prior” knowledge into the reconstruction.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Approximation Algorithms for Tensor Clustering

Jegelka, S., Sra, S., Banerjee, A.

In Algorithmic Learning Theory: 20th International Conference, pages: 368-383, (Editors: Gavalda, R. , G. Lugosi, T. Zeugmann, S. Zilles), Springer, Berlin, Germany, ALT, October 2009 (inproceedings)

Abstract
We present the first (to our knowledge) approximation algo- rithm for tensor clustering—a powerful generalization to basic 1D clustering. Tensors are increasingly common in modern applications dealing with complex heterogeneous data and clustering them is a fundamental tool for data analysis and pattern discovery. Akin to their 1D cousins, common tensor clustering formulations are NP-hard to optimize. But, unlike the 1D case no approximation algorithms seem to be known. We address this imbalance and build on recent co-clustering work to derive a tensor clustering algorithm with approximation guarantees, allowing metrics and divergences (e.g., Bregman) as objective functions. Therewith, we answer two open questions by Anagnostopoulos et al. (2008). Our analysis yields a constant approximation factor independent of data size; a worst-case example shows this factor to be tight for Euclidean co-clustering. However, empirically the approximation factor is observed to be conservative, so our method can also be used in practice.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Active learning using mean shift optimization for robot grasping

Kroemer, O., Detry, R., Piater, J., Peters, J.

In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), pages: 2610-2615, IEEE Service Center, Piscataway, NJ, USA, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2009 (inproceedings)

Abstract
When children learn to grasp a new object, they often know several possible grasping points from observing a parent‘s demonstration and subsequently learn better grasps by trial and error. From a machine learning point of view, this process is an active learning approach. In this paper, we present a new robot learning framework for reproducing this ability in robot grasping. For doing so, we chose a straightforward approach: first, the robot observes a few good grasps by demonstration and learns a value function for these grasps using Gaussian process regression. Subsequently, it chooses grasps which are optimal with respect to this value function using a mean-shift optimization approach, and tries them out on the real system. Upon every completed trial, the value function is updated, and in the following trials it is more likely to choose even better grasping points. This method exhibits fast learning due to the data-efficiency of Gaussian process regression framework and the fact th at t he mean-shift method provides maxima of this cost function. Experiments were repeatedly carried out successfully on a real robot system. After less than sixty trials, our system has adapted its grasping policy to consistently exhibit successful grasps.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Sparse online model learning for robot control with support vector regression

Nguyen-Tuong, D., Schölkopf, B., Peters, J.

In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), pages: 3121-3126, IEEE Service Center, Piscataway, NJ, USA, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2009 (inproceedings)

Abstract
The increasing complexity of modern robots makes it prohibitively hard to accurately model such systems as required by many applications. In such cases, machine learning methods offer a promising alternative for approximating such models using measured data. To date, high computational demands have largely restricted machine learning techniques to mostly offline applications. However, making the robots adaptive to changes in the dynamics and to cope with unexplored areas of the state space requires online learning. In this paper, we propose an approximation of the support vector regression (SVR) by sparsification based on the linear independency of training data. As a result, we obtain a method which is applicable in real-time online learning. It exhibits competitive learning accuracy when compared with standard regression techniques, such as nu-SVR, Gaussian process regression (GPR) and locally weighted projection regression (LWPR).

Web DOI [BibTex]

Web DOI [BibTex]


no image
Kernel Learning Approaches for Image Classification

Gehler, PV.

Biologische Kybernetik, Universität des Saarlandes, Saarbrücken, Germany, October 2009 (phdthesis)

Abstract
This thesis extends the use of kernel learning techniques to specific problems of image classification. Kernel learning is a paradigm in the field of machine learning that generalizes the use of inner products to compute similarities between arbitrary objects. In image classification one aims to separate images based on their visual content. We address two important problems that arise in this context: learning with weak label information and combination of heterogeneous data sources. The contributions we report on are not unique to image classification, and apply to a more general class of problems. We study the problem of learning with label ambiguity in the multiple instance learning framework. We discuss several different image classification scenarios that arise in this context and argue that the standard multiple instance learning requires a more detailed disambiguation. Finally we review kernel learning approaches proposed for this problem and derive a more efficient algorithm to solve them. The multiple kernel learning framework is an approach to automatically select kernel parameters. We extend it to its infinite limit and present an algorithm to solve the resulting problem. This result is then applied in two directions. We show how to learn kernels that adapt to the special structure of images. Finally we compare different ways of combining image features for object classification and present significant improvements compared to previous methods.

PDF [BibTex]

PDF [BibTex]