Header logo is ei


2002


no image
Pattern Selection for Support Vector Classifiers

Shin, H., Cho, S.

In Ideal 2002, pages: 97-103, (Editors: Yin, H. , N. Allinson, R. Freeman, J. Keane, S. Hubbard), Springer, Berlin, Germany, Third International Conference on Intelligent Data Engineering and Automated Learning, January 2002 (inproceedings)

Abstract
SVMs tend to take a very long time to train with a large data set. If "redundant" patterns are identified and deleted in pre-processing, the training time could be reduced significantly. We propose a k-nearest neighbors(k-NN) based pattern selection method. The method tries to select the patterns that are near the decision boundary and that are correctly labeled. The simulations over synthetic data sets showed promising results: (1) By converting a non-separable problem to a separable one, the search for an optimal error tolerance parameter became unnecessary. (2) SVM training time decreased by two orders of magnitude without any loss of accuracy. (3) The redundant SVs were substantially reduced.

PDF Web DOI [BibTex]

2002

PDF Web DOI [BibTex]


no image
Kernel-based nonlinear blind source separation

Harmeling, S., Ziehe, A., Kawanabe, M., Müller, K.

EU-Project BLISS, January 2002 (techreport)

GZIP [BibTex]

GZIP [BibTex]


no image
Training invariant support vector machines

DeCoste, D., Schölkopf, B.

Machine Learning, 46(1-3):161-190, January 2002 (article)

Abstract
Practical experience has shown that in order to obtain the best possible performance, prior knowledge about invariances of a classification problem at hand ought to be incorporated into the training procedure. We describe and review all known methods for doing so in support vector machines, provide experimental results, and discuss their respective merits. One of the significant new results reported in this work is our recent achievement of the lowest reported test error on the well-known MNIST digit recognition benchmark task, with SVM training times that are also significantly faster than previous SVM methods.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Model Selection for Small Sample Regression

Chapelle, O., Vapnik, V., Bengio, Y.

Machine Learning, 48(1-3):9-23, 2002 (article)

Abstract
Model selection is an important ingredient of many machine learning algorithms, in particular when the sample size in small, in order to strike the right trade-off between overfitting and underfitting. Previous classical results for linear regression are based on an asymptotic analysis. We present a new penalization method for performing model selection for regression that is appropriate even for small samples. Our penalization is based on an accurate estimator of the ratio of the expected training error and the expected generalization error, in terms of the expected eigenvalues of the input covariance matrix.

PostScript [BibTex]

PostScript [BibTex]


no image
The leave-one-out kernel

Tsuda, K., Kawanabe, M.

In Artificial Neural Networks -- ICANN 2002, 2415, pages: 727-732, LNCS, (Editors: Dorronsoro, J. R.), Artificial Neural Networks -- ICANN, 2002 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Concentration Inequalities and Empirical Processes Theory Applied to the Analysis of Learning Algorithms

Bousquet, O.

Biologische Kybernetik, Ecole Polytechnique, 2002 (phdthesis) Accepted

Abstract
New classification algorithms based on the notion of 'margin' (e.g. Support Vector Machines, Boosting) have recently been developed. The goal of this thesis is to better understand how they work, via a study of their theoretical performance. In order to do this, a general framework for real-valued classification is proposed. In this framework, it appears that the natural tools to use are Concentration Inequalities and Empirical Processes Theory. Thanks to an adaptation of these tools, a new measure of the size of a class of functions is introduced, which can be computed from the data. This allows, on the one hand, to better understand the role of eigenvalues of the kernel matrix in Support Vector Machines, and on the other hand, to obtain empirical model selection criteria.

PostScript [BibTex]


no image
Support Vector Machines: Induction Principle, Adaptive Tuning and Prior Knowledge

Chapelle, O.

Biologische Kybernetik, 2002 (phdthesis)

Abstract
This thesis presents a theoretical and practical study of Support Vector Machines (SVM) and related learning algorithms. In a first part, we introduce a new induction principle from which SVMs can be derived, but some new algorithms are also presented in this framework. In a second part, after studying how to estimate the generalization error of an SVM, we suggest to choose the kernel parameters of an SVM by minimizing this estimate. Several applications such as feature selection are presented. Finally the third part deals with the incoporation of prior knowledge in a learning algorithm and more specifically, we studied the case of known invariant transormations and the use of unlabeled data.

GZIP [BibTex]


no image
Contrast discrimination with sinusoidal gratings of different spatial frequency

Bird, C., Henning, G., Wichmann, F.

Journal of the Optical Society of America A, 19(7), pages: 1267-1273, 2002 (article)

Abstract
The detectability of contrast increments was measured as a function of the contrast of a masking or “pedestal” grating at a number of different spatial frequencies ranging from 2 to 16 cycles per degree of visual angle. The pedestal grating always had the same orientation, spatial frequency and phase as the signal. The shape of the contrast increment threshold versus pedestal contrast (TvC) functions depend of the performance level used to define the “threshold,” but when both axes are normalized by the contrast corresponding to 75% correct detection at each frequency, the (TvC) functions at a given performance level are identical. Confidence intervals on the slope of the rising part of the TvC functions are so wide that it is not possible with our data to reject Weber’s Law.

PDF [BibTex]

PDF [BibTex]


no image
A compression approach to support vector model selection

von Luxburg, U., Bousquet, O., Schölkopf, B.

(101), Max Planck Institute for Biological Cybernetics, 2002, see more detailed JMLR version (techreport)

Abstract
In this paper we investigate connections between statistical learning theory and data compression on the basis of support vector machine (SVM) model selection. Inspired by several generalization bounds we construct ``compression coefficients'' for SVMs, which measure the amount by which the training labels can be compressed by some classification hypothesis. The main idea is to relate the coding precision of this hypothesis to the width of the margin of the SVM. The compression coefficients connect well known quantities such as the radius-margin ratio R^2/rho^2, the eigenvalues of the kernel matrix and the number of support vectors. To test whether they are useful in practice we ran model selection experiments on several real world datasets. As a result we found that compression coefficients can fairly accurately predict the parameters for which the test error is minimized.

[BibTex]

[BibTex]


no image
A Bennett Concentration Inequality and Its Application to Suprema of Empirical Processes

Bousquet, O.

C. R. Acad. Sci. Paris, Ser. I, 334, pages: 495-500, 2002 (article)

Abstract
We introduce new concentration inequalities for functions on product spaces. They allow to obtain a Bennett type deviation bound for suprema of empirical processes indexed by upper bounded functions. The result is an improvement on Rio's version \cite{Rio01b} of Talagrand's inequality \cite{Talagrand96} for equidistributed variables.

PDF PostScript [BibTex]


no image
Numerical evolution of axisymmetric, isolated systems in general relativity

Frauendiener, J., Hein, M.

Physical Review D, 66, pages: 124004-124004, 2002 (article)

Abstract
We describe in this article a new code for evolving axisymmetric isolated systems in general relativity. Such systems are described by asymptotically flat space-times, which have the property that they admit a conformal extension. We are working directly in the extended conformal manifold and solve numerically Friedrich's conformal field equations, which state that Einstein's equations hold in the physical space-time. Because of the compactness of the conformal space-time the entire space-time can be calculated on a finite numerical grid. We describe in detail the numerical scheme, especially the treatment of the axisymmetry and the boundary.

GZIP [BibTex]

GZIP [BibTex]


no image
Marginalized kernels for biological sequences

Tsuda, K., Kin, T., Asai, K.

Bioinformatics, 18(Suppl 1):268-275, 2002 (article)

PDF [BibTex]

PDF [BibTex]


no image
Localized Rademacher Complexities

Bartlett, P., Bousquet, O., Mendelson, S.

In Proceedings of the 15th annual conference on Computational Learning Theory, pages: 44-58, Proceedings of the 15th annual conference on Computational Learning Theory, 2002 (inproceedings)

Abstract
We investigate the behaviour of global and local Rademacher averages. We present new error bounds which are based on the local averages and indicate how data-dependent local averages can be estimated without {it a priori} knowledge of the class at hand.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Film Cooling: A Comparative Study of Different Heaterfoil Configurations for Liquid Crystals Experiments

Vogel, G., Graf, ABA., Weigand, B.

In ASME TURBO EXPO 2002, Amsterdam, GT-2002-30552, ASME TURBO EXPO, Amsterdam, 2002 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Feature Selection and Transduction for Prediction of Molecular Bioactivity for Drug Design

Weston, J., Perez-Cruz, F., Bousquet, O., Chapelle, O., Elisseeff, A., Schölkopf, B.

Max Planck Institute for Biological Cybernetics / Biowulf Technologies, 2002 (techreport)

Web [BibTex]

Web [BibTex]


no image
Application of Monte Carlo Methods to Psychometric Function Fitting

Wichmann, F.

Proceedings of the 33rd European Conference on Mathematical Psychology, pages: 44, 2002 (poster)

Abstract
The psychometric function relates an observer's performance to an independent variable, usually some physical quantity of a stimulus in a psychophysical task. Here I describe methods to (1) fitting psychometric functions, (2) assessing goodness-of-fit, and (3) providing confidence intervals for the function's parameters and other estimates derived from them. First I describe a constrained maximum-likelihood method for parameter estimation. Using Monte-Carlo simulations I demonstrate that it is important to have a fitting method that takes stimulus-independent errors (or "lapses") into account. Second, a number of goodness-of-fit tests are introduced. Because psychophysical data sets are usually rather small I advocate the use of Monte Carlo resampling techniques that do not rely on asymptotic theory for goodness-of-fit assessment. Third, a parametric bootstrap is employed to estimate the variability of fitted parameters and derived quantities such as thresholds and slopes. I describe how the bootstrap bridging assumption, on which the validity of the procedure depends, can be tested without incurring too high a cost in computation time. Finally I describe how the methods can be extended to test hypotheses concerning the form and shape of several psychometric functions. Software describing the methods is available (http://www.bootstrap-software.com/psignifit/), as well as articles describing the methods in detail (Wichmann&Hill, Perception&Psychophysics, 2001a,b).

[BibTex]

[BibTex]


no image
Stability and Generalization

Bousquet, O., Elisseeff, A.

Journal of Machine Learning Research, 2, pages: 499-526, 2002 (article)

Abstract
We define notions of stability for learning algorithms and show how to use these notions to derive generalization error bounds based on the empirical error and the leave-one-out error. The methods we use can be applied in the regression framework as well as in the classification one when the classifier is obtained by thresholding a real-valued function. We study the stability properties of large classes of learning algorithms such as regularization based algorithms. In particular we focus on Hilbert space regularization and Kullback-Leibler regularization. We demonstrate how to apply the results to SVM for regression and classification.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Subspace information criterion for non-quadratic regularizers – model selection for sparse regressors

Tsuda, K., Sugiyama, M., Müller, K.

IEEE Trans Neural Networks, 13(1):70-80, 2002 (article)

PDF [BibTex]

PDF [BibTex]


no image
Modeling splicing sites with pairwise correlations

Arita, M., Tsuda, K., Asai, K.

Bioinformatics, 18(Suppl 2):27-34, 2002 (article)

PDF [BibTex]

PDF [BibTex]


no image
Observations on the Nyström Method for Gaussian Process Prediction

Williams, C., Rasmussen, C., Schwaighofer, A., Tresp, V.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2002 (techreport)

Abstract
A number of methods for speeding up Gaussian Process (GP) prediction have been proposed, including the Nystr{\"o}m method of Williams and Seeger (2001). In this paper we focus on two issues (1) the relationship of the Nystr{\"o}m method to the Subset of Regressors method (Poggio and Girosi 1990; Luo and Wahba, 1997) and (2) understanding in what circumstances the Nystr{\"o}m approximation would be expected to provide a good approximation to exact GP regression.

PostScript [BibTex]

PostScript [BibTex]


no image
Perfusion Quantification using Gaussian Process Deconvolution

Andersen, IK., Szymkowiak, A., Rasmussen, CE., Hanson, LG., Marstrand, JR., Larsson, HBW., Hansen, LK.

Magnetic Resonance in Medicine, (48):351-361, 2002 (article)

Abstract
The quantification of perfusion using dynamic susceptibility contrast MR imaging requires deconvolution to obtain the residual impulse-response function (IRF). Here, a method using a Gaussian process for deconvolution, GPD, is proposed. The fact that the IRF is smooth is incorporated as a constraint in the method. The GPD method, which automatically estimates the noise level in each voxel, has the advantage that model parameters are optimized automatically. The GPD is compared to singular value decomposition (SVD) using a common threshold for the singular values and to SVD using a threshold optimized according to the noise level in each voxel. The comparison is carried out using artificial data as well as using data from healthy volunteers. It is shown that GPD is comparable to SVD variable optimized threshold when determining the maximum of the IRF, which is directly related to the perfusion. GPD provides a better estimate of the entire IRF. As the signal to noise ratio increases or the time resolution of the measurements increases, GPD is shown to be superior to SVD. This is also found for large distribution volumes.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Tracking a Small Set of Experts by Mixing Past Posteriors

Bousquet, O., Warmuth, M.

Journal of Machine Learning Research, 3, pages: 363-396, (Editors: Long, P.), 2002 (article)

Abstract
In this paper, we examine on-line learning problems in which the target concept is allowed to change over time. In each trial a master algorithm receives predictions from a large set of n experts. Its goal is to predict almost as well as the best sequence of such experts chosen off-line by partitioning the training sequence into k+1 sections and then choosing the best expert for each section. We build on methods developed by Herbster and Warmuth and consider an open problem posed by Freund where the experts in the best partition are from a small pool of size m. Since k >> m, the best expert shifts back and forth between the experts of the small pool. We propose algorithms that solve this open problem by mixing the past posteriors maintained by the master algorithm. We relate the number of bits needed for encoding the best partition to the loss bounds of the algorithms. Instead of paying log n for choosing the best expert in each section we first pay log (n choose m) bits in the bounds for identifying the pool of m experts and then log m bits per new section. In the bounds we also pay twice for encoding the boundaries of the sections.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
A femoral arteriovenous shunt facilitates arterial whole blood sampling in animals

Weber, B., Burger, C., Biro, P., Buck, A.

Eur J Nucl Med Mol Imaging, 29, pages: 319-323, 2002 (article)

[BibTex]

[BibTex]


no image
Some Local Measures of Complexity of Convex Hulls and Generalization Bounds

Bousquet, O., Koltchinskii, V., Panchenko, D.

In Proceedings of the 15th annual conference on Computational Learning Theory, Proceedings of the 15th annual conference on Computational Learning Theory, 2002 (inproceedings)

Abstract
We investigate measures of complexity of function classes based on continuity moduli of Gaussian and Rademacher processes. For Gaussian processes, we obtain bounds on the continuity modulus on the convex hull of a function class in terms of the same quantity for the class itself. We also obtain new bounds on generalization error in terms of localized Rademacher complexities. This allows us to prove new results about generalization performance for convex hulls in terms of characteristics of the base class. As a byproduct, we obtain a simple proof of some of the known bounds on the entropy of convex hulls.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Contrast discrimination with pulse-trains in pink noise

Henning, G., Bird, C., Wichmann, F.

Journal of the Optical Society of America A, 19(7), pages: 1259-1266, 2002 (article)

Abstract
Detection performance was measured with sinusoidal and pulse-train gratings. Although the 2.09-c/deg pulse-train, or line gratings, contained at least 8 harmonics all at equal contrast, they were no more detectable than their most detectable component. The addition of broadband pink noise designed to equalize the detectability of the components of the pulse train made the pulse train about a factor of four more detectable than any of its components. However, in contrast-discrimination experiments, with a pedestal or masking grating of the same form and phase as the signal and 15% contrast, the noise did not affect the discrimination performance of the pulse train relative to that obtained with its sinusoidal components. We discuss the implications of these observations for models of early vision in particular the implications for possible sources of internal noise.

PDF [BibTex]

PDF [BibTex]


no image
A kernel approach for learning from almost orthogonal patterns

Schölkopf, B., Weston, J., Eskin, E., Leslie, C., Noble, W.

In Principles of Data Mining and Knowledge Discovery, Lecture Notes in Computer Science, 2430/2431, pages: 511-528, Lecture Notes in Computer Science, (Editors: T Elomaa and H Mannila and H Toivonen), Springer, Berlin, Germany, 13th European Conference on Machine Learning (ECML) and 6th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD'2002), 2002 (inproceedings)

PostScript DOI [BibTex]

PostScript DOI [BibTex]


no image
Optimal linear estimation of self-motion - a real-world test of a model of fly tangential neurons

Franz, MO.

SAB 02 Workshop, Robotics as theoretical biology, 7th meeting of the International Society for Simulation of Adaptive Behaviour (SAB), (Editors: Prescott, T.; Webb, B.), 2002 (poster)

Abstract
The tangential neurons in the fly brain are sensitive to the typical optic flow patterns generated during self-motion (see example in Fig.1). We examine whether a simplified linear model of these neurons can be used to estimate self-motion from the optic flow. We present a theory for the construction of an optimal linear estimator incorporating prior knowledge both about the distance distribution of the environment, and about the noise and self-motion statistics of the sensor. The optimal estimator is tested on a gantry carrying an omnidirectional vision sensor that can be moved along three translational and one rotational degree of freedom. The experiments indicate that the proposed approach yields accurate results for rotation estimates, independently of the current translation and scene layout. Translation estimates, however, turned out to be sensitive to simultaneous rotation and to the particular distance distribution of the scene. The gantry experiments confirm that the receptive field organization of the tangential neurons allows them, as an ensemble, to extract self-motion from the optic flow.

PDF [BibTex]

PDF [BibTex]


no image
Choosing Multiple Parameters for Support Vector Machines

Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.

Machine Learning, 46(1):131-159, 2002 (article)

Abstract
The problem of automatically tuning multiple parameters for pattern recognition Support Vector Machines (SVM) is considered. This is done by minimizing some estimates of the generalization error of SVMs using a gradient descent algorithm over the set of parameters. Usual methods for choosing parameters, based on exhaustive search become intractable as soon as the number of parameters exceeds two. Some experimental results assess the feasibility of our approach for a large number of parameters (more than 100) and demonstrate an improvement of generalization performance.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Infinite Mixtures of Gaussian Process Experts

Rasmussen, CE., Ghahramani, Z.

In (Editors: Dietterich, Thomas G.; Becker, Suzanna; Ghahramani, Zoubin), 2002 (inproceedings)

Abstract
We present an extension to the Mixture of Experts (ME) model, where the individual experts are Gaussian Process (GP) regression models. Using a input-dependent adaptation of the Dirichlet Process, we implement a gating network for an infinite number of Experts. Inference in this model may be done efficiently using a Markov Chain relying on Gibbs sampling. The model allows the effective covariance function to vary with the inputs, and may handle large datasets -- thus potentially overcoming two of the biggest hurdles with GP models. Simulations show the viability of this approach.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Marginalized kernels for RNA sequence data analysis

Kin, T., Tsuda, K., Asai, K.

In Genome Informatics 2002, pages: 112-122, (Editors: Lathtop, R. H.; Nakai, K.; Miyano, S.; Takagi, T.; Kanehisa, M.), Genome Informatics, 2002, (Best Paper Award) (inproceedings)

Web [BibTex]

Web [BibTex]


no image
Luminance Artifacts on CRT Displays

Wichmann, F.

In IEEE Visualization, pages: 571-574, (Editors: Moorhead, R.; Gross, M.; Joy, K. I.), IEEE Visualization, 2002 (inproceedings)

Abstract
Most visualization panels today are still built around cathode-ray tubes (CRTs), certainly on personal desktops at work and at home. Whilst capable of producing pleasing images for common applications ranging from email writing to TV and DVD presentation, it is as well to note that there are a number of nonlinear transformations between input (voltage) and output (luminance) which distort the digital and/or analogue images send to a CRT. Some of them are input-independent and hence easy to fix, e.g. gamma correction, but others, such as pixel interactions, depend on the content of the input stimulus and are thus harder to compensate for. CRT-induced image distortions cause problems not only in basic vision research but also for applications where image fidelity is critical, most notably in medicine (digitization of X-ray images for diagnostic purposes) and in forms of online commerce, such as the online sale of images, where the image must be reproduced on some output device which will not have the same transfer function as the customer's CRT. I will present measurements from a number of CRTs and illustrate how some of their shortcomings may be problematic for the aforementioned applications.

[BibTex]

[BibTex]

2000


no image
Knowledge Discovery in Databases: An Information Retrieval Perspective

Ong, CS.

Malaysian Journal of Computer Science, 13(2):54-63, December 2000 (article)

Abstract
The current trend of increasing capabilities in data generation and collection has resulted in an urgent need for data mining applications, also called knowledge discovery in databases. This paper identifies and examines the issues involved in extracting useful grains of knowledge from large amounts of data. It describes a framework to categorise data mining systems. The author also gives an overview of the issues pertaining to data pre processing, as well as various information gathering methodologies and techniques. The paper covers some popular tools such as classification, clustering, and generalisation. A summary of statistical and machine learning techniques used currently is also provided.

PDF [BibTex]

2000

PDF [BibTex]


no image
A real-time model of the human knee for application in virtual orthopaedic trainer

Peters, J., Riener, R.

In Proceedings of the 10th International Conference on BioMedical Engineering (ICBME 2000), 10, pages: 1-2, 10th International Conference on BioMedical Engineering (ICBME) , December 2000 (inproceedings)

Abstract
In this paper a real-time capable computational model of the human knee is presented. The model describes the passive elastic joint characteristics in six degrees-of-freedom (DOF). A black-box approach was chosen, where experimental data were approximated by piecewise polynomial functions. The knee model has been applied in a the Virtual Orthopaedic Trainer, which can support training of physical knee evaluation required for diagnosis and surgical planning.

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Simple Iterative Approach to Parameter Optimization

Zien, A., Zimmer, R., Lengauer, T.

Journal of Computational Biology, 7(3,4):483-501, November 2000 (article)

Abstract
Various bioinformatics problems require optimizing several different properties simultaneously. For example, in the protein threading problem, a scoring function combines the values for different parameters of possible sequence-to-structure alignments into a single score to allow for unambiguous optimization. In this context, an essential question is how each property should be weighted. As the native structures are known for some sequences, a partial ordering on optimal alignments to other structures, e.g., derived from structural comparisons, may be used to adjust the weights. To resolve the arising interdependence of weights and computed solutions, we propose a heuristic approach: iterating the computation of solutions (here, threading alignments) given the weights and the estimation of optimal weights of the scoring function given these solutions via systematic calibration methods. For our application (i.e., threading), this iterative approach results in structurally meaningful weights that significantly improve performance on both the training and the test data sets. In addition, the optimized parameters show significant improvements on the recognition rate for a grossly enlarged comprehensive benchmark, a modified recognition protocol as well as modified alignment types (local instead of global and profiles instead of single sequences). These results show the general validity of the optimized weights for the given threading program and the associated scoring contributions.

Web [BibTex]

Web [BibTex]


no image
Identification of Drug Target Proteins

Zien, A., Küffner, R., Mevissen, T., Zimmer, R., Lengauer, T.

ERCIM News, 43, pages: 16-17, October 2000 (article)

Web [BibTex]

Web [BibTex]


no image
On Designing an Automated Malaysian Stemmer for the Malay Language

Tai, SY., Ong, CS., Abullah, NA.

In Fifth International Workshop on Information Retrieval with Asian Languages, pages: 207-208, ACM Press, New York, NY, USA, Fifth International Workshop on Information Retrieval with Asian Languages, October 2000 (inproceedings)

Abstract
Online and interactive information retrieval systems are likely to play an increasing role in the Malay Language community. To facilitate and automate the process of matching morphological term variants, a stemmer focusing on common affix removal algorithms is proposed as part of the design of an information retrieval system for the Malay Language. Stemming is a morphological process of normalizing word tokens down to their essential roots. The proposed stemmer strips prefixes and suffixes off the word. The experiment conducted with web sites selected from the World Wide Web has exhibited substantial improvements in the number of words indexed.

PostScript Web DOI [BibTex]

PostScript Web DOI [BibTex]


no image
Robust ensemble learning

Rätsch, G., Schölkopf, B., Smola, A., Mika, S., Onoda, T., Müller, K.

In Advances in Large Margin Classifiers, pages: 207-220, Neural Information Processing Series, (Editors: AJ Smola and PJ Bartlett and B Schölkopf and D. Schuurmans), MIT Press, Cambridge, MA, USA, October 2000 (inbook)

[BibTex]

[BibTex]


no image
Entropy numbers for convex combinations and MLPs

Smola, A., Elisseeff, A., Schölkopf, B., Williamson, R.

In Advances in Large Margin Classifiers, pages: 369-387, Neural Information Processing Series, (Editors: AJ Smola and PL Bartlett and B Schölkopf and D Schuurmans), MIT Press, Cambridge, MA,, October 2000 (inbook)

[BibTex]

[BibTex]


no image
Ensemble of Specialized Networks based on Input Space Partition

Shin, H., Lee, H., Cho, S.

In Proc. of the Korean Operations Research and Management Science Conference, pages: 33-36, Korean Operations Research and Management Science Conference, October 2000 (inproceedings)

[BibTex]

[BibTex]


no image
DES Approach Failure Recovery of Pump-valve System

Son, HI., Kim, KW., Lee, S.

In Korean Society of Precision Engineering (KSPE) Conference, pages: 647-650, Annual Meeting of the Korean Society of Precision Engineering (KSPE), October 2000 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Natural Regularization from Generative Models

Oliver, N., Schölkopf, B., Smola, A.

In Advances in Large Margin Classifiers, pages: 51-60, Neural Information Processing Series, (Editors: AJ Smola and PJ Bartlett and B Schölkopf and D Schuurmans), MIT Press, Cambridge, MA, USA, October 2000 (inbook)

[BibTex]

[BibTex]


no image
Advances in Large Margin Classifiers

Smola, A., Bartlett, P., Schölkopf, B., Schuurmans, D.

pages: 422, Neural Information Processing, MIT Press, Cambridge, MA, USA, October 2000 (book)

Abstract
The concept of large margins is a unifying principle for the analysis of many different approaches to the classification of data from examples, including boosting, mathematical programming, neural networks, and support vector machines. The fact that it is the margin, or confidence level, of a classification--that is, a scale parameter--rather than a raw training error that matters has become a key tool for dealing with classifiers. This book shows how this idea applies to both the theoretical analysis and the design of algorithms. The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research. Among the contributors are Manfred Opper, Vladimir Vapnik, and Grace Wahba.

Web [BibTex]

Web [BibTex]


no image
Ensemble Learning Algorithm of Specialized Networks

Shin, H., Lee, H., Cho, S.

In Proc. of the Korea Information Science Conference, pages: 308-310, Korea Information Science Conference, October 2000 (inproceedings)

[BibTex]

[BibTex]


no image
DES Approach Failure Diagnosis of Pump-valve System

Son, HI., Kim, KW., Lee, S.

In Korean Society of Precision Engineering (KSPE) Conference, pages: 643-646, Annual Meeting of the Korean Society of Precision Engineering (KSPE), October 2000 (inproceedings)

Abstract
As many industrial systems become more complex, it becomes extremely difficult to diagnose the cause of failures. This paper presents a failure diagnosis approach based on discrete event system theory. In particular, the approach is a hybrid of event-based and state-based ones leading to a simpler failure diagnoser with supervisory control capability. The design procedure is presented along with a pump-valve system as an example.

PDF [BibTex]

PDF [BibTex]


no image
Engineering Support Vector Machine Kernels That Recognize Translation Initiation Sites

Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lengauer, T., Müller, K.

Bioinformatics, 16(9):799-807, September 2000 (article)

Abstract
Motivation: In order to extract protein sequences from nucleotide sequences, it is an important step to recognize points at which regions start that code for proteins. These points are called translation initiation sites (TIS). Results: The task of finding TIS can be modeled as a classification problem. We demonstrate the applicability of support vector machines for this task, and show how to incorporate prior biological knowledge by engineering an appropriate kernel function. With the described techniques the recognition performance can be improved by 26% over leading existing approaches. We provide evidence that existing related methods (e.g. ESTScan) could profit from advanced TIS recognition.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Three-dimensional reconstruction of planar scenes

Urbanek, M.

Biologische Kybernetik, INP Grenoble, Warsaw University of Technology, September 2000 (diplomathesis)

Abstract
For a planar scene, we propose an algorithm to estimate its 3D structure. Homographies between corresponding planes are employed in order to recover camera motion parameters - between camera positions from which images of the scene were taken. Cases of one- and multiple- corresponding planes present on the scene are distinguished. Solutions are proposed for both cases.

ZIP [BibTex]

ZIP [BibTex]


no image
Analysis of Gene Expression Data with Pathway Scores

Zien, A., Küffner, R., Zimmer, R., Lengauer, T.

In ISMB 2000, pages: 407-417, AAAI Press, Menlo Park, CA, USA, 8th International Conference on Intelligent Systems for Molecular Biology, August 2000 (inproceedings)

Abstract
We present a new approach for the evaluation of gene expression data. The basic idea is to generate biologically possible pathways and to score them with respect to gene expression measurements. We suggest sample scoring functions for different problem specifications. The significance of the scores for the investigated pathways is assessed by comparison to a number of scores for random pathways. We show that simple scoring functions can assign statistically significant scores to biologically relevant pathways. This suggests that the combination of appropriate scoring functions with the systematic generation of pathways can be used in order to select the most interesting pathways based on gene expression measurements.

PDF [BibTex]

PDF [BibTex]