Header logo is ei


2007


no image
Machine Learning for Mass Production and Industrial Engineering

Pfingsten, T.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, February 2007 (phdthesis)

PDF [BibTex]

2007

PDF [BibTex]


no image
New Margin- and Evidence-Based Approaches for EEG Signal Classification

Hill, N., Farquhar, J.

Invited talk at the FaSor Jahressymposium, February 2007 (talk)

PDF [BibTex]

PDF [BibTex]


no image
On the Pre-Image Problem in Kernel Methods

BakIr, G., Schölkopf, B., Weston, J.

In Kernel Methods in Bioengineering, Signal and Image Processing, pages: 284-302, (Editors: G Camps-Valls and JL Rojo-Álvarez and M Martínez-Ramón), Idea Group Publishing, Hershey, PA, USA, January 2007 (inbook)

Abstract
In this chapter we are concerned with the problem of reconstructing patterns from their representation in feature space, known as the pre-image problem. We review existing algorithms and propose a learning based approach. All algorithms are discussed regarding their usability and complexity and evaluated on an image denoising application.

DOI [BibTex]

DOI [BibTex]


no image
A Subspace Kernel for Nonlinear Feature Extraction

Wu, M., Farquhar, J.

In IJCAI-07, pages: 1125-1130, (Editors: Veloso, M. M.), AAAI Press, Menlo Park, CA, USA, International Joint Conference on Artificial Intelligence, January 2007 (inproceedings)

Abstract
Kernel based nonlinear Feature Extraction (KFE) or dimensionality reduction is a widely used pre-processing step in pattern classification and data mining tasks. Given a positive definite kernel function, it is well known that the input data are implicitly mapped to a feature space with usually very high dimensionality. The goal of KFE is to find a low dimensional subspace of this feature space, which retains most of the information needed for classification or data analysis. In this paper, we propose a subspace kernel based on which the feature extraction problem is transformed to a kernel parameter learning problem. The key observation is that when projecting data into a low dimensional subspace of the feature space, the parameters that are used for describing this subspace can be regarded as the parameters of the kernel function between the projected data. Therefore current kernel parameter learning methods can be adapted to optimize this parameterized kernel function. Experimental results are provided to validate the effectiveness of the proposed approach.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Graph kernels for disease outcome prediction from protein-protein interaction networks

Borgwardt, KM., Vishwanathan, SVN., Schraudolph, N., Kriegel, H-P.

In pages: 4-15, (Editors: Altman, R.B. A.K. Dunker, L. Hunter, T. Murray, T.E. Klein), World Scientific, Hackensack, NJ, USA, Pacific Symposium on Biocomputing (PSB), January 2007 (inproceedings)

Abstract
It is widely believed that comparing discrepancies in the protein-protein interaction (PPI) networks of individuals will become an important tool in understanding and preventing diseases. Currently PPI networks for individuals are not available, but gene expression data is becoming easier to obtain and allows us to represent individuals by a co-integrated gene expression/protein interaction network. Two major problems hamper the application of graph kernels – state-of-the-art methods for whole-graph comparison – to compare PPI networks. First, these methods do not scale to graphs of the size of a PPI network. Second, missing edges in these interaction networks are biologically relevant for detecting discrepancies, yet, these methods do not take this into account. In this article we present graph kernels for biological network comparison that are fast to compute and take into account missing interactions. We evaluate their practical performance on two datasets of co-integrated gene expression/PPI networks.

PDF [BibTex]

PDF [BibTex]


no image
Some observations on the pedestal effect

Henning, G., Wichmann, F.

Journal of Vision, 7(1:3):1-15, January 2007 (article)

Abstract
The pedestal or dipper effect is the large improvement in the detectability of a sinusoidal grating observed when it is added to a masking or pedestal grating of the same spatial frequency, orientation, and phase. We measured the pedestal effect in both broadband and notched noiseVnoise from which a 1.5-octave band centered on the signal frequency had been removed. Although the pedestal effect persists in broadband noise, it almost disappears in the notched noise. Furthermore, the pedestal effect is substantial when either high- or low-pass masking noise is used. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies different from that of the signal and the pedestal. We speculate that the spatial-frequency components of the notched noise above and below the spatial frequency of the signal and the pedestal prevent ‘‘off-frequency looking,’’ that is, prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and the pedestal. Thus, the pedestal or dipper effect measured without notched noise appears not to be a characteristic of individual spatial-frequency-tuned channels.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Development of a Brain-Computer Interface Approach Based on Covert Attention to Tactile Stimuli

Raths, C.

University of Tübingen, Germany, University of Tübingen, Germany, January 2007 (diplomathesis)

[BibTex]

[BibTex]


no image
Cue Combination and the Effect of Horizontal Disparity and Perspective on Stereoacuity

Zalevski, AM., Henning, GB., Hill, NJ.

Spatial Vision, 20(1):107-138, January 2007 (article)

Abstract
Relative depth judgments of vertical lines based on horizontal disparity deteriorate enormously when the lines form part of closed configurations (Westheimer, 1979). In studies showing this effect, perspective was not manipulated and thus produced inconsistency between horizontal disparity and perspective. We show that stereoacuity improves dramatically when perspective and horizontal disparity are made consistent. Observers appear to use unhelpful perspective cues in judging the relative depth of the vertical sides of rectangles in a way not incompatible with a form of cue weighting. However, 95% confidence intervals for the weights derived for cues usually exceed the a-priori [0-1] range.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Independent Factor Reinforcement Learning for Portfolio Management

Li, J., Zhang, K., Chan, L.

In Proceedings of the 8th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2007), pages: 1020-1031, (Editors: H Yin and P Tiño and E Corchado and W Byrne and X Yao), Springer, Berlin, Germany, 8th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL), 2007 (inproceedings)

Web [BibTex]

Web [BibTex]


no image
A Machine Learning Approach for Estimating the Attenuation Map for a Combined PET/MR Scanner

Hofmann, M.

Biologische Kybernetik, Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, 2007 (diplomathesis)

[BibTex]

[BibTex]


no image
Classificazione di immagini telerilevate satellitari per agricoltura di precisione

Arnoldi, E., Bruzzone, L., Carlin, L., Pedron, L., Persello, C.

MondoGis: Il Mondo dei Sistemi Informativi Geografici, 63, pages: 13-17, 2007 (article)

[BibTex]

[BibTex]


no image
Separating convolutive mixtures by pairwise mutual information minimization", IEEE Signal Processing Letters

Zhang, K., Chan, L.

IEEE Signal Processing Letters, 14(12):992-995, 2007 (article)

Abstract
Blind separation of convolutive mixtures by minimizing the mutual information between output sequences can avoid the side effect of temporally whitening the outputs, but it involves the score function difference, whose estimation may be problematic when the data dimension is greater than two. This greatly limits the application of this method. Fortunately, for separating convolutive mixtures, pairwise independence of outputs leads to their mutual independence. As an implementation of this idea, we propose a way to separate convolutive mixtures by enforcing pairwise independence. This approach can be applied to separate convolutive mixtures of a moderate number of sources.

Web [BibTex]


no image
Some comments on ν-SVM

Dinuzzo, F., De Nicolao, G.

In A tribute to Antonio Lepschy, pages: -, (Editors: Picci, G. , M. E. Valcher), Edizione Libreria Progetto, Padova, Italy, 2007 (inbook)

[BibTex]

[BibTex]


no image
Kernel-Based Nonlinear Independent Component Analysis

Zhang, K., Chan, L.

In Independent Component Analysis and Signal Separation, 7th International Conference, ICA 2007, pages: 301-308, (Editors: M E Davies and C J James and S A Abdallah and M D Plumbley), Springer, 7th International Conference on Independent Component Analysis and Signal Separation (ICA), 2007, Lecture Notes in Computer Science, Vol. 4666 (inproceedings)

Web DOI [BibTex]

Web DOI [BibTex]


no image
Mathematik der Wahrnehmung: Wendepunkte

Wichman, F., Ernst, MO.

Akademische Mitteilungen zw{\"o}lf: F{\"u}nf Sinne, pages: 32-37, 2007 (misc)

[BibTex]

[BibTex]


no image
Towards Machine Learning of Motor Skills

Peters, J., Schaal, S., Schölkopf, B.

In Proceedings of Autonome Mobile Systeme (AMS), pages: 138-144, (Editors: K Berns and T Luksch), 2007, clmc (inproceedings)

Abstract
Autonomous robots that can adapt to novel situations has been a long standing vision of robotics, artificial intelligence, and cognitive sciences. Early approaches to this goal during the heydays of artificial intelligence research in the late 1980s, however, made it clear that an approach purely based on reasoning or human insights would not be able to model all the perceptuomotor tasks that a robot should fulfill. Instead, new hope was put in the growing wake of machine learning that promised fully adaptive control algorithms which learn both by observation and trial-and-error. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics, and usually scaling was only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general approach to motor skill learning in order to get one step closer towards human-like performance. For doing so, we study two ma jor components for such an approach, i.e., firstly, a theoretically well-founded general approach to representing the required control structures for task representation and execution and, secondly, appropriate learning algorithms which can be applied in this setting.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Reinforcement Learning for Optimal Control of Arm Movements

Theodorou, E., Peters, J., Schaal, S.

In Abstracts of the 37st Meeting of the Society of Neuroscience., Neuroscience, 2007, clmc (inproceedings)

Abstract
Every day motor behavior consists of a plethora of challenging motor skills from discrete movements such as reaching and throwing to rhythmic movements such as walking, drumming and running. How this plethora of motor skills can be learned remains an open question. In particular, is there any unifying computa-tional framework that could model the learning process of this variety of motor behaviors and at the same time be biologically plausible? In this work we aim to give an answer to these questions by providing a computational framework that unifies the learning mechanism of both rhythmic and discrete movements under optimization criteria, i.e., in a non-supervised trial-and-error fashion. Our suggested framework is based on Reinforcement Learning, which is mostly considered as too costly to be a plausible mechanism for learning com-plex limb movement. However, recent work on reinforcement learning with pol-icy gradients combined with parameterized movement primitives allows novel and more efficient algorithms. By using the representational power of such mo-tor primitives we show how rhythmic motor behaviors such as walking, squash-ing and drumming as well as discrete behaviors like reaching and grasping can be learned with biologically plausible algorithms. Using extensive simulations and by using different reward functions we provide results that support the hy-pothesis that Reinforcement Learning could be a viable candidate for motor learning of human motor behavior when other learning methods like supervised learning are not feasible.

[BibTex]

[BibTex]


no image
Machine Learning of Motor Skills for Robotics

Peters, J.

University of Southern California, Los Angeles, CA, USA, University of Southern California, Los Angeles, CA, USA, 2007, clmc (phdthesis)

Abstract
Autonomous robots that can assist humans in situations of daily life have been a long standing vision of robotics, artificial intelligence, and cognitive sciences. A first step towards this goal is to create robots that can accomplish a multitude of different tasks, triggered by environmental context or higher level instruction. Early approaches to this goal during the heydays of artificial intelligence research in the late 1980s, however, made it clear that an approach purely based on reasoning and human insights would not be able to model all the perceptuomotor tasks that a robot should fulfill. Instead, new hope was put in the growing wake of machine learning that promised fully adaptive control algorithms which learn both by observation and trial-and-error. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics, and usually scaling was only achieved in precisely pre-structured domains. In this thesis, we investigate the ingredients for a general approach to motor skill learning in order to get one step closer towards human-like performance. For doing so, we study two major components for such an approach, i.e., firstly, a theoretically well-founded general approach to representing the required control structures for task representation and execution and, secondly, appropriate learning algorithms which can be applied in this setting. As a theoretical foundation, we first study a general framework to generate control laws for real robots with a particular focus on skills represented as dynamical systems in differential constraint form. We present a point-wise optimal control framework resulting from a generalization of Gauss' principle and show how various well-known robot control laws can be derived by modifying the metric of the employed cost function. The framework has been successfully applied to task space tracking control for holonomic systems for several different metrics on the anthropomorphic SARCOS Master Arm. In order to overcome the limiting requirement of accurate robot models, we first employ learning methods to find learning controllers for task space control. However, when learning to execute a redundant control problem, we face the general problem of the non-convexity of the solution space which can force the robot to steer into physically impossible configurations if supervised learning methods are employed without further consideration. This problem can be resolved using two major insights, i.e., the learning problem can be treated as locally convex and the cost function of the analytical framework can be used to ensure global consistency. Thus, we derive an immediate reinforcement learning algorithm from the expectation-maximization point of view which leads to a reward-weighted regression technique. This method can be used both for operational space control as well as general immediate reward reinforcement learning problems. We demonstrate the feasibility of the resulting framework on the problem of redundant end-effector tracking for both a simulated 3 degrees of freedom robot arm as well as for a simulated anthropomorphic SARCOS Master Arm. While learning to execute tasks in task space is an essential component to a general framework to motor skill learning, learning the actual task is of even higher importance, particularly as this issue is more frequently beyond the abilities of analytical approaches than execution. We focus on the learning of elemental tasks which can serve as the "building blocks of movement generation", called motor primitives. Motor primitives are parameterized task representations based on splines or nonlinear differential equations with desired attractor properties. While imitation learning of parameterized motor primitives is a relatively well-understood problem, the self-improvement by interaction of the system with the environment remains a challenging problem, tackled in the fourth chapter of this thesis. For pursuing this goal, we highlight the difficulties with current reinforcement learning methods, and outline both established and novel algorithms for the gradient-based improvement of parameterized policies. We compare these algorithms in the context of motor primitive learning, and show that our most modern algorithm, the Episodic Natural Actor-Critic outperforms previous algorithms by at least an order of magnitude. We demonstrate the efficiency of this reinforcement learning method in the application of learning to hit a baseball with an anthropomorphic robot arm. In conclusion, in this thesis, we have contributed a general framework for analytically computing robot control laws which can be used for deriving various previous control approaches and serves as foundation as well as inspiration for our learning algorithms. We have introduced two classes of novel reinforcement learning methods, i.e., the Natural Actor-Critic and the Reward-Weighted Regression algorithm. These algorithms have been used in order to replace the analytical components of the theoretical framework by learned representations. Evaluations have been performed on both simulated and real robot arms.

[BibTex]

[BibTex]


no image
Reinforcement learning by reward-weighted regression for operational space control

Peters, J., Schaal, S.

In Proceedings of the 24th Annual International Conference on Machine Learning, pages: 745-750, ICML, 2007, clmc (inproceedings)

Abstract
Many robot control problems of practical importance, including operational space control, can be reformulated as immediate reward reinforcement learning problems. However, few of the known optimization or reinforcement learning algorithms can be used in online learning control for robots, as they are either prohibitively slow, do not scale to interesting domains of complex robots, or require trying out policies generated by random search, which are infeasible for a physical system. Using a generalization of the EM-base reinforcement learning framework suggested by Dayan & Hinton, we reduce the problem of learning with immediate rewards to a reward-weighted regression problem with an adaptive, integrated reward transformation for faster convergence. The resulting algorithm is efficient, learns smoothly without dangerous jumps in solution space, and works well in applications of complex high degree-of-freedom robots.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Policy gradient methods for machine learning

Peters, J., Theodorou, E., Schaal, S.

In Proceedings of the 14th INFORMS Conference of the Applied Probability Society, pages: 97-98, Eindhoven, Netherlands, July 9-11, 2007, 2007, clmc (inproceedings)

Abstract
We present an in-depth survey of policy gradient methods as they are used in the machine learning community for optimizing parameterized, stochastic control policies in Markovian systems with respect to the expected reward. Despite having been developed separately in the reinforcement learning literature, policy gradient methods employ likelihood ratio gradient estimators as also suggested in the stochastic simulation optimization community. It is well-known that this approach to policy gradient estimation traditionally suffers from three drawbacks, i.e., large variance, a strong dependence on baseline functions and a inefficient gradient descent. In this talk, we will present a series of recent results which tackles each of these problems. The variance of the gradient estimation can be reduced significantly through recently introduced techniques such as optimal baselines, compatible function approximations and all-action gradients. However, as even the analytically obtainable policy gradients perform unnaturally slow, it required the step from ÔvanillaÕ policy gradient methods towards natural policy gradients in order to overcome the inefficiency of the gradient descent. This development resulted into the Natural Actor-Critic architecture which can be shown to be very efficient in application to motor primitive learning for robotics.

[BibTex]

[BibTex]


no image
Policy Learning for Motor Skills

Peters, J., Schaal, S.

In Proceedings of 14th International Conference on Neural Information Processing (ICONIP), pages: 233-242, (Editors: Ishikawa, M. , K. Doya, H. Miyamoto, T. Yamakawa), 2007, clmc (inproceedings)

Abstract
Policy learning which allows autonomous robots to adapt to novel situations has been a long standing vision of robotics, artificial intelligence, and cognitive sciences. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics, and usually scaling was only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general approach policy learning with the goal of an application to motor skill refinement in order to get one step closer towards human-like performance. For doing so, we study two major components for such an approach, i.e., firstly, we study policy learning algorithms which can be applied in the general setting of motor skill learning, and, secondly, we study a theoretically well-founded general approach to representing the required control structures for task representation and execution.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Reinforcement learning for operational space control

Peters, J., Schaal, S.

In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, pages: 2111-2116, IEEE Computer Society, ICRA, 2007, clmc (inproceedings)

Abstract
While operational space control is of essential importance for robotics and well-understood from an analytical point of view, it can be prohibitively hard to achieve accurate control in face of modeling errors, which are inevitable in complex robots, e.g., humanoid robots. In such cases, learning control methods can offer an interesting alternative to analytical control algorithms. However, the resulting supervised learning problem is ill-defined as it requires to learn an inverse mapping of a usually redundant system, which is well known to suffer from the property of non-convexity of the solution space, i.e., the learning system could generate motor commands that try to steer the robot into physically impossible configurations. The important insight that many operational space control algorithms can be reformulated as optimal control problems, however, allows addressing this inverse learning problem in the framework of reinforcement learning. However, few of the known optimization or reinforcement learning algorithms can be used in online learning control for robots, as they are either prohibitively slow, do not scale to interesting domains of complex robots, or require trying out policies generated by random search, which are infeasible for a physical system. Using a generalization of the EM-based reinforcement learning framework suggested by Dayan & Hinton, we reduce the problem of learning with immediate rewards to a reward-weighted regression problem with an adaptive, integrated reward transformation for faster convergence. The resulting algorithm is efficient, learns smoothly without dangerous jumps in solution space, and works well in applications of complex high degree-of-freedom robots.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Relative Entropy Policy Search

Peters, J.

CLMC Technical Report: TR-CLMC-2007-2, Computational Learning and Motor Control Lab, Los Angeles, CA, 2007, clmc (techreport)

Abstract
This technical report describes a cute idea of how to create new policy search approaches. It directly relates to the Natural Actor-Critic methods but allows the derivation of one shot solutions. Future work may include the application to interesting problems.

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Using reward-weighted regression for reinforcement learning of task space control

Peters, J., Schaal, S.

In Proceedings of the 2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning, pages: 262-267, Honolulu, Hawaii, April 1-5, 2007, 2007, clmc (inproceedings)

Abstract
In this paper, we evaluate different versions from the three main kinds of model-free policy gradient methods, i.e., finite difference gradients, `vanilla' policy gradients and natural policy gradients. Each of these methods is first presented in its simple form and subsequently refined and optimized. By carrying out numerous experiments on the cart pole regulator benchmark we aim to provide a useful baseline for future research on parameterized policy search algorithms. Portable C++ code is provided for both plant and algorithms; thus, the results in this paper can be reevaluated, reused and new algorithms can be inserted with ease.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Evaluation of Policy Gradient Methods and Variants on the Cart-Pole Benchmark

Riedmiller, M., Peters, J., Schaal, S.

In Proceedings of the 2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning, pages: 254-261, ADPRL, 2007, clmc (inproceedings)

Abstract
In this paper, we evaluate different versions from the three main kinds of model-free policy gradient methods, i.e., finite difference gradients, `vanilla' policy gradients and natural policy gradients. Each of these methods is first presented in its simple form and subsequently refined and optimized. By carrying out numerous experiments on the cart pole regulator benchmark we aim to provide a useful baseline for future research on parameterized policy search algorithms. Portable C++ code is provided for both plant and algorithms; thus, the results in this paper can be reevaluated, reused and new algorithms can be inserted with ease.

PDF [BibTex]

PDF [BibTex]

2001


no image
Pattern Selection Using the Bias and Variance of Ensemble

Shin, H., Cho, S.

In Proc. of the Korean Data Mining Conference, pages: 56-67, Korean Data Mining Conference, December 2001 (inproceedings)

[BibTex]

2001

[BibTex]


no image
Separation of post-nonlinear mixtures using ACE and temporal decorrelation

Ziehe, A., Kawanabe, M., Harmeling, S., Müller, K.

In ICA 2001, pages: 433-438, (Editors: Lee, T.-W. , T.P. Jung, S. Makeig, T. J. Sejnowski), Third International Workshop on Independent Component Analysis and Blind Signal Separation, December 2001 (inproceedings)

Abstract
We propose an efficient method based on the concept of maximal correlation that reduces the post-nonlinear blind source separation problem (PNL BSS) to a linear BSS problem. For this we apply the Alternating Conditional Expectation (ACE) algorithm – a powerful technique from nonparametric statistics – to approximately invert the (post-)nonlinear functions. Interestingly, in the framework of the ACE method convergence can be proven and in the PNL BSS scenario the optimal transformation found by ACE will coincide with the desired inverse functions. After the nonlinearities have been removed by ACE, temporal decorrelation (TD) allows us to recover the source signals. An excellent performance underlines the validity of our approach and demonstrates the ACE-TD method on realistic examples.

PDF [BibTex]

PDF [BibTex]


no image
Perception of Planar Shapes in Depth

Wichmann, F., Willems, B., Rosas, P., Wagemans, J.

Journal of Vision, 1(3):176, First Annual Meeting of the Vision Sciences Society (VSS), December 2001 (poster)

Abstract
We investigated the influence of the perceived 3D-orientation of planar elliptical shapes on the perception of the shapes themselves. Ellipses were projected onto the surface of a sphere and subjects were asked to indicate if the projected shapes looked as if they were a circle on the surface of the sphere. The image of the sphere was obtained from a real, (near) perfect sphere using a highly accurate digital camera (real sphere diameter 40 cm; camera-to-sphere distance 320 cm; for details see Willems et al., Perception 29, S96, 2000; Photometrics SenSys 400 digital camera with Rodenstock lens, 12-bit linear luminance resolution). Stimuli were presented monocularly on a carefully linearized Sony GDM-F500 monitor keeping the scene geometry as in the real case (sphere diameter on screen 8.2 cm; viewing distance 66 cm). Experiments were run in a darkened room using a viewing tube to minimize, as far as possible, extraneous monocular cues to depth. Three different methods were used to obtain subjects' estimates of 3D-shape: the method of adjustment, temporal 2-alternative forced choice (2AFC) and yes/no. Several results are noteworthy. First, mismatch between perceived and objective slant tended to decrease with increasing objective slant. Second, the variability of the settings, too, decreased with increasing objective slant. Finally, we comment on the results obtained using different psychophysical methods and compare our results to those obtained using a real sphere and binocular vision (Willems et al.).

Web DOI [BibTex]

Web DOI [BibTex]


no image
Anabolic and Catabolic Gene Expression Pattern Analysis in Normal Versus Osteoarthritic Cartilage Using Complementary DNA-Array Technology

Aigner, T., Zien, A., Gehrsitz, A., Gebhard, P., McKenna, L.

Arthritis and Rheumatism, 44(12):2777-2789, December 2001 (article)

Web [BibTex]

Web [BibTex]


no image
Nonlinear blind source separation using kernel feature spaces

Harmeling, S., Ziehe, A., Kawanabe, M., Blankertz, B., Müller, K.

In ICA 2001, pages: 102-107, (Editors: Lee, T.-W. , T.P. Jung, S. Makeig, T. J. Sejnowski), Third International Workshop on Independent Component Analysis and Blind Signal Separation, December 2001 (inproceedings)

Abstract
In this work we propose a kernel-based blind source separation (BSS) algorithm that can perform nonlinear BSS for general invertible nonlinearities. For our kTDSEP algorithm we have to go through four steps: (i) adapting to the intrinsic dimension of the data mapped to feature space F, (ii) finding an orthonormal basis of this submanifold, (iii) mapping the data into the subspace of F spanned by this orthonormal basis, and (iv) applying temporal decorrelation BSS (TDSEP) to the mapped data. After demixing we get a number of irrelevant components and the original sources. To find out which ones are the components of interest, we propose a criterion that allows to identify the original sources. The excellent performance of kTDSEP is demonstrated in experiments on nonlinearly mixed speech data.

PDF [BibTex]

PDF [BibTex]


no image
Pattern Selection for ‘Regression’ using the Bias and Variance of Ensemble Network

Shin, H., Cho, S.

In Proc. of the Korean Institute of Industrial Engineers Conference, pages: 10-19, Korean Industrial Engineers Conference, November 2001 (inproceedings)

[BibTex]

[BibTex]


no image
Kernel Methods for Extracting Local Image Semantics

Bradshaw, B., Schölkopf, B., Platt, J.

(MSR-TR-2001-99), Microsoft Research, October 2001 (techreport)

Web [BibTex]

Web [BibTex]


no image
Pattern Selection for ‘Classification’ using the Bias and Variance of Ensemble Neural Network

Shin, H., Cho, S.

In Proc. of the Korea Information Science Conference, pages: 307-309, Korea Information Science Conference, October 2001, Best Paper Award (inproceedings)

[BibTex]

[BibTex]


no image
Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators

Williamson, R., Smola, A., Schölkopf, B.

IEEE Transactions on Information Theory, 47(6):2516-2532, September 2001 (article)

Abstract
We derive new bounds for the generalization error of kernel machines, such as support vector machines and related regularization networks by obtaining new bounds on their covering numbers. The proofs make use of a viewpoint that is apparently novel in the field of statistical learning theory. The hypothesis class is described in terms of a linear operator mapping from a possibly infinite-dimensional unit ball in feature space into a finite-dimensional space. The covering numbers of the class are then determined via the entropy numbers of the operator. These numbers, which characterize the degree of compactness of the operator can be bounded in terms of the eigenvalues of an integral operator induced by the kernel function used by the machine. As a consequence, we are able to theoretically explain the effect of the choice of kernel function on the generalization performance of support vector machines.

DOI [BibTex]

DOI [BibTex]


no image
Hybrid IDM/Impedance learning in human movements

Burdet, E., Teng, K., Chew, C., Peters, J., , B.

In ISHF 2001, 1, pages: 1-9, 1st International Symposium on Measurement, Analysis and Modeling of Human Functions (ISHF2001), September 2001 (inproceedings)

Abstract
In spite of motor output variability and the delay in the sensori-motor, humans routinely perform intrinsically un- stable tasks. The hybrid IDM/impedance learning con- troller presented in this paper enables skilful performance in strong stable and unstable environments. It consid- ers motor output variability identified from experimen- tal data, and contains two modules concurrently learning the endpoint force and impedance adapted to the envi- ronment. The simulations suggest how humans learn to skillfully perform intrinsically unstable tasks. Testable predictions are proposed.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Calibration of Digital Amateur Cameras

Urbanek, M., Horaud, R., Sturm, P.

(RR-4214), INRIA Rhone Alpes, Montbonnot, France, July 2001 (techreport)

Web [BibTex]

Web [BibTex]


no image
Combining Off- and On-line Calibration of a Digital Camera

Urbanek, M., Horaud, R., Sturm, P.

In In Proceedings of Third International Conference on 3-D Digital Imaging and Modeling, pages: 99-106, In Proceedings of Third International Conference on 3-D Digital Imaging and Modeling, June 2001 (inproceedings)

Abstract
We introduce a novel outlook on the self­calibration task, by considering images taken by a camera in motion, allowing for zooming and focusing. Apart from the complex relationship between the lens control settings and the intrinsic camera parameters, a prior off­line calibration allows to neglect the setting of focus, and to fix the principal point and aspect ratio throughout distinct views. Thus, the calibration matrix is dependent only on the zoom position. Given a fully calibrated reference view, one has only one parameter to estimate for any other view of the same scene, in order to calibrate it and to be able to perform metric reconstructions. We provide a close­form solution, and validate the reliability of the algorithm with experiments on real images. An important advantage of our method is a reduced ­ to one ­ number of critical camera configurations, associated with it. Moreover, we propose a method for computing the epipolar geometry of two views, taken from different positions and with different (spatial) resolutions; the idea is to take an appropriate third view, that is "easy" to match with the other two.

ZIP [BibTex]

ZIP [BibTex]


no image
Centralization: A new method for the normalization of gene expression data

Zien, A., Aigner, T., Zimmer, R., Lengauer, T.

Bioinformatics, 17, pages: S323-S331, June 2001, Mathematical supplement available at http://citeseer.ist.psu.edu/574280.html (article)

Abstract
Microarrays measure values that are approximately proportional to the numbers of copies of different mRNA molecules in samples. Due to technical difficulties, the constant of proportionality between the measured intensities and the numbers of mRNA copies per cell is unknown and may vary for different arrays. Usually, the data are normalized (i.e., array-wise multiplied by appropriate factors) in order to compensate for this effect and to enable informative comparisons between different experiments. Centralization is a new two-step method for the computation of such normalization factors that is both biologically better motivated and more robust than standard approaches. First, for each pair of arrays the quotient of the constants of proportionality is estimated. Second, from the resulting matrix of pairwise quotients an optimally consistent scaling of the samples is computed.

PDF PostScript Web [BibTex]

PDF PostScript Web [BibTex]


no image
Regularized principal manifolds

Smola, A., Mika, S., Schölkopf, B., Williamson, R.

Journal of Machine Learning Research, 1, pages: 179-209, June 2001 (article)

Abstract
Many settings of unsupervised learning can be viewed as quantization problems - the minimization of the expected quantization error subject to some restrictions. This allows the use of tools such as regularization from the theory of (supervised) risk minimization for unsupervised learning. This setting turns out to be closely related to principal curves, the generative topographic map, and robust coding. We explore this connection in two ways: (1) we propose an algorithm for finding principal manifolds that can be regularized in a variety of ways; and (2) we derive uniform convergence bounds and hence bounds on the learning rates of the algorithm. In particular, we give bounds on the covering numbers which allows us to obtain nearly optimal learning rates for certain types of regularization operators. Experimental results demonstrate the feasibility of the approach.

PDF [BibTex]

PDF [BibTex]


no image
Variationsverfahren zur Untersuchung von Grundzustandseigenschaften des Ein-Band Hubbard-Modells

Eichhorn, J.

Biologische Kybernetik, Technische Universität Dresden, Dresden/Germany, May 2001 (diplomathesis)

Abstract
Using different modifications of a new variational approach, statical groundstate properties of the one-band Hubbard model such as energy and staggered magnetisation are calculated. By taking into account additional fluctuations, the method ist gradually improved so that a very good description of the energy in one and two dimensions can be achieved. After a detailed discussion of the application in one dimension, extensions for two dimensions are introduced. By use of a modified version of the variational ansatz in particular a description of the quantum phase transition for the magnetisation should be possible.

PostScript [BibTex]

PostScript [BibTex]


no image
Failure Diagnosis of Discrete Event Systems

Son, HI., Kim, KW., Lee, S.

Journal of Control, Automation and Systems Engineering, 7(5):375-383, May 2001, In Korean (article)

[BibTex]

[BibTex]


no image
Support vector novelty detection applied to jet engine vibration spectra

Hayton, P., Schölkopf, B., Tarassenko, L., Anuzis, P.

In Advances in Neural Information Processing Systems 13, pages: 946-952, (Editors: TK Leen and TG Dietterich and V Tresp), MIT Press, Cambridge, MA, USA, 14th Annual Neural Information Processing Systems Conference (NIPS), April 2001 (inproceedings)

Abstract
A system has been developed to extract diagnostic information from jet engine carcass vibration data. Support Vector Machines applied to novelty detection provide a measure of how unusual the shape of a vibration signature is, by learning a representation of normality. We describe a novel method for Support Vector Machines of including information from a second class for novelty detection and give results from the application to Jet Engine vibration analysis.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Four-legged Walking Gait Control Using a Neuromorphic Chip Interfaced to a Support Vector Learning Algorithm

Still, S., Schölkopf, B., Hepp, K., Douglas, R.

In Advances in Neural Information Processing Systems 13, pages: 741-747, (Editors: TK Leen and TG Dietterich and V Tresp), MIT Press, Cambridge, MA, USA, 14th Annual Neural Information Processing Systems Conference (NIPS), April 2001 (inproceedings)

Abstract
To control the walking gaits of a four-legged robot we present a novel neuromorphic VLSI chip that coordinates the relative phasing of the robot's legs similar to how spinal Central Pattern Generators are believed to control vertebrate locomotion [3]. The chip controls the leg movements by driving motors with time varying voltages which are the outputs of a small network of coupled oscillators. The characteristics of the chip's output voltages depend on a set of input parameters. The relationship between input parameters and output voltages can be computed analytically for an idealized system. In practice, however, this ideal relationship is only approximately true due to transistor mismatch and offsets.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Algorithmic Stability and Generalization Performance

Bousquet, O., Elisseeff, A.

In Advances in Neural Information Processing Systems 13, pages: 196-202, (Editors: Leen, T.K. , T.G. Dietterich, V. Tresp), MIT Press, Cambridge, MA, USA, Fourteenth Annual Neural Information Processing Systems Conference (NIPS), April 2001 (inproceedings)

Abstract
We present a novel way of obtaining PAC-style bounds on the generalization error of learning algorithms, explicitly using their stability properties. A {\em stable} learner being one for which the learned solution does not change much for small changes in the training set. The bounds we obtain do not depend on any measure of the complexity of the hypothesis space (e.g. VC dimension) but rather depend on how the learning algorithm searches this space, and can thus be applied even when the VC dimension in infinite. We demonstrate that regularization networks possess the required stability property and apply our method to obtain new bounds on their generalization performance.

PDF Web [BibTex]

PDF Web [BibTex]


no image
The Kernel Trick for Distances

Schölkopf, B.

In Advances in Neural Information Processing Systems 13, pages: 301-307, (Editors: TK Leen and TG Dietterich and V Tresp), MIT Press, Cambridge, MA, USA, 14th Annual Neural Information Processing Systems Conference (NIPS), April 2001 (inproceedings)

Abstract
A method is described which, like the kernel trick in support vector machines (SVMs), lets us generalize distance-based algorithms to operate in feature spaces, usually nonlinearly related to the input space. This is done by identifying a class of kernels which can be represented as norm-based distances in Hilbert spaces. It turns out that the common kernel algorithms, such as SVMs and kernel PCA, are actually really distance based algorithms and can be run with that class of kernels, too. As well as providing a useful new insight into how these algorithms work, the present work can form the basis for conceiving new algorithms.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Vicinal Risk Minimization

Chapelle, O., Weston, J., Bottou, L., Vapnik, V.

In Advances in Neural Information Processing Systems 13, pages: 416-422, (Editors: Leen, T.K. , T.G. Dietterich, V. Tresp), MIT Press, Cambridge, MA, USA, Fourteenth Annual Neural Information Processing Systems Conference (NIPS) , April 2001 (inproceedings)

Abstract
The Vicinal Risk Minimization principle establishes a bridge between generative models and methods derived from the Structural Risk Minimization Principle such as Support Vector Machines or Statistical Regularization. We explain how VRM provides a framework which integrates a number of existing algorithms, such as Parzen windows, Support Vector Machines, Ridge Regression, Constrained Logistic Classifiers and Tangent-Prop. We then show how the approach implies new algorithms for solving problems usually associated with generative models. New algorithms are described for dealing with pattern recognition problems with very different pattern distributions and dealing with unlabeled data. Preliminary empirical results are presented.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Feature Selection for SVMs

Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., Vapnik, V.

In Advances in Neural Information Processing Systems 13, pages: 668-674, (Editors: Leen, T.K. , T.G. Dietterich, V. Tresp), MIT Press, Cambridge, MA, USA, Fourteenth Annual Neural Information Processing Systems Conference (NIPS), April 2001 (inproceedings)

Abstract
We introduce a method of feature selection for Support Vector Machines. The method is based upon finding those features which minimize bounds on the leave-one-out error. This search can be efficiently performed via gradient descent. The resulting algorithms are shown to be superior to some standard feature selection algorithms on both toy data and real-life problems of face recognition, pedestrian detection and analyzing DNA microarray data.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Occam’s Razor

Rasmussen, CE., Ghahramani, Z.

In Advances in Neural Information Processing Systems 13, pages: 294-300, (Editors: Leen, T.K. , T.G. Dietterich, V. Tresp), MIT Press, Cambridge, MA, USA, Fourteenth Annual Neural Information Processing Systems Conference (NIPS), April 2001 (inproceedings)

Abstract
The Bayesian paradigm apparently only sometimes gives rise to Occam's Razor; at other times very large models perform well. We give simple examples of both kinds of behaviour. The two views are reconciled when measuring complexity of functions, rather than of the machinery used to implement them. We analyze the complexity of functions for some linear in the parameter models that are equivalent to Gaussian Processes, and always find Occam's Razor at work.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Plaid maskers revisited: asymmetric plaids

Wichmann, F.

pages: 57, 4. T{\"u}binger Wahrnehmungskonferenz (TWK), March 2001 (poster)

Abstract
A large number of psychophysical and physiological experiments suggest that luminance patterns are independently analysed in channels responding to different bands of spatial frequency. There are, however, interactions among stimuli falling well outside the usual estimates of channels' bandwidths. Derrington & Henning (1989) first reported that, in 2-AFC sinusoidal-grating detection, plaid maskers, whose components are oriented symmetrically about the signal orientation, cause a substantially larger threshold elevation than would be predicted from their sinusoidal constituents alone. Wichmann & Tollin (1997a,b) and Wichmann & Henning (1998) confirmed and extended the original findings, measuring masking as a function of presentation time and plaid mask contrast. Here I investigate masking using plaid patterns whose components are asymmetrically positioned about the signal orientation. Standard temporal 2-AFC pattern discrimination experiments were conducted using plaid patterns and oblique sinusoidal gratings as maskers, and horizontally orientated sinusoidal gratings as signals. Signal and maskers were always interleaved on the display (refresh rate 152 Hz). As in the case of the symmetrical plaid maskers, substantial masking was observed for many of the asymmetrical plaids. Masking is neither a straightforward function of the plaid's constituent sinusoidal components nor of the periodicity of the luminance beats between components. These results cause problems for the notion that, even for simple stimuli, detection and discrimination are based on the outputs of channels tuned to limited ranges of spatial frequency and orientation, even if a limited set of nonlinear interactions between these channels is allowed.

Web [BibTex]

Web [BibTex]


no image
Pattern Selection Using the Bias and Variance of Ensemble

Shin, H., Cho, S.

Journal of the Korean Institute of Industrial Engineers, 28(1):112-127, March 2001 (article)

Abstract
[Abstract]: A useful pattern is a pattern that contributes much to learning. For a classification problem those patterns near the class boundary surfaces carry more information to the classifier. For a regression problem the ones near the estimated surface carry more information. In both cases, the usefulness is defined only for those patterns either without error or with negligible error. Using only the useful patterns gives several benefits. First, computational complexity in memory and time for learning is decreased. Second, overfitting is avoided even when the learner is over-sized. Third, learning results in more stable learners. In this paper, we propose a pattern “utility index” that measures the utility of an individual pattern. The utility index is based on the bias and variance of a pattern trained by a network ensemble. In classification, the pattern with a low bias and a high variance gets a high score. In regression, on the other hand, the one with a low bias and a low variance gets a high score. Based on the distribution of the utility index, the original training set is divided into a high-score group and a low-score group. Only the high-score group is then used for training. The proposed method is tested on synthetic and real-world benchmark datasets. The proposed approach gives a better or at least similar performance.

[BibTex]

[BibTex]