2367 results (BibTeX)

2016


Continuous Deep Q-Learning with Model-based Acceleration

Gu, S., Lillicrap, T., Sutskever, I., Levine, S.

Proceedings of the 33nd International Conference on Machine Learning (ICML 2016), 48, pages: 2829-2838, JMLR Workshop and Conference Proceedings, (Editors: Maria-Florina Balcan and Kilian Q. Weinberger), JMLR.org, 2016 (conference)

link (url) [BibTex]

2016

link (url) [BibTex]


Fabular: Regression Formulas As Probabilistic Programming

Borgström, J., Gordon, A., Ouyang, L., Russo, C., Ścibior, A., Szymczak, M.

Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages: 271-283, POPL ’16, ACM, 2016 (conference)

DOI [BibTex]

DOI [BibTex]


From Deterministic ODEs to Dynamic Structural Causal Models

Rubenstein, P., Bongers, S., Mooij, J., Schölkopf, B.

2016 (conference) Submitted

Arxiv [BibTex]


A Kernel Test for Three-Variable Interactions with Random Processes

Rubenstein, P., Chwialkowski, K., Gretton, A.

Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence (UAI), (Editors: Ihler, Alexander T. and Janzing, Dominik), 2016 (conference)

PDF Supplement Arxiv [BibTex]

PDF Supplement Arxiv [BibTex]


Testing models of peripheral encoding using metamerism in an oddity paradigm

Wallis, T., Bethge, M., Wichmann, F.

Journal of Vision, 16(2), 2016 (article)

DOI [BibTex]

DOI [BibTex]


Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data

Schütt, H., Harmeling, S., Macke, J., Wichmann, F.

Vision Research, 122, pages: 105-123, 2016 (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Influence of initial fixation position in scene viewing

Rothkegel, L., Trukenbrod, H., Schütt, H., Wichmann, F., Engbert, R.

Vision Research, 129, pages: 33-49, 2016 (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


BOiS—Berlin Object in Scene Database: Controlled Photographic Images for Visual Search Experiments with Quantified Contextual Priors

Mohr, J., Seyfarth, J., Lueschow, A., Weber, J., Wichmann, F., Obermayer, K.

Frontiers in Psychology, 2016 (article)

DOI [BibTex]

DOI [BibTex]


An overview of quantitative approaches in Gestalt perception

Jäkel, F., Singh, M., Wichmann, F., Herzog, M.

Vision Research, 126, pages: 3-8, 2016 (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Understanding Probabilistic Sparse Gaussian Process Approximations

Bauer, M., van der Wilk, M., Rasmussen, C.

Advances in Neural Information Processing Systems 29, pages: 1533-1541, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems (NIPS), 2016 (conference)

link (url) [BibTex]

link (url) [BibTex]


Unsupervised Domain Adaptation in the Wild : Dealing with Asymmetric Label Set

Mittal, A., Raj, A., Namboodiri, V., Tuytelaars, T.

2016 (misc)

Arxiv [BibTex]


Screening Rules for Convex Problems

Raj, A., Olbrich, J., Gärtner, B., Schölkopf, B., Jaggi, M.

2016 (article) Submitted

[BibTex]

[BibTex]


PGO wave-triggered functional MRI: mapping the networks underlying synaptic consolidation

Logothetis, N., Murayama, Y., Ramirez-Villegas, J., Besserve, M., Evrard, H.

47th Annual Meeting of the Society for Neuroscience (Neuroscience), 2016 (poster)

[BibTex]

[BibTex]


Hippocampal neural events predict ongoing brain-wide BOLD activity

Besserve, M., Logothetis, N.

47th Annual Meeting of the Society for Neuroscience (Neuroscience), 2016 (poster)

[BibTex]

[BibTex]


Statistical source separation of rhythmic LFP patterns during sharp wave ripples in the macaque hippocampus

Ramirez-Villegas, J., Logothetis, N., Besserve, M.

47th Annual Meeting of the Society for Neuroscience (Neuroscience), 2016 (poster)

[BibTex]

[BibTex]


Multiparametric Imaging of Ischemic Stroke using [89Zr]-Desferal-EPO-PET/MRI in combination with Gaussian Mixture Modeling enables unsupervised lesions identification

Castaneda, S., Katiyar, P., Russo, F., Maurer, A., Patzwaldt, K., Poli, S., Calaminus, C., Disselhorst, J., Ziemann, U., Pichler, B.

European Molecular Imaging Meeting, 2016 (poster)

link (url) [BibTex]

link (url) [BibTex]


Analysis of multiparametric MRI using a semi-supervised random forest framework allows the detection of therapy response in ischemic stroke

Castaneda, S., Katiyar, P., Russo, F., Calaminus, C., Disselhorst, J., Ziemann, U., Kohlhofer, U., Quintanilla-Martinez, L., Poli, S., Pichler, B.

World Molecular Imaging Conference, 2016 (talk)

link (url) [BibTex]

link (url) [BibTex]


Novel Random Forest based framework enables the segmentation of cerebral ischemic regions using multiparametric MRI

Katiyar, P., Castaneda, S., Patzwaldt, K., Russo, F., Poli, S., Ziemann, U., Disselhorst, J., Pichler, B.

European Molecular Imaging Meeting, 2016 (poster)

link (url) [BibTex]

link (url) [BibTex]


Multi-view learning on multiparametric PET/MRI quantifies intratumoral heterogeneity and determines therapy efficacy

Katiyar, P., Divine, M., Kohlhofer, U., Quintanilla-Martinez, L., Siegemund, M., Pfizenmaier, K., Kontermann, R., Pichler, B., Disselhorst, J.

World Molecular Imaging Conference, 2016 (talk)

link (url) [BibTex]

link (url) [BibTex]


Spectral Clustering predicts tumor tissue heterogeneity using dynamic 18F-FDG PET: a complement to the standard compartmental modeling approach

Katiyar, P., Divine, M., Kohlhofer, U., Quintanilla-Martinez, L., Schölkopf, B., Pichler, B., Disselhorst, J.

Journal of Nuclear Medicine, 2016, (published ahead of print November 3, 2016) (article)

DOI [BibTex]

DOI [BibTex]


A Novel Unsupervised Segmentation Approach Quantifies Tumor Tissue Populations Using Multiparametric MRI: First Results with Histological Validation

Katiyar, P., Divine, M., Kohlhofer, U., Quintanilla-Martinez, L., Schölkopf, B., Disselhorst, J.

Molecular Imaging and Biology, pages: 1-7, 2016 (article)

DOI [BibTex]

DOI [BibTex]


Experimental and causal view on information integration in autonomous agents

Geiger, P., Hofmann, K., Schölkopf, B.

Proceedings of the 6th International Workshop on Combinations of Intelligent Methods and Applications (CIMA 2016), pages: 21-28, (Editors: Hatzilygeroudis, I. and Palade, V.), 2016 (conference)

link (url) [BibTex]

link (url) [BibTex]


The Mondrian Kernel

Balog, M., Lakshminarayanan, B., Ghahramani, Z., Roy, D., Teh, Y.

Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence (UAI), (Editors: Ihler, Alexander T. and Janzing, Dominik), 2016 (conference)

Arxiv link (url) [BibTex]

Arxiv link (url) [BibTex]


Learning High-Order Filters for Efficient Blind Deconvolution of Document Photographs

Xiao, L., Wang, J., Heidrich, W., Hirsch, M.

Computer Vision - ECCV 2016, Lecture Notes in Computer Science, LNCS 9907, Part III, pages: 734-749, (Editors: Bastian Leibe, Jiri Matas, Nicu Sebe and Max Welling), Springer, 2016 (conference)

DOI [BibTex]

DOI [BibTex]


easyGWAS: A Cloud-based Platform for Comparing the Results of Genome-wide Association Studies

Grimm, D., Roqueiro, D., Salome, P., Kleeberger, S., Greshake, B., Zhu, W., Liu, C., Lippert, C., Stegle, O., Schölkopf, B., Weigel, D., Borgwardt, K.

The Plant Cell, 2016 (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Self-regulation of brain rhythms in the precuneus: a novel BCI paradigm for patients with ALS

Fomina, T., Lohmann, G., Erb, M., Ethofer, T., Schölkopf, B., Grosse-Wentrup, M.

Journal of Neural Engineering, 13(6):066021, 2016 (article)

link (url) [BibTex]

link (url) [BibTex]


Minimax Estimation of Maximum Mean Discrepancy with Radial Kernels

Tolstikhin, I., Sriperumbudur, B., Schölkopf, B.

Advances in Neural Information Processing Systems 29, pages: 1930-1938, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems (NIPS), 2016 (conference)

link (url) [BibTex]

link (url) [BibTex]


Consistent Kernel Mean Estimation for Functions of Random Variables

Scibior, A., Simon-Gabriel, C., Tolstikhin, I., Schölkopf, B.

Advances in Neural Information Processing Systems 29, pages: 1732-1740, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems (NIPS), 2016 (conference)

link (url) [BibTex]

link (url) [BibTex]


The population of long-period transiting exoplanets

Foreman-Mackey, D., Morton, T., Hogg, D., Agol, E., Schölkopf, B.

The Astrophysical Journal, 152(6):206, 2016 (article)

link (url) [BibTex]

link (url) [BibTex]


Multi-task logistic regression in brain-computer interfaces

Fiebig, K., Jayaram, V., Peters, J., Grosse-Wentrup, M.

Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC 2016), pages: 002307-002312, IEEE, 2016 (conference)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Jointly Learning Trajectory Generation and Hitting Point Prediction in Robot Table Tennis

Huang, Y., Büchler, D., Koc, O., Schölkopf, B., Peters, J.

16th IEEE-RAS International Conference on Humanoid Robots, pages: 650-655, Humanoids, 2016 (conference)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Using Probabilistic Movement Primitives for Striking Movements

Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.

16th IEEE-RAS International Conference on Humanoid Robots, pages: 502-508, Humanoids, 2016 (conference)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb md 2016 lightfield depth
Depth Estimation Through a Generative Model of Light Field Synthesis

Sajjadi, M., Köhler, R., Schölkopf, B., Hirsch, M.

Pattern Recognition: 38th German Conference, GCPR 2016, Hannover, Germany, September 12-15, 2016, Proceedings, 9796, pages: 426-438, Lecture Notes in Computer Science, (Editors: Rosenhahn, B. and Andres, B.), Springer International Publishing, 2016 (conference)

Arxiv link (url) DOI [BibTex]

Arxiv link (url) DOI [BibTex]


A New Trajectory Generation Framework in Robotic Table Tennis

Koc, O., Maeda, G., Peters, J.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 3750-3756, IROS, 2016 (conference)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Probabilistic Inference for Determining Options in Reinforcement Learning

Daniel, C., van Hoof, H., Peters, J., Neumann, G.

Machine Learning, Special Issue, 104(2):337-357, (Editors: Gärtner, T., Nanni, M., Passerini, A. and Robardet, C.), European Conference on Machine Learning im Machine Learning, Journal Track, 2016, Best Student Paper Award of ECMLPKDD 2016 (article)

DOI [BibTex]

DOI [BibTex]


Active Nearest-Neighbor Learning in Metric Spaces

Kontorovich, A., Sabato, S., Urner, R.

Advances in Neural Information Processing Systems 29, pages: 856-864, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems (NIPS), 2016 (conference)

link (url) [BibTex]

link (url) [BibTex]


Lifelong Learning with Weighted Majority Votes

Pentina, A., Urner, R.

Advances in Neural Information Processing Systems 29, pages: 3612-3620, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems (NIPS), 2016 (conference)

link (url) [BibTex]

link (url) [BibTex]


A Causal, Data-driven Approach to Modeling the Kepler Data

Wang, D., Hogg, D., Foreman-Mackey, D., Schölkopf, B.

Publications of the Astronomical Society of the Pacific, 128(967):094503, 2016 (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


The Arrow of Time in Multivariate Time Serie

Bauer, S., Schölkopf, B., Peters, J.

Proceedings of the 33rd International Conference on Machine Learning, 48, pages: 2043-2051, JMLR Workshop and Conference Proceedings, (Editors: Balcan, M. F. and Weinberger, K. Q.), JMLR, ICML, 2016 (conference)

link (url) [BibTex]

link (url) [BibTex]


Batch Bayesian Optimization via Local Penalization

González, J., Dai, Z., Hennig, P., Lawrence, N.

Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS 2016), 51, pages: 648-657, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C.), 2016 (conference)

link (url) [BibTex]

link (url) [BibTex]


Active Uncertainty Calibration in Bayesian ODE Solvers

Kersting, H., Hennig, P.

Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI 2016), pages: 309-318, (Editors: Ihler, A. and Janzing, D.), AUAI Press, 2016 (conference)

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


On Version Space Compression

Ben-David, S., Urner, R.

Algorithmic Learning Theory - 27th International Conference (ALT 2016), 9925, pages: 50-64, Lecture Notes in Computer Science, (Editors: Ortner, R., Simon, H. U., and Zilles, S.), 2016 (conference)

DOI [BibTex]

DOI [BibTex]


Thumb md untitled
Probabilistic Approximate Least-Squares

Bartels, S., Hennig, P.

Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS 2016), 51, pages: 676-684, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C. ), 2016 (conference)

Abstract
Least-squares and kernel-ridge / Gaussian process regression are among the foundational algorithms of statistics and machine learning. Famously, the worst-case cost of exact nonparametric regression grows cubically with the data-set size; but a growing number of approximations have been developed that estimate good solutions at lower cost. These algorithms typically return point estimators, without measures of uncertainty. Leveraging recent results casting elementary linear algebra operations as probabilistic inference, we propose a new approximate method for nonparametric least-squares that affords a probabilistic uncertainty estimate over the error between the approximate and exact least-squares solution (this is not the same as the posterior variance of the associated Gaussian process regressor). This allows estimating the error of the least-squares solution on a subset of the data relative to the full-data solution. The uncertainty can be used to control the computational effort invested in the approximation. Our algorithm has linear cost in the data-set size, and a simple formal form, so that it can be implemented with a few lines of code in programming languages with linear algebra functionality.

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


On the Identifiability and Estimation of Functional Causal Models in the Presence of Outcome-Dependent Selection

Zhang, K., Zhang, J., Huang, B., Schölkopf, B., Glymour, C.

Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI 2016), pages: 825-834, (Editors: Ihler, A. and Janzing, D.), AUAI Press, 2016, plenary presentation (conference)

link (url) [BibTex]

link (url) [BibTex]


Learning Causal Interaction Network of Multivariate Hawkes Processes

Etesami, S., Kiyavash, N., Zhang, K., Singhal, K.

Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI 2016), 2016, poster presentation (conference)

[BibTex]

[BibTex]


Causal discovery and inference: concepts and recent methodological advances

Spirtes, P., Zhang, K.

Applied Informatics, 3(3):1-28, 2016 (article)

DOI [BibTex]

DOI [BibTex]