Header logo is ei


2011


no image
A Blind Deconvolution Approach for Improving the Resolution of Cryo-EM Density Maps

Hirsch, M., Schölkopf, B., Habeck, M.

Journal of Computational Biology, 18(3):335-346, March 2011 (article)

Abstract
Cryo-electron microscopy (cryo-EM) plays an increasingly prominent role in structure elucidation of macromolecular assemblies. Advances in experimental instrumentation and computational power have spawned numerous cryo-EM studies of large biomolecular complexes resulting in the reconstruction of three-dimensional density maps at intermediate and low resolution. In this resolution range, identification and interpretation of structural elements and modeling of biomolecular structure with atomic detail becomes problematic. In this article, we present a novel algorithm that enhances the resolution of intermediate- and low-resolution density maps. Our underlying assumption is to model the low-resolution density map as a blurred and possibly noise-corrupted version of an unknown high-resolution map that we seek to recover by deconvolution. By exploiting the nonnegativity of both the high-resolution map and blur kernel, we derive multiplicative updates reminiscent of those used in nonnegative matrix factorization. Our framework allows for easy incorporation of additional prior knowledge such as smoothness and sparseness, on both the sharpened density map and the blur kernel. A probabilistic formulation enables us to derive updates for the hyperparameters; therefore, our approach has no parameter that needs adjustment. We apply the algorithm to simulated three-dimensional electron microscopic data. We show that our method provides better resolved density maps when compared with B-factor sharpening, especially in the presence of noise. Moreover, our method can use additional information provided by homologous structures, which helps to improve the resolution even further.

Web DOI [BibTex]

2011

Web DOI [BibTex]


no image
Dynamics of excitable neural networks with heterogeneous connectivity

Chavez, M., Besserve, M., Le Van Quyen, M.

Progress in Biophysics and Molecular Biology, 105(1-2):29-33, March 2011 (article)

Abstract
A central issue of neuroscience is to understand how neural units integrates internal and external signals to create coherent states. Recently, it has been shown that the sensitivity and dynamic range of neural assemblies are optimal at a critical coupling among its elements. Complex architectures of connections seem to play a constructive role on the reliable coordination of neural units. Here we show that, the synchronizability and sensitivity of excitable neural networks can be tuned by diversity in the connections strengths. We illustrate our findings for weighted networks with regular, random and complex topologies. Additional comparisons of real brain networks support previous studies suggesting that heterogeneity in the connectivity may play a constructive role on information processing. These findings provide insights into the relationship between structure and function of neural circuits.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Combining computational modeling with sparse and low-resolution data

Habeck, M., Nilges, M.

Journal of Structural Biology, 173(3):419, March 2011 (article)

Abstract
Structural biology is moving into a new era by shifting its focus from static structures of single proteins and protein domains to large and often fragile multi-component complexes. Over the past decade, structural genomics initiatives aimed to fill the voids in fold space and to provide a census of all protein structures. Completion of such an atlas of protein structures is still ongoing, but not sufficient for a mechanistic understanding of how living cells function. One of the great challenges is to bridge the gap between atomic resolution detail and the more fuzzy description of the molecular complexes that govern cellular processes or host–pathogen interactions. We want to move from cartoon-like representations of multi-component complexes to atomic resolution structures. To characterize the structures of the increasingly large and often flexible complexes, high resolution structure determination (as was possible for example for the ribosome) will likely stay the exception. Rather, data from many different methods providing information on the shape (X-ray crystallography, electron microscopy, SAXS, AFM, etc.) or on contacts between components (mass spectrometry, co-purification, or spectroscopic methods) need to be integrated with prior structural knowledge to build a consistent model of the complex. A particular difficulty is that the ratio between the number of conformational degrees of freedom and the number of measurements becomes unfavorable as we work with large complexes: data become increasingly sparse. Structural characterization of large molecular assemblies often involves a loss in resolution as well as in number and quality of data. We are good at solving structures of single proteins, but classical high-resolution structure determination by X-ray crystallography and NMR spectroscopy is often facing its limits as we move to higher molecular mass and increased flexibility. Therefore, structural studies on large complexes rely on new experimental techniques that complement the classical high resolution methods. But also computational approaches are becoming more important when it comes to integrating and analyzing structural information of often heterogeneous nature. Cryoelectron microscopy may serve as an example of how experimental methods can benefit from computation. Low-resolution data from cryo-EM show their true power when combined with modeling and bioinformatics methods such rigid docking and secondary structure hunting. Even in high resolution structure determination, molecular modeling is always necessary to calculate structures from data, to complement the missing information and to evaluate and score the obtained structures. With sparse data, all these three aspects become increasingly difficult, and the quality of the modeling approach becomes more important. With data alone, algorithms may not converge any more; scoring against data becomes meaningless; and the potential energy function becomes central not only as a help in making algorithms converge but also to score and evaluate the structures. In addition to the sparsity of the data, hybrid approaches bring the additional difficulty that the different sources of data may have rather different quality, and may be in the extreme case incompatible with each other. In addition to scoring the structures, modeling should also score in some way the data going into the calculation. This special issue brings together some of the numerous efforts to solve the problems that come from sparsity of data and from integrating data from different sources in hybrid approaches. The methods range from predominantly force-field based to mostly data based. Systems of very different sizes, ranging from single domains to multi-component complexes, are treated. We hope that you will enjoy reading the issue and find it a useful and inspiring resource.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Batch-Mode Active-Learning Methods for the Interactive Classification of Remote Sensing Images

Demir, B., Persello, C., Bruzzone, L.

IEEE Transactions on Geoscience and Remote Sensing, 49(3):1014-1031, March 2011 (article)

Abstract
This paper investigates different batch-mode active-learning (AL) techniques for the classification of remote sensing (RS) images with support vector machines. This is done by generalizing to multiclass problem techniques defined for binary classifiers. The investigated techniques exploit different query functions, which are based on the evaluation of two criteria: uncertainty and diversity. The uncertainty criterion is associated to the confidence of the supervised algorithm in correctly classifying the considered sample, while the diversity criterion aims at selecting a set of unlabeled samples that are as more diverse (distant one another) as possible, thus reducing the redundancy among the selected samples. The combination of the two criteria results in the selection of the potentially most informative set of samples at each iteration of the AL process. Moreover, we propose a novel query function that is based on a kernel-clustering technique for assessing the diversity of samples and a new strategy for selecting the most informative representative sample from each cluster. The investigated and proposed techniques are theoretically and experimentally compared with state-of-the-art methods adopted for RS applications. This is accomplished by considering very high resolution multispectral and hyperspectral images. By this comparison, we observed that the proposed method resulted in better accuracy with respect to other investigated and state-of-the art methods on both the considered data sets. Furthermore, we derived some guidelines on the design of AL systems for the classification of different types of RS images.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Statistical mechanics analysis of sparse data

Habeck, M.

Journal of Structural Biology, 173(3):541-548, March 2011 (article)

Abstract
Inferential structure determination uses Bayesian theory to combine experimental data with prior structural knowledge into a posterior probability distribution over protein conformational space. The posterior distribution encodes everything one can say objectively about the native structure in the light of the available data and additional prior assumptions and can be searched for structural representatives. Here an analogy is drawn between the posterior distribution and the canonical ensemble of statistical physics. A statistical mechanics analysis assesses the complexity of a structure calculation globally in terms of ensemble properties. Analogs of the free energy and density of states are introduced; partition functions evaluate the consistency of prior assumptions with data. Critical behavior is observed with dwindling restraint density, which impairs structure determination with too sparse data. However, prior distributions with improved realism ameliorate the situation by lowering the critical number of observations. An in-depth analysis of various experimentally accessible structural parameters and force field terms will facilitate a statistical approach to protein structure determination with sparse data that avoids bias as much as possible.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Large Scale Bayesian Inference and Experimental Design for Sparse Linear Models

Seeger, M., Nickisch, H.

SIAM Journal on Imaging Sciences, 4(1):166-199, March 2011 (article)

Abstract
Many problems of low-level computer vision and image processing, such as denoising, deconvolution, tomographic reconstruction or super-resolution, can be addressed by maximizing the posterior distribution of a sparse linear model (SLM). We show how higher-order Bayesian decision-making problems, such as optimizing image acquisition in magnetic resonance scanners, can be addressed by querying the SLM posterior covariance, unrelated to the density‘s mode. We propose a scalable algorithmic framework, with which SLM posteriors over full, high-resolution images can be approximated for the first time, solving a variational optimization problem which is convex iff posterior mode finding is convex. These methods successfully drive the optimization of sampling trajectories for real-world magnetic resonance imaging through Bayesian experimental design, which has not been attempted before. Our methodology provides new insight into similarities and differences between sparse reconstruction and approximate Bayesian inference, and has important implications for compressive sensing of real-world images.

Web DOI [BibTex]


no image
Learning grasp affordance densities

Detry, R., Kraft, D., Kroemer, O., Peters, J., Krüger, N., Piater, J.

Paladyn: Journal of Behavioral Robotics, 2(1):1-17, March 2011 (article)

Abstract
We address the issue of learning and representing object grasp affordance models. We model grasp affordances with continuous probability density functions (grasp densities) which link object-relative grasp poses to their success probability. The underlying function representation is nonparametric and relies on kernel density estimation to provide a continuous model. Grasp densities are learned and refined from exploration, by letting a robot “play” with an object in a sequence of grasp-and-drop actions: the robot uses visual cues to generate a set of grasp hypotheses, which it then executes and records their outcomes. When a satisfactory amount of grasp data is available, an importance-sampling algorithm turns it into a grasp density. We evaluate our method in a largely autonomous learning experiment, run on three objects with distinct shapes. The experiment shows how learning increases success rates. It also measures the success rate of grasps chosen to maximize the probability of success, given reaching constraints.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Client–Server Multitask Learning From Distributed Datasets

Dinuzzo, F., Pillonetto, G., De Nicolao, G.

IEEE Transactions on Neural Networks, 22(2):290-303, February 2011 (article)

Abstract
A client-server architecture to simultaneously solve multiple learning tasks from distributed datasets is described. In such architecture, each client corresponds to an individual learning task and the associated dataset of examples. The goal of the architecture is to perform information fusion from multiple datasets while preserving privacy of individual data. The role of the server is to collect data in real time from the clients and codify the information in a common database. Such information can be used by all the clients to solve their individual learning task, so that each client can exploit the information content of all the datasets without actually having access to private data of others. The proposed algorithmic framework, based on regularization and kernel methods, uses a suitable class of “mixed effect” kernels. The methodology is illustrated through a simulated recommendation system, as well as an experiment involving pharmacological data coming from a multicentric clinical trial.

DOI [BibTex]

DOI [BibTex]


no image
Extraction of functional information from ongoing brain electrical activity: Extraction en temps-réel d’informations fonctionnelles à partir de l’activité électrique cérébrale

Besserve, M., Martinerie, J.

IRBM, 32(1):27-34, February 2011 (article)

Abstract
The modern analysis of multivariate electrical brain signals requires advanced statistical tools to automatically extract and quantify their information content. These tools include machine learning techniques and information theory. They are currently used both in basic neuroscience and challenging applications such as brain computer interfaces. We review here how these methods have been used at the Laboratoire d’Électroencéphalographie et de Neurophysiologie Appliquée (LENA) to develop a general tool for the real time analysis of functional brain signals. We then give some perspectives on how these tools can help understanding the biological mechanisms of information processing.

PDF DOI [BibTex]


no image
Learning Visual Representations for Perception-Action Systems

Piater, J., Jodogne, S., Detry, R., Kraft, D., Krüger, N., Kroemer, O., Peters, J.

International Journal of Robotics Research, 30(3):294-307, February 2011 (article)

Abstract
We discuss vision as a sensory modality for systems that interact flexibly with uncontrolled environments. Instead of trying to build a generic vision system that produces task-independent representations, we argue in favor of task-specific, learnable representations. This concept is illustrated by two examples of our own work. First, our RLVC algorithm performs reinforcement learning directly on the visual input space. To make this very large space manageable, RLVC interleaves the reinforcement learner with a supervised classification algorithm that seeks to split perceptual states so as to reduce perceptual aliasing. This results in an adaptive discretization of the perceptual space based on the presence or absence of visual features. Its extension, RLJC, additionally handles continuous action spaces. In contrast to the minimalistic visual representations produced by RLVC and RLJC, our second method learns structural object models for robust object detection and pose estimation by probabilistic inference. To these models, the method associates grasp experiences autonomously learned by trial and error. These experiences form a non-parametric representation of grasp success likelihoods over gripper poses, which we call a grasp density. Thus, object detection in a novel scene simultaneously produces suitable grasping options.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Multi-way set enumeration in weight tensors

Georgii, E., Tsuda, K., Schölkopf, B.

Machine Learning, 82(2):123-155, February 2011 (article)

Abstract
The analysis of n-ary relations receives attention in many different fields, for instance biology, web mining, and social studies. In the basic setting, there are n sets of instances, and each observation associates n instances, one from each set. A common approach to explore these n-way data is the search for n-set patterns, the n-way equivalent of itemsets. More precisely, an n-set pattern consists of specific subsets of the n instance sets such that all possible associations between the corresponding instances are observed in the data. In contrast, traditional itemset mining approaches consider only two-way data, namely items versus transactions. The n-set patterns provide a higher-level view of the data, revealing associative relationships between groups of instances. Here, we generalize this approach in two respects. First, we tolerate missing observations to a certain degree, that means we are also interested in n-sets where most (although not all) of the possible associations have been recorded in the data. Second, we take association weights into account. In fact, we propose a method to enumerate all n-sets that satisfy a minimum threshold with respect to the average association weight. Technically, we solve the enumeration task using a reverse search strategy, which allows for effective pruning of the search space. In addition, our algorithm provides a ranking of the solutions and can consider further constraints. We show experimental results on artificial and real-world datasets from different domains.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
A graphical model framework for decoding in the visual ERP-based BCI speller

Martens, S., Mooij, J., Hill, N., Farquhar, J., Schölkopf, B.

Neural Computation, 23(1):160-182, January 2011 (article)

Abstract
We present a graphical model framework for decoding in the visual ERP-based speller system. The proposed framework allows researchers to build generative models from which the decoding rules are obtained in a straightforward manner. We suggest two models for generating brain signals conditioned on the stimulus events. Both models incorporate letter frequency information but assume different dependencies between brain signals and stimulus events. For both models, we derive decoding rules and perform a discriminative training. We show on real visual speller data how decoding performance improves by incorporating letter frequency information and using a more realistic graphical model for the dependencies between the brain signals and the stimulus events. Furthermore, we discuss how the standard approach to decoding can be seen as a special case of the graphical model framework. The letter also gives more insight into the discriminative approach for decoding in the visual speller system.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Robust Control of Teleoperation Systems Interacting with Viscoelastic Soft Tissues

Cho, JH., Son, HI., Bhattacharjee, T., Lee, DG., Lee, DY.

IEEE Transactions on Control Systems Technology, January 2011 (article) In revision

[BibTex]

[BibTex]


no image
Effect of Control Parameters and Haptic Cues on Human Perception for Remote Operations

Son, HI., Bhattacharjee, T., Jung, H., Lee, DY.

Experimental Brain Research, January 2011 (article) Submitted

[BibTex]

[BibTex]


no image
Joint Genetic Analysis of Gene Expression Data with Inferred Cellular Phenotypes

Parts, L., Stegle, O., Winn, J., Durbin, R.

PLoS Genetics, 7(1):1-10, January 2011 (article)

Abstract
Even within a defined cell type, the expression level of a gene differs in individual samples. The effects of genotype, measured factors such as environmental conditions, and their interactions have been explored in recent studies. Methods have also been developed to identify unmeasured intermediate factors that coherently influence transcript levels of multiple genes. Here, we show how to bring these two approaches together and analyse genetic effects in the context of inferred determinants of gene expression. We use a sparse factor analysis model to infer hidden factors, which we treat as intermediate cellular phenotypes that in turn affect gene expression in a yeast dataset. We find that the inferred phenotypes are associated with locus genotypes and environmental conditions and can explain genetic associations to genes in trans. For the first time, we consider and find interactions between genotype and intermediate phenotypes inferred from gene expression levels, complementing and extending established results.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Reinforcement Learning with Bounded Information Loss

Peters, J., Peters, J., Mülling, K., Altun, Y.

AIP Conference Proceedings, 1305(1):365-372, 2011 (article)

Abstract
Policy search is a successful approach to reinforcement learning. However, policy improvements often result in the loss of information. Hence, it has been marred by premature convergence and implausible solutions. As first suggested in the context of covariant or natural policy gradients, many of these problems may be addressed by constraining the information loss. In this paper, we continue this path of reasoning and suggest two reinforcement learning methods, i.e., a model‐based and a model free algorithm that bound the loss in relative entropy while maximizing their return. The resulting methods differ significantly from previous policy gradient approaches and yields an exact update step. It works well on typical reinforcement learning benchmark problems as well as novel evaluations in robotics. We also show a Bayesian bound motivation of this new approach [8].

Web DOI [BibTex]

2001


no image
Anabolic and Catabolic Gene Expression Pattern Analysis in Normal Versus Osteoarthritic Cartilage Using Complementary DNA-Array Technology

Aigner, T., Zien, A., Gehrsitz, A., Gebhard, P., McKenna, L.

Arthritis and Rheumatism, 44(12):2777-2789, December 2001 (article)

Web [BibTex]

2001

Web [BibTex]


no image
Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators

Williamson, R., Smola, A., Schölkopf, B.

IEEE Transactions on Information Theory, 47(6):2516-2532, September 2001 (article)

Abstract
We derive new bounds for the generalization error of kernel machines, such as support vector machines and related regularization networks by obtaining new bounds on their covering numbers. The proofs make use of a viewpoint that is apparently novel in the field of statistical learning theory. The hypothesis class is described in terms of a linear operator mapping from a possibly infinite-dimensional unit ball in feature space into a finite-dimensional space. The covering numbers of the class are then determined via the entropy numbers of the operator. These numbers, which characterize the degree of compactness of the operator can be bounded in terms of the eigenvalues of an integral operator induced by the kernel function used by the machine. As a consequence, we are able to theoretically explain the effect of the choice of kernel function on the generalization performance of support vector machines.

DOI [BibTex]

DOI [BibTex]


no image
Centralization: A new method for the normalization of gene expression data

Zien, A., Aigner, T., Zimmer, R., Lengauer, T.

Bioinformatics, 17, pages: S323-S331, June 2001, Mathematical supplement available at http://citeseer.ist.psu.edu/574280.html (article)

Abstract
Microarrays measure values that are approximately proportional to the numbers of copies of different mRNA molecules in samples. Due to technical difficulties, the constant of proportionality between the measured intensities and the numbers of mRNA copies per cell is unknown and may vary for different arrays. Usually, the data are normalized (i.e., array-wise multiplied by appropriate factors) in order to compensate for this effect and to enable informative comparisons between different experiments. Centralization is a new two-step method for the computation of such normalization factors that is both biologically better motivated and more robust than standard approaches. First, for each pair of arrays the quotient of the constants of proportionality is estimated. Second, from the resulting matrix of pairwise quotients an optimally consistent scaling of the samples is computed.

PDF PostScript Web [BibTex]

PDF PostScript Web [BibTex]


no image
Regularized principal manifolds

Smola, A., Mika, S., Schölkopf, B., Williamson, R.

Journal of Machine Learning Research, 1, pages: 179-209, June 2001 (article)

Abstract
Many settings of unsupervised learning can be viewed as quantization problems - the minimization of the expected quantization error subject to some restrictions. This allows the use of tools such as regularization from the theory of (supervised) risk minimization for unsupervised learning. This setting turns out to be closely related to principal curves, the generative topographic map, and robust coding. We explore this connection in two ways: (1) we propose an algorithm for finding principal manifolds that can be regularized in a variety of ways; and (2) we derive uniform convergence bounds and hence bounds on the learning rates of the algorithm. In particular, we give bounds on the covering numbers which allows us to obtain nearly optimal learning rates for certain types of regularization operators. Experimental results demonstrate the feasibility of the approach.

PDF [BibTex]

PDF [BibTex]


no image
Failure Diagnosis of Discrete Event Systems

Son, HI., Kim, KW., Lee, S.

Journal of Control, Automation and Systems Engineering, 7(5):375-383, May 2001, In Korean (article)

[BibTex]

[BibTex]


no image
Pattern Selection Using the Bias and Variance of Ensemble

Shin, H., Cho, S.

Journal of the Korean Institute of Industrial Engineers, 28(1):112-127, March 2001 (article)

Abstract
[Abstract]: A useful pattern is a pattern that contributes much to learning. For a classification problem those patterns near the class boundary surfaces carry more information to the classifier. For a regression problem the ones near the estimated surface carry more information. In both cases, the usefulness is defined only for those patterns either without error or with negligible error. Using only the useful patterns gives several benefits. First, computational complexity in memory and time for learning is decreased. Second, overfitting is avoided even when the learner is over-sized. Third, learning results in more stable learners. In this paper, we propose a pattern “utility index” that measures the utility of an individual pattern. The utility index is based on the bias and variance of a pattern trained by a network ensemble. In classification, the pattern with a low bias and a high variance gets a high score. In regression, on the other hand, the one with a low bias and a low variance gets a high score. Based on the distribution of the utility index, the original training set is divided into a high-score group and a low-score group. Only the high-score group is then used for training. The proposed method is tested on synthetic and real-world benchmark datasets. The proposed approach gives a better or at least similar performance.

[BibTex]

[BibTex]


no image
Structure and Functionality of a Designed p53 Dimer.

Davison, TS., Nie, X., Ma, W., Lin, Y., Kay, C., Benchimol, S., Arrowsmith, C.

Journal of Molecular Biology, 307(2):605-617, March 2001 (article)

Abstract
P53 is a homotetrameric tumor suppressor protein involved in transcriptional control of genes that regulate cell proliferation and death. In order to probe the role that oligomerization plays in this capacity, we have previously designed and characterized a series of p53 proteins with altered oligomeric states through hydrophilc substitution of residues Met340 or Leu344 in the normally tetrameric oligomerization domain. Although such mutations have little effect on the overall secondary structural content of the oligomerization domain, both solubility and the resistance to thermal denaturation are substantially reduced relative to that of the wild-type domain. Here, we report the design and characterization of a double-mutant p53 with alterations of residues at positions Met340 and Leu344. The double-mutations Met340Glu/Leu344Lys and Met340Gln/Leu344Arg resulted in distinct dimeric forms of the protein. Furthermore, we have verified by NMR structure determination that the double-mutant Met340Gln/Leu344Arg is essentially a "half-tetramer". Analysis of the in vivo activities of full-length p53 oligomeric mutants reveals that while cell-cycle arrest requires tetrameric p53, transcriptional transactivation activity of monomers and dimers retain roughly background and half of the wild-type activity, respectively.

Web [BibTex]

Web [BibTex]


no image
An Introduction to Kernel-Based Learning Algorithms

Müller, K., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.

IEEE Transactions on Neural Networks, 12(2):181-201, March 2001 (article)

Abstract
This paper provides an introduction to support vector machines, kernel Fisher discriminant analysis, and kernel principal component analysis, as examples for successful kernel-based learning methods. We first give a short background about Vapnik-Chervonenkis theory and kernel feature spaces and then proceed to kernel based learning in supervised and unsupervised scenarios including practical and algorithmic considerations. We illustrate the usefulness of kernel algorithms by discussing applications such as optical character recognition and DNA analysis

DOI [BibTex]

DOI [BibTex]


no image
Estimating the support of a high-dimensional distribution.

Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.

Neural Computation, 13(7):1443-1471, March 2001 (article)

Abstract
Suppose you are given some data set drawn from an underlying probability distribution P and you want to estimate a “simple” subset S of input space such that the probability that a test point drawn from P lies outside of S equals some a priori specified value between 0 and 1. We propose a method to approach this problem by trying to estimate a function f that is positive on S and negative on the complement. The functional form of f is given by a kernel expansion in terms of a potentially small subset of the training data; it is regularized by controlling the length of the weight vector in an associated feature space. The expansion coefficients are found by solving a quadratic programming problem, which we do by carrying out sequential optimization over pairs of input patterns. We also provide a theoretical analysis of the statistical performance of our algorithm. The algorithm is a natural extension of the support vector algorithm to the case of unlabeled data.

Web DOI [BibTex]

Web DOI [BibTex]


no image
The psychometric function: II. Bootstrap-based confidence intervals and sampling

Wichmann, F., Hill, N.

Perception and Psychophysics, 63 (8), pages: 1314-1329, 2001 (article)

PDF [BibTex]

PDF [BibTex]


no image
The psychometric function: I. Fitting, sampling and goodness-of-fit

Wichmann, F., Hill, N.

Perception and Psychophysics, 63 (8), pages: 1293-1313, 2001 (article)

Abstract
The psychometric function relates an observer'sperformance to an independent variable, usually some physical quantity of a stimulus in a psychophysical task. This paper, together with its companion paper (Wichmann & Hill, 2001), describes an integrated approach to (1) fitting psychometric functions, (2) assessing the goodness of fit, and (3) providing confidence intervals for the function'sparameters and other estimates derived from them, for the purposes of hypothesis testing. The present paper deals with the first two topics, describing a constrained maximum-likelihood method of parameter estimation and developing several goodness-of-fit tests. Using Monte Carlo simulations, we deal with two specific difficulties that arise when fitting functions to psychophysical data. First, we note that human observers are prone to stimulus-independent errors (or lapses ). We show that failure to account for this can lead to serious biases in estimates of the psychometric function'sparameters and illustrate how the problem may be overcome. Second, we note that psychophysical data sets are usually rather small by the standards required by most of the commonly applied statistical tests. We demonstrate the potential errors of applying traditional X^2 methods to psychophysical data and advocate use of Monte Carlo resampling techniques that do not rely on asymptotic theory. We have made available the software to implement our methods

PDF [BibTex]

PDF [BibTex]


no image
The control structure of artificial creatures

Zhou, D., Dai, R.

Artificial Life and Robotics, 5(3), 2001, invited article (article)

Web [BibTex]

Web [BibTex]


no image
Markovian domain fingerprinting: statistical segmentation of protein sequences

Bejerano, G., Seldin, Y., Margalit, H., Tishby, N.

Bioinformatics, 17(10):927-934, 2001 (article)

PDF Web [BibTex]

PDF Web [BibTex]